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Abstract

The serotonergic system is a subcortical neuromodulatory center that controls cortical information processing in a state-
dependent manner. In the hippocampus, serotonin (5-HT) is released by ascending serotonergic fibers from the midbrain raphe
nuclei, thereby mediating numerous modulatory functions on various neuronal subtypes. Here, we focus on the
neuromodulatory effects of 5-HT on GABAergic inhibitory oriens lacunosum-moleculare (O-LM) cells in the hippocampal area
CA1 of the rat. These interneurons are thought to receive primarily local excitatory input and are, via their axonal projections to
stratum lacunosum-moleculare, ideally suited to control entorhinal cortex input. We show that 5-HT reduces excitatory
glutamatergic transmission onto O-LM interneurons. By means of paired recordings from synaptically connected CA1
pyramidal cells and O-LM interneurons we reveal that this synapse is modulated by 5-HT. Furthermore, we demonstrate that the
reduction of glutamatergic transmission by serotonin is likely to be mediated via a decrease of calcium influx into presynaptic
terminals of CA1 pyramidal cells. This modulation of excitatory synaptic transmission onto O-LM interneurons by 5-HT might
be a mechanism to vary the activation of O-LM interneurons during ongoing network activity and serve as a brain state-
dependent switch gating the efficiency of entorhinal cortex input to CA1 pyramidal neurons.
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Introduction

The hippocampus receives a dense serotonergic innervation ori- the cellular neurophysiology of serotonergic signaling predomin-

ginating from the midbrain raphe nuclei, both from the Median
raphe nucleus and to a lesser extend from the Dorsal raphe nu-
cleus (Freund et al. 1990; Vertes 1991, 1999). Earlier studies on

antly focused on the neuromodulation of intrinsic cellular prop-
erties and the neuromodulation of synaptic transmission on
hippocampal pyramidal neurons. In these studies, multiple
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important effects of 5-HT have been identified, mediated by a
number of distinct pre- and/or postsynaptic receptors (Segal
1980; Andrade and Nicoll 1987; Barnes and Sharp 1999). In con-
trast, relatively few studies investigated the neuromodulatory ef-
fects of 5-HT on GABAergic inhibitory interneurons in the
hippocampus (Varga et al. 2009; Winterer et al. 2011; Chittajallu
et al. 2013). Complicated by the high diversity of interneurons it
has not yet been possible to establish a clear picture of how sero-
tonin acts on these neuronal subtypes (Parra et al. 1998).

GABAergic interneurons are recognized as key players in the
synchronization of neuronal activity on various timescales and
in the generation of oscillatory patterns in the brain. These differ-
ent types of interneurons exhibit morphological, immunohisto-
chemical, and electrophysiological characteristics and are
differentially involved in oscillations at different frequencies
(Maccaferri and Lacaille 2003; Maccaferri 2005; Somogyi and
Klausberger 2005). One of the major classes of GABAergic inter-
neurons in the stratum oriens of the CA1 subfield of the hippo-
campus are oriens lacunosum-moleculare (O-LM) interneurons.
These interneurons fire correlated with hippocampal rhythms
(Klausberger et al. 2003; Goldin et al. 2007; Varga et al. 2012; Pan-
galos et al. 2013; Katona et al. 2014) and have been hypothesized
to coordinate cell assemblies (Tort et al. 2007). O-LM cells can be
considered as classical feedback inhibitory neurons due to their
predominantly local excitatory input from CA1 pyramidal cells.
Their axonal projections impinge on distal apical dendrites of
CA1 pyramidal cells as well as on local inhibitory interneurons
targeting the proximal portions of CA1 pyramidal dendrites. In
this respect O-LM interneurons are ideally suited to gate the ac-
tivity in area CA1, where they are able to facilitate the input
from the Schaffer collaterals via an indirect disinhibition of the
proximal dendritic compartments while reducing the input of
the temporoammonic (TA) pathway by inhibiting the distal apical
dendrites of CA1 pyramidal neurons (Ledo et al. 2012).

