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Abstract

The relative importance of regulation at the mRNA versus protein
level is subject to ongoing debate. To address this question in a
dynamic system, we mapped proteomic and transcriptomic
changes in mammalian cells responding to stress induced by
dithiothreitol over 30 h. Specifically, we estimated the kinetic
parameters for the synthesis and degradation of RNA and proteins,
and deconvoluted the response patterns into common and unique
to each regulatory level using a new statistical tool. Overall, the
two regulatory levels were equally important, but differed in their
impact on molecule concentrations. Both mRNA and protein
changes peaked between two and eight hours, but mRNA expres-
sion fold changes were much smaller than those of the proteins.
mRNA concentrations shifted in a transient, pulse-like pattern and
returned to values close to pre-treatment levels by the end of the
experiment. In contrast, protein concentrations switched only once
and established a new steady state, consistent with the dominant
role of protein regulation during misfolding stress. Finally, we
generated hypotheses on specific regulatory modes for some genes.
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Introduction

Technological advances have enabled a new generation of gene

expression analysis, providing genome-wide mRNA and protein

concentration data over multiple conditions or in a time course.

Integrative analyses combining these complementary technologies

are particularly valuable when studying the dynamics of cellular

behavior in response to a stimulus, and first tools and results have

emerged (Vogel et al, 2011; Robles et al, 2014; Jovanovic et al,

2015). In the literature, there is a growing consensus that gene

expression regulation is much more intricate than assumed for

many years (Vogel & Marcotte, 2012), and the exact contributions of

regulation at the RNA level, that is, transcription and RNA degrada-

tion, versus regulation at the protein level, that is, translation and

protein degradation, are subject to ongoing debate. Their attribu-

table fractions range from as much as 59% for protein-level regula-

tion to as little as 16–44% (Vogel et al, 2010; Schwanhausser et al,

2011; Li & Biggin, 2015) in steady-state cells growing under normal

conditions without perturbation. In comparison, in yeast responding

to various treatments, protein and mRNA expression often disagree

substantially (Berry & Gasch, 2008; Fournier et al, 2010; Lee et al,

2011; Vogel et al, 2011; Lackner et al, 2012). Interestingly, this

discrepancy appears to be stronger for down-regulated than up-

regulated genes, hinting at the importance of protein degradation

in attenuating gene expression (Berry & Gasch, 2008; Lee et al,

2011).

Since post-transcriptional regulation is much more intricate in

mammalian cells than in yeast, for example with respect to miRNA-

based translation repression or alternative splicing, such time-

resolved analyses of mRNA and protein concentrations for higher

organisms are particularly in demand. A few time-resolved analyses

of mammalian mRNA and corresponding protein expression

changes have been reported recently, for example studies that

monitor the progression of mouse liver cells through the cell cycle

(Robles et al, 2014) and the response of dendritic cells to

lipopolysaccharide (LPS) treatment (Jovanovic et al, 2015).

Although substantial protein expression changes were observed in

both studies, RNA-level regulation appeared to be stronger than that

of protein-level changes, fueling the debate on the relative impor-

tance of transcription, translation, and degradation.
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To quantitate the contributions of different regulatory levels and

identify genes and time points at which these significant changes

occur, we recently developed a statistical framework, called protein

expression control analysis (PECA). PECA dissects mRNA- and

protein-level regulation in time-resolved analyses and allows for

consistent comparisons of the two levels of gene expression regula-

tion (Teo et al, 2014). Specifically, it computes the ratio of synthesis

and degradation rates over successive time intervals from paired

time-course data and transforms mRNA and protein concentrations

into statistical measures of regulation, as expressed by rate ratios.

The rate ratios are the ratios between synthesis and degradation

rates of specific molecules. The rate ratios and their changes across

time provide quantitative summaries of gene expression regulation.

We can use the PECA model for mRNA expression alone to charac-

terize RNA-level regulation, or in combination with protein data to

characterize protein-level regulation.

Compared to experimental measurements of protein synthesis

and degradation rates using pulsed and dynamic SILAC (Doherty

et al, 2009; Schwanhausser et al, 2009), PECA has the disadvantage

that it currently does not distinguish between molecular synthesis

and degradation, but the advantage that it does not require metabolic

labeling of proteins and can therefore be applied to systems that are

not amenable to SILAC. Label-free proteomics approaches are less

accurate than those using isotopic labeling and therefore cannot

detect small fold changes as sensitively. However, this disadvantage

is effectively compensated for by recent technological and computa-

tional advances and easier sample handling that allows for the analy-

sis of multiple replicates (Liu et al, 2013; Cox et al, 2014; Schmidt

et al, 2014; Tebbe et al, 2015).

Although a few other computational approaches can quantitate

the rate parameters based on first-order differential equations (Lee

et al, 2011; Jovanovic et al, 2015; Omranian et al, 2015), PECA is

the first approach that introduced a probabilistic model for statistical

inference of regulatory parameters. Unlike the other approaches,

PECA’s probabilistic model is formulated based on Bayesian hierar-

chical models and leads to comparatively stable parameter estima-

tion. More importantly, it provides a statistical score, called change

point probability score (CPS), on which one can apply a score

threshold associated with a desired false discovery rate (FDR) to

extract genes that are significantly regulated at one or both levels.

“Significant regulation” can therefore be defined as a significant

change in the rates of synthesis and degradation of a gene between

consecutive time intervals. The ability to estimate FDRs provides a

unified analysis framework to identify mRNA- and protein-level

regulation above the noise level. Using this tool, we can dissect the

contribution of regulation activities at each molecular level, result-

ing in a final, observed protein expression trajectory.

We applied PECA to data from mammalian cells responding to

stress of the endoplasmic reticulum (ER). The ER is the major

protein-folding machinery and therefore highly sensitive to reagents

that challenge protein folding, such as dithiothreitol (DTT). The ER

stress response plays a crucial role in numerous human diseases, for

example, hypoxia, ischemia/reperfusion injury, heart disease,

diabetes, and neurodegenerative diseases such as Alzheimer’s and

Parkinson’s, in which prolonged protein misfolding is detrimental to

the cell (Lindholm et al, 2006; Yoshida, 2007). During the early ER

stress response, PERK-based phosphorylation of eukaryotic transla-

tion initiation factor eIF2a causes halt of translation (Yan et al, 2002).

Despite this general decrease in protein synthesis, several hundreds

of mRNA species increase in translation through the presence and

regulation of small upstream open reading frames in the 50UTR
(uORFs)—for example, activating response of transcription factors

such as ATF4 and ATF6 (Vattem & Wek, 2004; Barbosa et al, 2013)

and active translation of the stress-related protein GADD34 (Lee et al,

2009)—resulting in substantial rearrangement of the transcriptome

and translatome (Ventoso et al, 2012). The activated transcription

factors then trigger downstream events, such as the unfolded protein

response (UPR), a major mechanism responsible for repair and

refolding of damaged proteins (Schroder & Kaufman, 2005), entailing

substantial proteomic rearrangement, independent of transcription. If

repair mechanisms fail, the damaged proteins are ubiquitinated and

degraded by the proteasome through an ER-associated degradation

pathway (ERAD) or autophagy (Imaizumi, 2007; Vembar & Brodsky,

2008; Buchberger et al, 2010). Prolonged or extreme ER stress, lead-

ing to an overload of the repair and degradation machineries, triggers

cellular apoptosis (Han et al, 2013; Sano & Reed, 2013). These path-

ways—ER stress response, UPR, ERAD, and apoptosis—are well

organized in their progression and interaction in cells, providing an

ideal system for studies of the relationship between mRNA and

protein expression regulation over time.

Studying mammalian cancer cells in their response to DTT over

30 h, we detected extensive regulation at both RNA and protein

levels. We find that RNA-level regulation tends to be short lived and

stable enough to recover the pre-treatment equilibrium between

synthesis and degradation, whereas protein-level regulation is more

continuous and establishes a new balance between synthesis and

degradation. We also present case studies in which we generate

hypotheses on the modes of underlying regulation.

Results

Stress treatment triggers a variety of responses across time

To compare the contributions of the mRNA and protein expression

response in a dynamic system, we designed a time-course experi-

ment of mammalian cells being subjected to ER stress. We subjected

HeLa cells to 2.5 mM DTT-induced ER stress over a 30-h period,

sampling at eight time points (0, 0.5, 1, 2, 8, 16, 24, and 30 h)

(Appendix Fig S1). In this setup, DTT had a half-life of ~4 h

(Appendix Fig S2). We first conducted a number of assays to charac-

terize the cellular phenotype in response to the treatment (Fig 1A,

Appendix Fig S3). For example, since the time course spanned more

than one cell doubling of ~24 h, we tested how the stress affected

cell proliferation, as measured by changes in cell density. The cell

density decreased during the first 16 h, after which it increased,

suggesting that a fraction of the cell population underwent apopto-

sis, while surviving cells proliferated normally (Fig 1A, upper

panel).

This interpretation was confirmed by assays monitoring cell

cycle progression and apoptosis: While apoptosis occurred during

the first two hours of the experiment, later time points showed a

continued division of the majority cells (Fig 1A, middle/lower

panel; Appendix Fig S3). DNA labeling coupled to flow cytometry

showed that apoptosis peaked at 2 h, with ~45% of cell death.

Notably, the sample preparation for the mRNA and protein analysis
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A

B

Figure 1. Cells undergo a complex response to DTT treatment.
While a proportion of cells were apoptotic during the first 2 h of the experiment, the majority of the cells continued cell division and displayed an extensive ER stress response.

A We estimated the degree of active cell division based on the cell density changes, the distribution of the DNA content, and the degree of active mitosis. Top panel:
Bar graphs show numbers of live cells, with mean and standard deviations. Black lines, DTT treatment time. Middle panel: Quantitative analysis of cell cycle phases by
flow cytometry using propidium iodide staining of DNA for cells treated with DTT for different periods of time. The 2N, 4N peaks and S-phase plateau were observed in
all time points, suggesting active cell division. Bottom panel: Immunofluorescence experiments show mitotic nuclei in red (anti-phospho-histone H3 (Ser10) antibody)
and other nuclei in blue (DAPI). Mitotic nuclei were observed throughout the entire experiment. The ratio between the number of mitotic and all nuclei was similar
among all the stress phases (not shown). White arrows, apoptotic nuclei. All experiments were performed in triplicate. The complete data are in Appendix Fig S3.

B Summary of function enrichment of mRNA expression changes (FDR < 0.05, *P < 0.001, **P < 0.0001, and ***P < 0.00001). The corresponding expression data are
shown in Appendix Fig S5. While some apoptosis occurred, remaining cells underwent intense unfolded protein and ER stress response.
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discarded cellular debris; the results below hence focus on live

cells. The same experiment also showed most of the population

underwent active mitosis: As expected, most cells were in G1 stage

across the entire experiment, and some cells continued DNA synthe-

sis (Fig 1A middle panel). This result was confirmed by immunocy-

tochemistry using the anti-phospho-histone H3 (Ser10) antibody as

a mitosis marker. The stressed and control groups were very similar

with respect to distribution across the G2/M checkpoint and the M

phase of active cell division (Fig 1A, lower panel). In sum, while

suffering from a loss of cells during the early phase of the experi-

ment, the surviving cell population continued division throughout

the entire time course.

Genome-wide transcriptomics measurements confirmed this

view and manifested roughly three phases of the response where

concerted changes happened: early (<2 h), intermediate (2–8 h),

and late (> 8 h) (Fig 1B, Appendix Fig S5). Genes related to tran-

scription regulation and programmed cell death were significantly

up-regulated during the early phase (FDR < 0.05). During the inter-

mediate phase, genes involved in ER stress and UPR were highly

expressed, while at the same time, genes related to translation elon-

gation, RNA splicing and transport, and macromolecular complex

assembly were suppressed, suggesting that stressed cells put basic

cellular functions to a halt (FDR < 0.05). During the late phase, cells

expressed genes involved in protein ubiquitination, lysosome, and

glycoprotein and transmembrane protein synthesis, indicating the

recovery of surviving cells (FDR < 0.05). The increase in lysosomal

proteins is consistent with the observations which found that the

UPR remodels the lysosome as part of a pro-survival response (Ron

& Hampton, 2004; Sriburi et al, 2004; Brewer et al, 2008; Elfrink

et al, 2013).

The integrated transcriptome and proteome are highly dynamic

Next, we conducted a large-scale, quantitative proteomic analysis to

complement the transcriptomic data. A variety of tests confirmed

the quality of the proteomic data, for example, Western blots of

selected proteins and analysis of housekeeping genes, and its repro-

ducibility across the two biological replicates (Appendix Figs S11–

S13). We quantitated a total of 3,235 proteins at least once across all

time points and replicates and chose a high-confidence dataset of

1,237 proteins with complete time-series measurements across both

replicates for further analysis. This high-confidence dataset is

comparable in size to that of a recent study (Jovanovic et al, 2015).

We also constructed an extended dataset with 2,131 proteins which

showed similar results (Appendix Fig S19).

The high-confidence dataset was further processed to remove

measurement noise and then used for the analyses described below.

Protein concentrations spanned about five orders of magnitude

(Appendix Table S1), which is similar to what other large-scale

studies observe (Schwanhausser et al, 2011). Their reproducibility

was high (R > 0.94 for seven of the eight time points, Appendix Fig

S10); the correlation with the corresponding mRNA concentrations

was consistent across samples (Appendix Fig S13). Heatmaps of the

integrated and clustered mRNA and protein expression values show

that overall expression changes were similar between the two

biological replicates (Fig 2, Appendix Figs S5, S9 and S14), but some

discrepancies existed. In some cases, peak expression changes

occurred at 2 h in one replicate and at 8 h in the other. To describe

experimental reproducibility, we calculated a replicate consistency

measure (RCM) that lists the Pearson’s correlation coefficient

between replicate time-series measurements of normalized, log-

transformed RNA and protein concentrations. At a total of eight data

points, a Pearson’s correlation coefficient > 0.7 corresponds to a

P-value = 0.05. For example, for GRP78, the RCM is 0.87/0.97,

suggesting high reproducibility between the two biological

replicates. Appendix Fig S13 displays the frequency distributions of

all RCM values and shows a bias toward high values.