Here, we show that 5-HT reduces excitatory glutamatergic
inputs onto O-LM interneurons and lowers their spike probability
in area CA1 of the hippocampus. We identify one source of exci-
tatory input that is modulated by 5-HT by paired recordings of
synaptically connected CA1 pyramidal neurons and O-LM inter-
neurons. Furthermore, our results indicate that this modulation
is mediated by a decrease of calcium influx into presynaptic
terminals of CA1 pyramidal cells.

Material and Methods

Ethics Statement

Animal husbandry and experimental intervention was per-
formed according to the European Council Directive 2010/63/EU
regarding the protection of animals used for experimental and
other scientific purposes. All animal maintenance and experi-
ments were performed in accordance with the guidelines of
local authorities, Berlin (T0100/03).

Preparation

Hippocampal slices were prepared from Wistar rats (P16-24, both
sexes) as previously described (Schmitz et al. 2003). In brief, the
animals were anesthetized with isoflurane, decapitated and the
brains were removed. Tissue blocks containing the subicular
area and hippocampus were mounted on a Vibratome (Leica
VT1200 S) in a chamber filled with ice-cold artificial cerebrospinal
fluid, ACSF, containing (in mM): NaCl, 87; sucrose, 75; NaHCO3, 26;
KCl, 2.5; NaH,PO4, 1.25; CaCly, 0.5; MgCl,, 7; glucose, 25, saturated
with 95% O,, 5% CO,, pH 7.4. Transverse slices were cut at 300 pm

thickness. The slices were taken from ventral to medial hippo-
campus. They were kept at 35°C for 30 min and then stored in a
submerged chamber, where they were kept for 1-4 h before
being transferred to the recording chamber. Another subset of
slices was transferred directly after cutting to an interface cham-
ber where they were stored at ~32°C before being transferred to
the recording chamber. The effect of serotonin was robust in
both storage conditions.

In the recording chamber, slices were perfused with ACSF
containing (in mM): NaCl, 119; NaHCOs, 26; glucose, 10; KCI 2.5,
CaCly, 2.5; MgCl, 1.3; NaH,PO,, 1 at a rate of 4-5 mL/min at
31-34°C. All ACSF was equilibrated with 95% O, and 5% CO,.

Electrophysiology

Whole-cell recording electrodes were filled with (in mM): K-glu-
conate 120-135, HEPES 10, Mg-ATP 2, KCI 20, EGTA 0.5, Phospho-
creatine 5 adjusted to 7.3 with KOH. For paired recordings, the
electrode for the presynaptic CA1 pyramidal neuron was filled
with (in mM): K-gluconate 105, HEPES 10, Na,-ATP 2, Na,-GTP
0.3, Mg-ATP 2, KCI 40, MgCl, 2, EGTA 0.1, Na,-phosphocreatine
1, L-glutamate 0.1, adjusted to 7.3 with KOH. For staining and re-
construction of the recorded neurons, ~0.25% biocytin was added
to the intracellular solution. Depolarizing current steps of 1 s dur-
ation were applied to characterize the cells’ discharge behavior.

Excitatory postsynaptic responses were evoked by electrical
stimulation (100 us at intervals of 50 ms) in stratum oriens of
area CA1 via a broken patch-pipette (~8 um) filled with ACSF. Ex-
periments were done in the presence of the GABA-A receptor
antagonist gabazine (1 uM) and NBQX (100 nM) to prevent epilep-
tiform activity and to minimize polysynaptic activity except
where pairs or extracellular evoked spikes (Fig. 2D) were recorded.
mEPSCs were recorded in the presence of tetrodotoxin (TTX)
(1 pM) and gabazine (1 pM).

Peaks of extracellularly evoked spikes exhibited a delay of
~4-8 ms to the stimulus. The interstimulus interval was set to
125 ms. In this set of experiments, the membrane potential of
O-LM interneurons was kept constant at —60 mV.

Access resistances ranged between 9 and 31 MQ (on average
14.2 £ 0.8 MQ) for O-LM interneurons. They were continuously
monitored during the recording and were not allowed to vary
>30% during the course of the experiment. In current-clamp con-
figuration, bridge balance compensation was used. In some ex-
periments in voltage-clamp configuration slight changes in
series resistance were compensated. Electrode resistances ran-
ged from 3 to 5 MQ.