In Fig 2, we identified several major groups with similar expres-

sion changes. For example, genes involved in the general stress

response were significantly up-regulated during the intermediate

and late phase of the experiment both at the mRNA and at the

protein level (Appendix Fig S14). Translation-related and mitochon-

drial genes were down-regulated at the mRNA level, consistent with

a halt in metabolic processes of stressed cells; however, these

proteins were up-regulated at the protein level.

A statistical tool identifies hidden regulatory signals

In the results described below, we used the PECA tool to extract

regulatory signals from the RNA and protein time-series data. First,

to illustrate the interpretation of PECA results, we show the example

of GRP78 (HSP5A), an ER chaperone induced by ER stress and an

important anti-apoptotic, pro-survival component of the UPR

Figure 2. RNA and protein expression changes are highly dynamic.
The heatmap shows the normalized, relative expression values for both mRNA
and protein measured across two replicates (N = 1,237), log-transformed (base
10). Profiles were clustered as described in Materials and Methods; the cluster
definitions are provided in Dataset EV1. Bottom labels E, I, L mark the early,
intermediate, and late phase, respectively.
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(Fig 3). The figure displays GRP78’s mRNA and protein concentra-

tions and the PECA results with respect to RNA- and protein-level

rate ratios and significance (RCM = 0.87/0.97). We see that GRP78’s

mRNA and protein expression patterns across the treatment were

very different from each other: mRNA concentrations peaked at 8 h

and declined afterward, while protein concentrations continuously

increased. Similar to the concentration data, RNA rate ratios for

GRP78 peaked between two and eight hours and decreased later,

while protein rate ratios plummeted in the beginning and elevated to

the pre-treatment level throughout the intermediate and late phase,

resulting in continuously rising protein concentration. PECA identified

both significant regulation of RNA expression in the early and late

phase, respectively, as well as a significant protein-level regulation

in the late phase of the experiment (FDR < 0.05; Fig 3, shaded area).

Importantly, PECA identified what was invisible from the inspec-

tion of concentration data alone: At around 16 h, RNA expression

was significantly down-regulated, but protein concentrations

continued to rise. This increase was realized through an up-

regulation of protein expression, either through increased translation

or through protein stabilization, and PECA sensitively identified this

regulatory event. Notably, PECA was able to distinguish this up-

regulation at the protein level from an increase in protein concentra-

tions that is purely due to constant translation of the existing

mRNAs at preceding time points, and define regulation as a signifi-

cant change in synthesis and degradation rates from one time inter-

val to the next. This regulatory event is also an example of the

sometimes counterbalancing effects of RNA- and protein-level regu-

lation (discussed below and in Appendix Fig S16). Incorporating

overall data properties and measurement noise, PECA enabled us to

quantitate regulatory events and extract them in a systematic and

statistically consistent manner. The entire PECA results are provided

in the Dataset EV1.

Protein concentration changes occur in greater magnitude, but
both regulatory levels contribute equally and independently

Before discussing the overall PECA outcomes, we examined general

properties of the integrated mRNA and protein concentration data

(Fig 4A–D). In general, both protein and mRNA concentrations

hardly changed during the early phase of the experiment, but during

the intermediate and late phase with different dynamics. Consistent

with earlier studies (Murray et al, 2004), the transcriptome was

comparatively static in our experiment, with average changes of

about 1.5-fold. Transcript concentrations diverged maximally from

the steady state at 8 h, after which they returned to the original

levels. In contrast, protein concentrations continuously diverged

from the beginning until the end of the experiment, with much less

change during the late phase (Fig 4, Appendix Fig S15). The magni-

tude of change was also more pronounced for proteins than for

mRNAs, illustrated by the average (and range) of expression fold

changes which were larger than those for mRNAs (Fig 4,

Appendix Table S1).

To quantitate the contribution of the two regulatory levels to the

cellular response in this system, we extracted significantly regulated

genes by applying a 5% FDR cutoff to the PECA results. Figure 4E

and F shows the number of significantly regulated genes per time

point; Table 1 summarizes the results in a different manner. Most of

the significant RNA-level regulation during the ER stress response

occurred during the intermediate and also during the late phase

(Fig 4, Table 1). Regulatory activity, that is, changing mRNA rate

ratios, spiked around the 2- to 8-h mark, without additional regula-

tion afterward: Concentrations simply returned slowly back to initial

values. A similar overall pattern was also observed for the protein

level (Fig 4).

Table 1 shows the numbers of significant regulatory events for

one of the replicates, grouped according to phase, level, and direc-

tion of the regulation. While most changes occurred during the

intermediate phase, the distributions of these changes are consistent

across phases and replicates even when different significance cutoffs

were applied (not shown). The numbers are symmetrically distrib-

uted across the table, confirming the observation from Fig 4E and F

that mRNA- and protein-level regulation contributes equally to the

overall gene expression changes in this experiment, affecting similar

numbers of genes. As Table 1 shows, if a gene was significantly

regulated during a specific phase of the response, this regulation

typically occurred at either the mRNA or the protein level, but not
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Figure 3. PECA deconvolutes expression data to extract regulatory information at the RNA and protein level.
The example shows the chaperone GRP78, a key ER stress protein. mRNA and protein concentrations are shown on the left; PECA results are shown on the right for
RNA and protein level, respectively. Intervals with significant regulation as determined by PECA are gray shaded (FDR < 0.05). The value of PECA is illustrated at the 16-h time
point at which mRNA concentration decreases, while protein concentration still rises. PECA highlights that there is a significant RNA- and protein-level regulation
around this time point—a signal that would otherwise likely have been overlooked.
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A B

C D

E F

Figure 4. The proteome response is dominant during ER stress.
The concentrations divergemore strongly in the protein data compared to themRNA data with respect tomagnitude (A-D), but bothmRNA and protein show similar numbers
of significantly regulated genes (E, F).

A, B Correlation (Pearson’s R2) between normalized, absolute expression values at time 0 and the respective time points.
C, D Average fold change (log base 10) and standard deviation of normalized, relative expression values.
E, F The number of significantly regulated genes as determined by PECA (FDR < 0.05). We summarized the CPS probabilities of each gene by choosing the maximum

probability across the time points in each of the three phases, which allows us to characterize how expression regulation (rate ratio) has shifted phase by phase.
Labels E, I, and L mark the early, intermediate, and late phase, respectively.
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both at the same time; the numbers of genes in each of the square’s

corners are smaller than those in the middle rows or columns.