Morphology of O-LM Interneurons and CA1 Pyramidal
Neurons

After recording, slices were transferred into a fixative solution
containing 4% paraformaldehyde and 0.2% saturated picric acid
in 0.1 M phosphate buffer. To reveal the presynaptic axonal ar-
borization and dendritic arbors in detail, the biocytin-filled cells
were subsequently visualized with 3,3’-diaminobenzidine tetra-
hydrochloride (0.015%) using standard ABC kit (Vector) and re-
constructed with the Neurolucida 3D reconstruction system
(MicroBrightField, Inc., Williston, VT, USA).

Glutamate Uncaging

20 mL of 50 or 200 uM (MNI)-caged-L-glutamate (Tocris, Bristol, UK)
were reperfused at 2.5-3.0 mL/min. For uncaging, we used a UV
pulsed laser (Rapp Optoelektronik, Wedel, Germany) attached
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with a 200 um optical fiber coupled into the epifluorescence port of
the microscope with an OSI-BX adapter (Rapp Optoelektronik,
Wedel, Germany) and focused on the specimen by the objective
lens. This yielded an illuminated circle of 20-50 ym. The duration
of the laser flash was 2 ms. The laser power under the objective
corresponding to the stimulus intensity level used was monitored
using a photo diode array-based photodetector (PDA-K-60, Rapp
Optoelectronics, Wedel, Germany) and did not change over time.

Glutamate was uncaged over the cell soma in the presence of
the GABA-A receptor antagonist gabazine (1puM) and NBQX
(100 nM, to prevent epileptiform activity).

Fluorescence Measurements

The axonal fibers in CA1 stratum oriens were locally labeled with a
pressure stream of the low-affinity calcium indicator magnesium
green AM (Invitrogen, Molecular Probes) dissolved in 5% Pluronic
for photodiode measurements (Breustedt et al. 2003). The indica-
tor was injected into area CA1 stratum oriens, the filling pipette
pointing toward the alveus (Fig. 6A). Recordings were started
40-90 min after slices were labeled. Axons were stimulated extra-
cellularly (Fig. 6A) and epifluorescence was measured with a sin-
gle photodiode from a spot a few hundred micrometers away
from the loading site. The signals from the photodiode were digi-
tized by data acquisition hardware (PCI-6036E National Instru-
ments, Austin, TX) at 5kHz. The fluorescence intensity was
measured alternating every 30 s with and without stimulus and
the change in fluorescence intensity (AF) relative to the initial
baseline of fluorescence (F) was calculated. To exclude any post-
synaptic contribution to the signal all recordings were performed
in NBQX (20 pM) and p-AP5 (50 pM).

Data Analysis

Data were acquired and analyzed with Igor Pro software (Wave-
Metrics, Lake Oswego, OR), NeuroMatic and custom written
MATLAB scripts (The MathWorks, Natick, MA).

Values in the text and the figures are expressed as mean *
standard error of the mean (SEM) unless indicated otherwise
(as median and interquartile range, IQR). The nonparametric
Wilcoxon rank test was used for statistical comparisons in sets
of experimental data where normality could not be assumed.
To compare the numbers of successfully evoked spikes in control
versus fenfluramine, McNemar's test was used (Fig. 2D). For nor-
mal distributed sets of data a paired or unpaired Student’s T-test
was used. Differences were considered statistically significant if
P <0.05. All traces are averages of 5-10 sweeps unless otherwise
stated. For display purposes some traces were low-pass filtered
(<2 kHz) and a 50 Hz notch filter to remove line hum was applied
if necessary. In paired recordings (Fig. 4C) successful synaptic
transmission was counted as such if the postsynaptic amplitude
was larger than 1.5 standard deviations of the baseline (in the
absence of spontaneous events).

Drugs

5-Hydroxytryptamine creatine sulfate complex (5-HT), (RS)-N-
ethyl-1-[3-(trifluormethyl)phenyl|propan-2-amin(fenfluramine)
(both from Sigma), 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzolf]
quinoxaline-2,3-dione (NBQX), 4-[6-imino-3-(4-methoxypheny]l)
pyridazin-1-yl] butanoic acid hydrobromide (SR95531, gabazine),
D-(—)-2-amino-5-phosphonopentanoic acid (D-AP5), 4-Methoxy-
7-nitroindolinyl-caged-L-glutamate (MNI-caged-L-glutamate),
(4R,4aR,5R,6S,75,8S,8aR,10S,12S)-2-azaniumylidene-4,6,8,12-tetra-

hydroxy-6-(hydroxymethyl)-2,3,4,4a,5,6,7,8-octahydro-1H-8a,
10-methano-5,7-(epoxymethanooxy) quinazolin-10-olate (TTX),
5-propoxy-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-pyrrolo[3,2-b]
pyridine hydrochloride (CP 94253 hydrochloride), (+)-8-hydroxy-2-
dipropylaminotetralin hydrobromide (8-OH-DPAT hydrobromide),
(5'2,100)-9,10-dihydro-12'-hydroxy-2'-(1-methylethyl)-5'-(phenyl-
methyl)-ergotaman-3',6’,18-trione mesylate (dihydroergocristine
mesylate), (R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,
5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390 hydro-
chloride) (all from Tocris), Magnesium green AM (Invitrogen,
Molecular Probes).

Results

O-LM interneurons were identified by their location in stratum
oriens, the characteristic elongated shape of their somata and the
horizontally oriented dendrites as well as their electrophysiologic-
al properties: the typical firing pattern in response to depolarizing
current pulses and the prominent sag potential in response to
hyperpolarizing current pulses (Fig. 1A, right, top). O-LM inter-
neurons displayed a strong facilitation in response to consecutive
synaptic stimuli (Fig. 1A, right bottom), as described previously
(Ali and Thomson 1998; Losonczy et al. 2002; Biré et al. 2005). A
subset of the recorded cells, identified by the above described
criteria, were further validated by biocytin stainings in which we
could identify the vertically projecting axons with an extensive
arborization in stratum lacunosum-moleculare (Fig. 1A, left).

5-HT Reduces Glutamatergic Transmission
on O-LM Interneurons

To study the excitatory synaptic transmission onto O-LM inter-
neurons, cells were held in voltage-clamp mode at —60 mV.
First, we examined the effect of 5-HT on the frequency of spon-
taneous excitatory postsynaptic currents (SEPSCs). The fre-
quency decreased from 4.1+0.6Hz to 2.3+0.3Hz during
application of 5-HT. This effect was fully reversible during wash-
out: 5.8 +0.6 Hz (n=8; control vs. 5-HT: P =0.0032; 5-HT vs. wash:
P=0.0003, Student’s T-test; Fig. 1B,C, left). The amplitude of
sEPSCs did not change significantly (baseline: 21.4 £ 3.1 pA vs.
19.2 +1.6 pA during application of 5-HT, P = 0.39, paired Student’s
T-test, n=_8; recovery: 23.7 + 3.0 pA, Fig. 1B,C, right).

Next, we examined the effect of 5-HT on stimulus-induced
glutamatergic transmission in O-LM interneurons which was
evoked by a stimulating electrode positioned at the border of
the alveus and stratum oriens (Fig. 2A). 5-HT profoundly and revers-
ibly reduced the amplitude of evoked excitatory postsynaptic
currents (eEPSCs) by 50.86% (median, IQR: 28.16%, n=12;
Fig. 2B1,B2; baseline amplitude is significantly different from
amplitude during application of 5-HT, P =0.0005, paired sample
Wilcoxon rank test). Upon application of 5-HT, we further ob-
served a change in the holding current of the recorded cells:
O-LM interneurons displayed a mean inward current of —61.6 +
13.0 pA (n=13; data not shown) indicative of a postsynaptic
expression of 5-HT receptors in O-LM interneurons (Lee et al.
1999; Chittajallu et al. 2013).

Fenfluramine Mimics the Effect of 5-HT on Glutamatergic
Transmission

To address the question whether physiological release of 5-HT
from serotonergic fibers in the hippocampus induces similar ef-
fects, we used the compound fenfluramine, which is thought to
provoke the release of serotonin: fenfluramine disrupts the
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Figure 1. 5-HT inhibits spontaneous EPSCs in O-LM interneurons. (A) Left, reconstruction of an O-LM interneuron (dashed: outline of cell layers, black: cell body and
dendrites, red: axon). Right top, typical voltage responses of an O-LM cell to de- and hyperpolarizing current pulses. Right bottom, strongly facilitating excitatory
postsynaptic current amplitudes to consecutive extrasynaptic stimuli. (B) Example traces of spontaneous EPSCs under control conditions and in 10 uM 5-HT.
(C) Cumulative probability of interevent intervals (IEI, left) and amplitude of spontaneous EPSCs (right) under control conditions, in 10 pM 5-HT and after wash (n=8).
s.l.m., stratum lacunosom-moleculare; s.o., stratum oriens, s.p., stratum pyramidale; s.r., stratum radiatum.