However, some genes showed mRNA- and protein-level regulation

moving in the same direction during the same phase, and others

showed movement in opposite directions.

Table 1 already indicates that discordant regulation is compara-

tively rare: Only few genes are listed in the lower left and upper

right corners of the tables (75 genes in total). One such example is

GRP78 (Fig 3) for which mRNA expression is down-regulated and

protein expression is up-regulated at the 16-h time point. An alterna-

tive way to identify discordant regulation confirmed this result, that

is, via filtering for negative correlation between PECA’s mRNA and

protein time-course rate ratios in both replicates (Dataset EV1,

Appendix Fig S16A and B). We then further refined this filtering and

required not only opposing regulation, that is, at least one signifi-

cant regulatory event at the mRNA and one at the protein level, but

also constant protein concentrations, that is, changes smaller than

1.5-fold across both biological replicates. Such a scenario would

indicate cases of “buffering” in which changes in mRNA concentra-

tions are counterbalanced to result in no overall change at the

protein level. Three out of the 75 genes passed this additional filter-

ing and are shown in Appendix Fig S16C. One of these genes is

HSC70 (RCM = 0.91/0.09), a chaperone discussed below (Fig 6A).

Overall, we conclude that discordant regulation is rare, and the

dynamics in the balance of synthesis and degradation of mRNA and

protein occur in an independent manner.

Protein expression regulation reaches a new steady state

After quantitating the overall contributions and direction of the

regulatory changes, we set out to examine general temporal patterns

of regulation. To do so, we constructed a clustered heatmap of

median-centered RNA and protein rate ratios and calculated the

average rate ratios across the six largest clusters (Fig 5). A stark

contrast in coloring between consecutive columns indicates

significant regulation of an individual gene: A change in synthesis

and degradation rates results in a change in rate ratios between

time intervals. Fig 5 shows a striking difference between the

mRNA and protein level of regulation. For RNA-level regulation,

many PECA rate ratios spike during the intermediate phase, result-

ing in significant changes at both the two- and eight-hour bound-

ary time points. Before and after this interval, mRNA synthesis

and degradation rates were relatively constant, with some excep-

tions during the late phase. We note that absence of regulation in

the early time points is unexpected since, for example, many cells

underwent apoptosis within the first two hours, suggesting that

these processes may have occurred before our first measurement

at 30 min. The pulse-like or transient behavior of the RNA-level

regulation was confirmed both for the extended dataset (2,131

genes) and for the entire transcriptome (> 18,000 genes)

(Appendix Figs S19 and S21), indicating that the high-confidence

dataset delivers representative results. We observe strong spikes in

extreme rate ratios between 2 and 8 h, with significant regulation

leading into and out of this phase.

Next, we analyzed the temporal behavior of protein-level regula-

tion during our experiment. Similar to mRNA, little regulation

occurred during the early phase, but it rapidly increased during the

intermediate phase (Fig 5). However, in contrast to the pulse-like

mode of RNA-level regulation, PECA showed that many protein rate

ratios changed only once during the intermediate phase, in a switch-

like or permanent manner, but then remained constant. This switch-

like behavior is even more apparent when examining the averaged

rate ratio changes across the different gene expression clusters

(Fig 5, right). After the change at around 2 h, the protein concentra-

tions did not revert back and stayed at the new level throughout the

remainder of the experiment, indicating execution of the same

protein synthesis and degradation rates that had been set earlier,

without additional regulation. As can be seen in Fig 5 (right), the

switch-like behavior applied to both up- and down-regulation and

was independent of the mode of mRNA regulation. It is also present

in the extended dataset (Appendix Fig S19). The PECA results con-

firmed what the concentration data had hinted for: While mRNA

expression returned to the original values, protein-level regulation

reached a new steady state.

PECA results help to generate hypotheses on regulatory modes

Finally, we examined three groups of genes in detail to illustrate

how our analysis can detect signals that are otherwise hidden and

help to generate hypotheses on possible regulatory modes. The first

example group includes GRP78 (HSPA5, BiP; RCM = 0.87/0.97) and

other chaperones (Fig 6A). As discussed above, up-regulation of

GRP78 at both the mRNA and protein level is expected due to

its crucial role during the ER stress response. It is tempting to

hypothesize that its strong protein-level up-regulation might be

mediated by the internal ribosome entry site in its 50UTR. However,

the validity of this hypothesis is still debated (Fernandez et al,

2002).

Another gene in this group is HSC70 (HSPA8; RCM = 0.91/0.09),

which is, similar to GRP78, a chaperone with pro-survival functions

in the cell (Zhang et al, 2013). However, its protein expression

pattern is different from that of GRP78 in that it remains constant

across the time course. HSC70 is constitutively expressed and helps

folding of nascent protein chains. Under stress, it has been described

to be slightly induced (Liu et al, 2012). In our dataset, we observe a

significant drop in mRNA concentrations during the early phase of

the experiment and a later recovery. Interestingly, this expression

Table 1. RNA- and protein-level regulations contribute equally to
gene expression.

Using PECA, we extracted genes that are significantly regulated at the
RNA level, the protein level, at both levels, or neither (FDR < 0.05). The
tables group these genes into the three different phases (“early”, “inter-
mediate”, and “late”) and distinguish between up- and down-regulation,
marked by “Up” and “Down”, respectively. Most changes occur during the
intermediate phase. The distribution of the numbers across the tables is
symmetric, indicating that mRNA- and protein-level regulations are
equally important.
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change is not transmitted to protein concentrations, but counterbal-

anced by a significant, transient up-regulation of protein expression.

This behavior makes HSC70 one of the three examples for potential

buffering discussed above (Appendix Fig S16).

Not only HSC70, but also HSP90AA1 and HSP90B1 serve as co-

chaperones for the HSP90 proteins. HSP90B1 (GRP94, TRA1;

RCM = 0.90/0.91) is localized to melanosomes and the ER and

assists in protein folding. The protein appears to be regulated in two

phases. After a short-term transcription increase (followed by tran-

scription decline), protein production is augmented during the inter-

mediate and late phases of the ER stress experiment. Finally, Fig 6A

shows P58IPK (DNAJC3; RCM = 0.88/0.63), which is a member of

the Hsp40 chaperone family and an inhibitor of the eIF2a kinase

PERK. Due to this function, it is essential for translation re-start after

the initial, ER stress-related translation shutdown (Roobol et al,

2015). An ER stress element in P58IPK’s promotor region is known

to activate the gene’s transcription in response to ER stress (Yan

et al, 2002). In our experiment, despite up-regulation at the mRNA

level, protein concentrations are constant over the entire time

course, suggesting homeostatic down-regulation at the protein level.

However, this case did not qualify for buffering according to our

criteria. The low P58IPK levels together with the continuous

increase in GRP78 concentration (Yan et al, 2002) indicate that an

ongoing ER stress response delayed return to normal translation in

our experiment.