vesicular storage of 5-HT and consecutively reverses the sero-
tonin transporter. As a result, the extracellular concentration of
5-HT is increased. In the following sets of experiments, we tested
whether the inhibitory effect of serotonin on EPSCs could be
mimicked by fenfluramine induced release of endogenous 5-HT
from hippocampal serotonergic fibers. We observed a clear and
reversible reduction of the EPSC amplitude by application of fen-
fluramine by 26.15%, median, IQR: 8.95% (amplitude before and
during fenfluramine application is significantly different, paired

sample Wilcoxon rank test P =0.0156, Fig. 2C1,C2, n=7). Further-
more, we investigated the effect of fenfluramine on the spiking
probability of O-LM interneurons. Spikes could be readily evoked
by a theta stimulation protocol in which 5 brief current pulses
with an interstimulus interval of 125ms were delivered.
The number of spikes elicited was either strongly reduced or all
spikes were abolished under fenfluramine (number of success-
fully evoked spikes in control vs. fenfluramine: P <0.000001,
McNemar’s test, Fig. 2D).
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Figure 2. Bath-applied as well as endogenously released 5-HT decreases stimulus-evoked EPSCs. (A) Recording configuration with an extracellular stimulating electrode
positioned at the border of the alveus and stratum oriens. (B1) Top, example traces of stimulus-evoked EPSCs. Bottom, time course of the EPSC amplitude before, during and
after washout of 10 pM 5-HT. (B2) Summary of the time course of the normalized and binned EPSC amplitudes (n = 12). (C1) Top, example traces of stimulus-evoked EPSCs.
Bottom, time course of the EPSC amplitude before, during and after washout of 200 pM fenfluramine. (C2) Summary of time course of the normalized and binned EPSC
amplitudes (n=7). (D) Endogenously released 5-HT reduces spiking probability. (D1) Example experiment where spikes were evoked in an O-LM interneuron by
extracellular stimulation. Five pulses at theta frequency (interstimulus interval: 125 ms) were delivered. * Indicate stimulus time points. Top, example traces in control
conditions (black) and in fenfluramine (200 pM, gray). (Inset) EPSP evoked by the first stimulus in control condition (black) and in fenfluramine (gray), average of 4 traces
each, scale bar, x: 20 ms, y: 5 mV. Bottom, time course of experiment displayed as raster plot of spikes evoked in response to stimulation. Spikes were abolished shortly
after washing in fenfluramine (gray area). (D2) Summary, spike count normalized to the summed and averaged spike counts of trials under control conditions. Inset,
averaged spike counts under control conditions and in fenfluramine (n=5).
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5-HT Reduces Excitatory Synaptic Transmission at
the CA1 Pyramidal Cell-O-LM Interneuron Synapse

O-LM interneurons are considered as classical feedback inhibitory
interneurons as they receive excitatory input predominantly from
recurrent CA1 pyramidal cell axons (Blasco-Ibanez and Freund
1995). To test the assumption that 5-HT acts at the CA1 pyram-
idal-O-LM interneuron synapse, we performed paired recordings
from synaptically connected CA1 pyramidal cells and O-LM inter-
neurons. In this set of experiments, we tested 18 simultaneously
recorded CA1 pyramidal cell-O-LM interneuron pairs, 5 of which
were synaptically connected. Post hoc neuroanatomical analysis
confirmed the cellular identities of O-LM and pyramidal neurons
in all 5 synaptically connected paired recordings (Fig. 3A). O-LM in-
terneurons displayed a strong facilitation of the postsynaptic amp-
litude in response to consecutive action potentials (APs) elicited in
the presynaptic pyramidal cell (Fig. 3B1). The mean baseline amp-
litude of the first unitary EPSC (UEPSC) was 7.2 + 0.4 pA (n =4; one of
the O-LM interneurons displayed a reliably detectable postsynap-
tic current only after the fourth presynaptic AP and was therefore
not considered for analysis). After application of 5-HT, we ob-
served a profound and fully reversible reduction in the amplitudes
of all uEPSCs (Fig. 3B1,B2). 5-HT reduced the amplitude of the first
UEPSC to 30.7 +6% (n=4; Fig. 3C and D). Taken together, these re-
sults confirm the assumption that 5-HT reduces the excitatory
drive from local CA1 collaterals onto O-LM interneurons.