The second example group comprises 196 genes with invari-

able RNA concentrations, but whose protein concentrations

increased during the late phase (Appendix Fig S14, Dataset EV1,

cluster 8). Genes in this group are enriched in mitochondrial

proteins, ATP biosynthesis, ribosomes, translation, and transmembrane

Figure 5. RNA- and protein-level regulations have different temporal modes.
The predominant regulatory level of protein synthesis and degradation shows a switch-like behavior that leads to a new steady state.

A Heatmap of RNA and protein rate ratios as computed by PECA, shown for the two replicates.
B The average rate ratios across six major clusters for both RNA (top) and protein (bottom). RNA rate ratios show a spike in their changes during the intermediate

phase, while protein rate ratios change only once around the two-hour mark and remain at the new steady-state level throughout the remainder of the experiment.
The clusters are defined in Dataset EV1.
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proteins (FDR < 0.05). The ATP synthase genes are shown in

Fig 6B. ATP synthases have essential roles in cellular ATP biosyn-

thesis, and their increased activity likely boosts cellular ATP levels,

which in turn helps provide the energy needed for the UPR. We

identified eight subunits (ATP5B, C1, D, F1, H, I, L, O; average

RCM = 0.50/0.61) with similar expression patterns. PECA of these

genes shows how our tool can extract an otherwise hidden signal:

PECA correctly identified a significant positive regulation at the

protein level that results in an increase in absolute protein concen-

trations of the ATP synthase subunits.

To generate hypotheses on possible mechanisms for the up-regu-

lation of these proteins, we collected > 160 sequence features,

including length, signal sequences, nucleotide composition, amino

acid composition, translation regulatory elements, RNA secondary

structures, and post-translation modifications (Appendix Table S2).

When testing this example group for biases across the features, we

found a significant depletion in proline and glutamic acid, which are

parts of PEST sequences that shorten protein half-lives, and disor-

dered regions, that is, COILS and REM465 (t-test, P < 0.0001),

which are also known to destabilize proteins. Depletion in these

two characteristics would stabilize the protein and would explain

the up-regulated protein expression found by PECA.

The last example group contains 91 genes (Dataset EV1, cluster

3) that are characterized by an increase in both mRNA and protein

concentrations and are significantly enriched in oxidoreductases

and interestingly, aminoacyl-tRNA synthetases, namely GARS,

YARS, IARS, AARS, SARS, and EPRS (FDR < 0.05; average

RCM = 0.88/0.21). The aminoacyl-tRNA synthetases are shown in

Fig 6C and are examined in more detail in Appendix Figs S17 and

S18. A number of the enzymes show a striking gene expression

pattern in which protein synthesis is delayed by several hours,

compared to RNA synthesis. As this protein synthesis only occurs

after mRNA concentrations decrease already, the resulting final

protein concentrations remain comparatively constant (Fig 6C).

These cases did not qualify for “buffering” regulation, as they did

not pass our filtering criteria.

However, post-transcriptional regulation of aminoacyl-tRNA

synthetases has been observed before in other contexts (Kwon et al,

A

B

C

Figure 6. PECA identifies groups of similarly regulated genes.
mRNA and protein concentrations are shown on the left; PECA results are shown on the right for RNA and protein level, respectively.

A Five chaperones, including GRP78, with mixed expression patterns.
B Eight subunits of ATP synthases observed in the experiment with mostly invariable RNA concentrations and increasing protein concentrations. PECA amplifies the

hidden signal and identifies a significant protein-level regulation.
C Six aminoacyl-tRNA synthetases whose mRNA concentration increases temporarily, but the protein concentrations remain largely constant. PECA deconvolutes the

two opposing regulatory effects that act at the RNA and protein levels.
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2011; Chen et al, 2012; Park et al, 2012; Guan et al, 2014; Wei et al,

2014). Its cellular role and underlying mechanism remained

unknown until a recent publication delivered an intriguing

explanation: Aminoacyl-tRNA synthetases express alternative splice

variants that lack the catalytic domain but which often have addi-

tional “moonlighting” functions independent of their original role

during translation (Lo et al, 2014). Based on these findings, we

hypothesized that the discrepancy between mRNA and protein

expression patterns for some genes might be explained by the dif-

ferential expression of splice variants, and we examined the proteo-

mics data manually for such examples (Appendix Figs S17 and S18).

Unfortunately, as the proteomics experiment had not been designed

to detect splice variants, only three enzymes (AARS, IARS, and

QARS) provided enough information to draw some conclusions.

While we detected for each of these three enzymes a set of sequence

variants with differential expression, future work will have to con-

firm whether these alternative splicing events are indeed functional

and affect the overall, averaged protein expression levels as

observed in Fig 6C.

Discussion

After much debate on the relative contributions of RNA- and

protein-level regulation to set steady-state protein concentrations

(Vogel et al, 2010; Vogel & Marcotte, 2012; Li et al, 2014; Csardi

et al, 2015; Jovanovic et al, 2015), it is time to start examining a

new dimension: that of time-resolved expression changes. However,

such datasets are still rare, in particular for mammalian cells.

Using quantitative proteomic and transcriptomic data of mammalian

cells responding to DTT and a statistical tool specifically designed

to analyze time-series protein and RNA measurements, we deconvo-

lute the relative contributions of transcription, translation, and

molecule degradation to changes in expression during a 30-h time-

course experiment. Our analysis focuses on changes after the first

30 min of the response; regulation before the first half-hour time

point has also been described (Satpute-Krishnan et al, 2014).

Further, we focus on results that are consistent across the two

biological replicates and that are observed in a high-confidence

dataset without missing data. We have used our statistical tool,

PECA, to define expression regulation in a quantitative manner,

extracting significantly regulated genes and their corresponding time

points. While the major results from this study have been confirmed

by analysis of the total transcriptome (Appendix Fig S21) and an

extended mRNA/protein dataset (Appendix Fig S19), our discus-

sions are still restricted to a comparatively small subset of the

proteome. However, the use of complete time-series data and

biological replicates increases our confidence in the validity and

generality of our findings.

Overall, the transcriptome in our dataset was comparatively

static, consistent with earlier observations (Murray et al, 2004). In

contrast, as expected from a treatment that affects the protein home-

ostasis function of the ER, we found that protein concentrations

changed more drastically than those of mRNA. However, despite

the smaller RNA concentration changes, we found that mRNA- and

protein-level regulation contributed equally to the final expression

response (Table 1). This finding contrasts the reports from steady-

state systems in yeast (Li et al, 2014; Csardi et al, 2015), but is

consistent with a recent study on a dynamic system of mammalian

cells responding to lipopolysaccharide (LPS) treatment (Jovanovic

et al, 2015). In both the ER stress response described here and the

published data on the LPS response, regulation at both RNA and

protein level contributes to the change in the system, and protein

expression changes drive the synthesis and turnover of highly abun-

dant molecules (Appendix Figs S22 and S23, Appendix Tables S1,

S3 and S4).

While most concentration changes were seemingly concordant

between mRNA and protein in terms of the outcome at the end of

the experiment, many regulatory (rate ratio) changes, in particular

the most pronounced ones, were independent between the mRNA

and protein level with respect to their timing or direction. We even

observed a small number of cases in which transcript- and

protein-level regulation acted in opposite directions. One example is

the ER stress-related chaperone GRP78, whose mRNA concentration

was in decline at 16 h, while protein concentrations still increased

(Fig 3). We find that discordance at a specific time point was often

resolved by a simple delay in the response: The changes at the RNA

level are initially counteracted at the protein level, but later

supported by concordant action. Overall, true “buffering” appears to

be the exception within the set of proteins we surveyed, and most

regulatory events at the mRNA and protein levels are coordinated,

albeit with different timing, to achieve a new proteomics state.

Most strikingly, we found that the mRNA- and protein-level regu-

lation during the ER stress response, while equal with respect to the

number of significant genes (FDR < 0.05), presented itself via dif-

ferent temporal patterns. mRNA concentrations responded in a

“pulse-like” fashion, transiently coordinating changes in RNA

concentrations which returned to original levels by the end of the

30-h measurement. In comparison, protein regulation altered in a

“switch-like” manner, permanently changing to a new steady state

that was different from the original state. We note that without

higher temporal resolution, it is impossible to know if such a switch

is indeed very rapid or more continuous over a period of time.

We aimed to estimate the generality of these findings by re-

analyzing the published dataset on the LPS response with PECA

(Appendix Figs S22 and S23, Appendix Tables S3 and S4) (Jova-

novic et al, 2015). This re-analysis confirmed that the LPS response

is driven by substantial RNA regulation immediately after stimula-

tion (Jovanovic et al, 2015). However, we also found that the

changes in protein concentrations were not entirely accounted for

by RNA regulation alone: The rates of translation and protein degra-

dation also changed significantly and fine-turned the final protein

concentrations. Again, we observed a pulse- and switch-like behav-

ior similar to that of the ER stress response, suggesting transient and

permanent regulatory changes, respectively. However, in contrast to

the ER stress response in which proteins appeared to switch from

the original to a new steady state, in the LPS response we found the

switch-like behavior for RNA-level regulation. Given that the LPS

response is driven largely by transcription, while the ER stress

response strongly affects the proteome, we hypothesize that the

switch-like regulatory patterns occur in the dominant level of regu-

lation to foster major and perhaps permanent changes in the cellular

state. Future work will have to test the validity of this hypothesis.

Mapping a set of sequence and experimental datasets to groups

of proteins with similar expression patterns, we generated hypothe-

ses on the differential regulation of these genes. Interestingly, for a
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set of genes with a significant up-regulation at the protein level

without matching changes at the mRNA level (e.g., example group

two, Fig 6B), we found depletion of destabilizing signatures such as

PEST signals or disordered regions. This depletion suggests that

sequence evolution and the dynamic response to a stimulus operate

cooperatively, enabling the accumulation of proteins under stress.

This example group was also enriched in specific protein func-

tions, for example, mitochondrial ATP synthases, which offer

another intriguing interpretation for their differential regulation.

Mitochondrial proteins, such as ATP synthases, are thought to be

preferentially translated near the organelle (Margeot et al, 2005;

Smits et al, 2010; Rak et al, 2011) and indeed, when examining

published data on localized translation in yeast, we find that many

yeast orthologs of the ATP synthase complex are translated near the

mitochondria (Williams et al, 2014) (not shown). This localized

translation differs from cytoplasmic translation and occurs in

several biological processes, for example, ejaculated sperm

(O’Brien, 2003; Gur & Breitbart, 2008). RNAs encoding mitochon-

drial proteins account for almost 30% of localized translation and

produce proteins with functions in the mitochondria (Deglincerti &

Jaffrey, 2012). We hypothesize that the mitochondrial vicinity may

counterbalance the redox imbalance caused by the DTT treatment

in our experiment and enable translation, while protein synthesis is

repressed in the remainder of the cytosol (Wallace et al, 2010; Liang

et al, 2013; Venditti et al, 2013). Continued expression of ATP

synthase genes in turn would enable the cells to provide the vast

amounts of energy needed to sustain the stress response.

In sum, both technology and statistical tools to analyze time-

series transcriptomics and proteomics measurements have advanced

enough to allow for first insights into the dynamics of gene expres-

sion regulation. In this work, we have demonstrated that protein

misfolding stress places much greater weights on the importance of

protein-level regulation than the recent observations that character-

ized transcriptomics changes as the main driver of phenotypic

adaptation (Lee et al, 2011; Jovanovic et al, 2015). We also

demonstrated that in our experiment, mRNAs and proteins are regu-

lated with different temporal patterns, with the dominant protein

response adhering to a switch-like behavior that establishes a new

steady state in the cell. We therefore suggest that the way RNA- and

protein-level regulation determines the post-treatment homeostatic

condition depends on the nature of treatment and its implications

on the fitness of the cells, that is, stress conditions versus stimula-

tion. The debate on the relative contribution of transcriptomics

and post-transcriptional regulation will have to be continued in a

context-specific discourse with systematic comparisons of various

conditions.

Materials and Methods

Cell culture and experimental setup

HeLa cells were cultured in DMEM (Sigma) with 10% fetal bovine

serum (Atlanta Biologicals) and 1× penicillin–streptomycin solution

(Corning Cellgro) at 37°C and 5% CO2. At approximately 60% con-

fluency, dithiothreitol (DTT) at 2.5 mM concentration was added to

induce stress for different periods of time, that is, 0, 0.5, 1, 2, 8, 16,

24, and 30 h. To account for different cellular ages at harvest, the

experiment was conducted so that the experiment started with the

30-h treatment period, and the cells were then collected at the same

time (Appendix Fig S1). This protocol ensured that all cells were

cultured for the same time period.

Cell counting

The cells were seeded in parallel plates 3 days before sample prepa-

ration and trypsin-digested from the plates using 0.5% trypsin for

2 min. Trypan blue (GIBCO, Life Technologies, USA) was used to

label living cells and the cells were counted using a hemocytometer.

The cells were treated with 2.5 mM DTT at designed time points,

collected, and counted. The assay was conducted in triplicate,

and the average and standard deviation were calculated for final

results.

DNA staining and flow cytometry

The control and stressed cells were digested from plates with

0.5% trypsin and prepared as single-cell suspensions in 1×

Dulbecco’s phosphate-buffered saline (DPBS) solution. The cells

were then fixed and permeabilized with 70% ethanol for 2 h at

4°C. For flow cytometry analysis, cells were rehydrated in DPBS

and incubated with RNase A (ribonuclease A, 19101, QIAGEN) for

30 min at 37°C to digest cellular RNA and thus decrease back-

ground RNA staining. After RNase A treatment, the fluorescent

molecule propidium iodide (PI) was added into the cell suspension

at 50 lg/ml concentration and incubated for 30 min at room

temperature to bind DNA unspecifically. Cells with stained DNA

were quantitated by flow cytometry analysis on an FL2 flow

cytometer with 488-nm laser excitation. The assay was conducted

in duplicate.

Immunocytochemistry

The cells were cultured on glass cover slips in cell culture dishes

with conditions identical to those described above, DTT-treated, and

fixed with fresh 4% paraformaldehyde for 10 min. The fixed cells

were pre-incubated in 0.1 M DPBS containing 10% normal donkey

serum and 0.2% Triton X-100. Condensed nuclear DNA was labeled

with anti-phospho-histone H3 (Ser10) antibody (06-570, EMD Milli-

pore, MA, USA). The primary antibody incubation was conducted at

4°C overnight in the medium containing 5% normal donkey serum,

0.2% Triton X-100, and 1% bovine serum albumin. After washing

with PBS, the binding sites of the primary antibodies were revealed

by incubating for 2 h at 4°C with the secondary antibody, rhoda-

mine red-X (RRX)-conjugated donkey anti-rabbit IgG. The samples

were mounted by ProLong Gold antifade reagent with DAPI

(P36935, Life Technologies, OR, USA) and scanned with a Leica SP5

confocal laser scanning microscope (CLSM, Leica, Mannheim,

Germany). To avoid reconstruction stacking artifacts, RRX and DAPI

were evaluated by sequential scanning of single-layer optical

sections.

Transcriptomics measurements

To estimate absolute mRNA expression values, Agilent-028004 Sure-

Print G3 Human GE 8x60K microarrays were used. RNA extraction
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was conducted using Trizol (Sigma) followed by the use of phase

separation using the Phase Lock Gel Heavy (5-Prime, manufac-

turer’s protocol). RNA was then purified using the RNA MinElute

Kit (QIAGEN), and a Nanodrop ND-1000 was used to quantitate

RNA. Cyanine-3 (Cy3)-labeled cRNA was prepared from 50 ng RNA

using the One-Color Microarray-Based Gene Expression Analysis

(Low Input Quick Amp Labeling) Protocol (Agilent) according to the

manufacturer’s instructions, followed by RNAeasy column purifica-

tion (QIAGEN). Dye incorporation and cRNA yield were estimated

with Nanodrop; 600 ng of Cy3-labeled cRNA was fragmented at

60°C for 30 min in a reaction volume of 25 ll containing 1× Agilent

fragmentation buffer and 2.5× Agilent blocking agent following the

manufacturer’s instructions. Upon completion of the fragmentation

reaction, 25 ll of 2× Agilent hybridization buffer was added to the

fragmentation mixture and hybridized to Agilent Whole Human

Genome Oligo Microarrays (G4112A) for 17 h at 65°C in a rotating

Agilent hybridization oven. After hybridization, microarrays were

washed for one minute at room temperature with GE Wash Buffer 1

(Agilent), for one minute at 37°C with GE Wash buffer 2 (Agilent),

and for 10 s in acetonitrile. Slides were scanned immediately after

washing using the Agilent DNA Microarray Scanner (G2565CA) with

one-color scan setting for 8x60k array slides (scan area

61 × 21.6 mm, scan resolution 3 lm). The scanned images were

analyzed with Feature Extraction Software 10.7.3.1 (Agilent) using

default parameters (protocol GE1_107_Sep09 and Grid:

028004_D_F_20110819). To confirm the accuracy of the transcrip-

tomics experiments, selected time points were compared to data

collected from the same samples, but using RNA-seq (Appendix

Fig S8).

Transcriptomics data processing and quality control

Upon data collection, probeset identifiers were mapped to Ensembl

transcript and gene identifiers, and intensity data were averaged to

obtain one value per gene. The data were then log-transformed

(natural log) and quantile-normalized. A jackknife procedure was

devised to remove aberrant expression measurements. In the

procedure, one datum was removed at a time and the total range of

variation (TRV), defined as the difference between maximum and

minimum, for the remaining dataset was recorded. After following

this procedure for all data points, the ratio of the median TRV to the

minimum TRV was calculated and used as a measure of “spikiness”

(or noisiness) of the data. The larger the TRV, the noisier the gene

is. After examining the histogram of the TRV values across all genes

(not shown), the threshold for tolerance level was set to 3 from

the histogram of TRV values across all genes, and genes below the

threshold were retained. These strict filtering rules enable

the construction of a high-confidence dataset albeit possibly remov-

ing true signal. Finally, locally weighted scatter plot smoothing

(LOWESS) was applied to further smooth the filtered data for robust

estimation of kinetic parameters in the PECA model. To do so, the

lowess function in R was used, a standard implementation of locally

weighted scatter plot smoothing, with the default parameter

settings. The extend of smoothing was manually inspected: The

large majority of time-course profiles changed very little, except for

those with zig-zag patterns between time points. Dataset EV4 shows

the original and post-processed data. The final mRNA expression

data for the two replicates are shown in Appendix Fig S5. As

described in the Results and Appendix, several tests, for example,

comparison to RNA-sequencing data, validated the accuracy of the

transcriptome data (Appendix Figs S6 and S7).

Proteomics experiments

Cell pellets were collected for each sample and the cells were

Dounce-homogenized in lysis buffer containing 10 mM KCl, 1.5 mM

MgCl2, 0.5 mM DTT, and 1X protease inhibitor cocktail (Complete,

Mini, EDTA-free protease inhibitor cocktail tablets in EASYpack,

Roche) in 10 mM Tris–HCl (pH 8.0). The samples were kept on ice

throughout the entire procedure. Cell lysate was centrifuged at

1,000 × g at 4°C; the supernatant was saved as the cytosolic

fraction, and the pellet was subjected to a single purification step

via a sucrose cushion of 0.25 M and 0.88 M sucrose. The protein

concentrations were determined using the Bradford protein assay

(Bio-Rad) and the samples were diluted to 2 mg/ml concentration;

50 ll of each sample was mixed with equal volume of trifluoro-

ethanol, then 15 mM DTT was added and incubated at 55°C for

45 min. Next, the samples were alkylated with 55 mM iodo-

acetamide (IAA) for 30 min at room temperature in the dark. Then,

the protein mixture was digested over night with mass spectro-

metry-grade trypsin (Promega; at 1:50 v/w) at 37 °C. Tryptic

digestion was halted by adding 2% formic acid (FA) and purified

with C18 spintips (Thermo Scientific, HyperSep). The sample was

stored at �80°C until LC-MS/MS analysis.

LC-MS/MS analysis

Peptides were separated by reverse-phase nanoflow high-performance

liquid chromatography (nano-HPLC) and quantitated on an

LTQ Orbitrap Velos mass spectrometer (Thermo Scientific). Data-

dependent analysis was performed at a resolution of 60,000 and

with the top 20 most intense ions selected from each MS full scan,

with dynamic exclusion set to 90 s if m/z acquisition was repeated

within a 45-s interval. In each scan cycle, the top 20 fragmentation

spectra were acquired in the collision-induced dissociation mode.

For peptide separation, an Agilent ZORBAX 300SB-C18 reverse-

phase column (150 mm × 75 lm inner diameter) and a 240-min

gradient of 2–90% acetonitrile and 0.1% formic acid were used. The

experiment was conducted twice (biological replicates) and four

technical replicates for each sample were collected (repeat mass

spectrometry measurements). The data for technical replicates were

combined during the computational analysis, while the biological

replicates were kept separately.

Proteomics data processing and quality control

Raw data were processed using the MaxQuant software (1.3.0.3)

(Cox and Mann, 2008), and peak lists were searched with Andro-

meda (Cox et al, 2011) against a database containing the translation

of all predicted proteins listed in Magrane (2011) and with a list of

commonly observed contaminants supplied by MaxQuant. Protein

identification was performed using 20 ppm tolerance at the MS level

(FT mass analyzer) and 0.5 Da at the MS/MS level (ion trap

analyzer), with a posterior global FDR of 1% based on the reverse

sequence of the human FASTA file. Up to two missed trypsin cleav-

ages were allowed, and oxidation of methionine and N-terminal
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acetylation were searched as variable post-translational modifi-

cation; cysteine carbamidomethylation as fixed modification. The

minimal required peptide length was set to seven amino acids. The

minimum number of peptide pairs used for quantitation was set to

one. MaxQuant was used to combine the cytosolic and pellet

samples as different fractions in the same experiment, after testing

different options (Appendix Fig S8). Label-free quantitation (LFQ)

with minimum ratio count set to 1 was used. Using only one peptide

for quantitation can potentially lower quantitation accuracy;

however, due to the time-series nature of the experiment, we were

able to account for this additional variation by the examination of

all data points across a time series and removal of noise. As is

expected from complex proteomes such as that from mammalian

cells, peptides can be shared between homologous proteins or splice

variants, leading to “protein groups”. The protein group structure is

shown in MaxQuant’s proteinGroups.txt file in the Dataset EV3; for

clarity, we refer to the first and main protein from each group

throughout the text.

A total of > 3,200 proteins were quantitated, of which 2,828

mapped to the RNA data. To derive a high-confidence dataset, all

genes with one or more missing data points were removed, resulting

in 1,820 genes for further processing. This dataset was normalized

by the sum of all LFQ intensities, where the sum excluded the top

5% intensities in each sample. Removing the top 5% most intense

proteins from the summation can prevent extremely abundant

proteins (and potential outliers) from dominating the normalizing

factor. The data were then log-transformed (natural log) and the

jackknife procedure was applied to remove outliers (i.e., spikes) in

the data, similar to what was described above for the transcrip-

tomics data. The TRV threshold was 2 upon the examination of the

histograms of all TRVs (not shown). Subsequently, locally weighted

scatter plot smoothing (Lowess) was applied to further smooth the

time-course data. A total of 1,237 genes were left in final dataset

with complete and post-processed, high-confidence mRNA and

protein annotations for two replicates across eight time points.

To evaluate the generality of our results, an extended dataset

comprising 2,131 proteins was constructed. This dataset contains

proteins with up to two missing values across the proteomics data

which were imputed using Gaussian Processes. Appendix Fig S19

describes the details of this analysis and the results, which were

consistent with those from the high-confidence dataset. The original

“txt” folder of MaxQuant output files is provided as Dataset EV3.

Several tests, for example, Western blotting, validated the quality of

the proteomics data as described in the Results and Appendix

(Appendix Figs S11 and S12).

Hierarchical clustering and cluster analysis

Expression data were clustered using Perseus version 1.4.1.3.

(http://141.61.102.17/perseus_doku), with default settings, that is,

“correlation” and “average linkage” were used as the distance

measures and clustering algorithm, respectively. Using a 0.604

distance threshold, the combined RNA and protein data were

divided into 25 clusters. Clusters with more than 30 genes were

chosen for function enrichment analysis using the NCBI DAVID tool

(Huang et al, 2009a,b). Significantly enriched GO terms were

chosen based on FDR < 0.05. The Dataset EV2 contains all GO term

enrichments.

For further cluster analysis, 164 sequence features from various

databases and tools were assembled (Appendix Table S2). These

features include the characteristics that affect RNA and protein

evolution, localization, synthesis, and degradation. Student’s t-test

and hypergeometric tests were conducted to calculate the enrich-

ment of each sequence feature in any subset of genes. Bonferroni

correction for multi-hypothesis testing was included to set the cutoff

P-value.

Protein expression control analysis

To quantitate the RNA- and protein-level expression regulation,

protein expression control analysis (PECA) (Teo et al, 2014) was

performed. As described in the original publication, PECA

constructs a probabilistic model for the kinetic parameters govern-

ing the synthesis and degradation of an outcome molecule (Y) given

the precursor molecule data (X). Specifically, the model estimates

the ratio of synthesis and degradation over each time period given

the data of X and Y at the beginning and end of each time period

and also computes the posterior probability that the rate ratio has

changed between two adjacent time periods given the paired data

(X, Y) at three consecutive time points (two time periods). This

probability, called the change point score (CPS), is then used to esti-

mate the overall false discovery rate of regulation change events

across all genes.

Since the raw data suggested that there are discordant expression

patterns between the two biological replicates, we fitted the PECA

model for each replicate separately. We then performed the RNA-

and protein-level analyses separately. In the RNA-level analysis, we

assumed that large-scale genomic changes such as those in ploidy

have not occurred as a result of the ER stress within 30 h, and

created an artificial DNA copy number data as the precursor mole-

cule (variable X in the PECA model), with the RNA data as the

outcome (variable Y in the model). We then estimated the ratio of

the rates of RNA synthesis (transcription) and RNA degradation for

each gene and computed the posterior probability that each interme-

diate time point is a change point where the rate ratio significantly

changes (0.5, 1, 2, 8, 16, 24 h). In the protein-level analysis, we

used RNA data as the precursor molecule (X) and protein data as

the outcome (Y), where the ratio of translation and protein degrada-

tion was the kinetic parameter of interest for each protein along

with their change point probability as described above.

To summarize the RNA-level and protein-level regulation changes

across the three phases, we extracted the maximum CPS score in

each phase and considered a gene as significantly regulated during

the respective phase if the score was above the thresholds associated

with FDR < 0.05. At this FDR, the CPS score thresholds for “signifi-

cant” RNA- and protein-level regulation were 0.898 and 0.901 in the

first replicate, respectively, and 0.890 and 0.898 in the second repli-

cate. Genes were clustered using agglomerative clustering of the

combined RNA/protein concentration data, followed by the dynamic

tree cut algorithm (Langfelder et al, 2008). The six largest clusters as

determined above were mapped to the data (Fig 5).

Data availability

All transcriptomics data are deposited in the NCBI GEO database,

with the identifier GSE67901. All proteomics data are publically
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available from the ENSEMBL PRIDE database, identifier

PXD002039.

Expanded View for this article is available online.
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