Presynaptic Modulation of Glutamatergic Transmission
onto O-LM Interneurons

We sought to further characterize the mechanism underlying
the observed modulation of glutamatergic inputs onto O-LM
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interneurons in area CA1l. We considered 3 possible scenarios to
explain our findings: 1) The observed reduction in amplitude of
EPSCs could be due to a modulation on the presynaptic site of ex-
citatory terminals; 2) it could be mediated by modifications at the
postsynaptic site, or 3) a combination of both scenarios could ac-
count for the effect of 5-HT. To study the location of 5-HT action,
we first investigated the effect of 5-HT on miniature EPSCs
(mEPSCs), recorded in the presence of the sodium channel blocker
TTX. Under these conditions, neurotransmitter release upon
spontaneous vesicle fusion can be tested independent of AP-
mediated Ca®* influx. There was no significant difference in the in-
cidence or amplitude of mEPSCs after bath application of 5-HT
(Fig. 4A, n=10, frequency: control 2.4+0.3Hz vs. 1.9+0.3 Hz in
5-HT (P =0.15), amplitude: control: 24.3+2.2 pA vs. 22.6 +2.1 pA
in 5-HT, P=0.191, paired Student’s T-test).

To gain further insights into the site of serotonergic action,
we performed single-photon laser stimulation of MNI-caged-
L-glutamate. In this set of experiments, a constant amount of
caged glutamate is uncaged by laser stimulation and therefore
the presynaptic site is not involved. However, a decrease in the
glutamate evoked EPSC amplitude by the application of 5-HT
was not observed (Fig. 4B, n = 4). Furthermore, we analyzed the in-
cidence of synaptic failures of the first and second EPSC in the
synaptically connected paired recordings. We observed that
the failure rate increased upon application of 5-HT (n=4; failure
rate of the first EPSC under control condition: 64.1 + 5% vs. failure
rate in 5-HT: 81.6 + 3%, Fig. 4C. Failure rate of the second EPSC
under control condition: 39.2+3% vs. failure rate in 5-HT:
72.7 +7%). Summarizing these findings supports the conclusion
that a postsynaptic mechanism is unlikely to be responsible for
the reduced excitatory glutamatergic transmission onto O-LM
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Figure 3. Serotonin reduces glutamatergic excitatory synaptic transmission at the CA1 pyramidal cell-O-LM interneuron synapse. (A) Reconstruction of a synaptically
connected pyramidal cell-O-LM interneuron pair (dashed: outline of cell layers, black: cell body and dendrites of O-LM interneuron, red: axon of O-LM interneuron;
gray: cell body and dendrites of pyramidal cell, blue: axon of pyramidal cell). Middle, left, voltage responses of the shown O-LM cell to de- and hyperpolarizing current
pulses. (B1) Strongly facilitating unitary excitatory postsynaptic currents to consecutive APs, elicited in the presynaptic pyramidal cell. Below the postsynaptic response to
consecutive APs after 5-HT application and after washout of 5-HT are shown. (B2) Grand average of the postsynaptic responses of 4 connected pairs in the indicated
conditions. (C) Traces of UEPSCs evoked by the first presynaptic AP (time point indicated by arrow) in 4 cells under control conditions, after application of 10 pM 5-HT
and after washout of 5-HT. (D) Summary of the reduction of the normalized first uEPSC amplitude by application of 5-HT and after washout of 5-HT (n=4). s.l.m.,
stratum lacunosom-moleculare; s.o., stratum oriens, s.p., stratum pyramidale; s.r., stratum radiatum.
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Figure 4. 5-HT acts most likely presynaptically. (A) Left, example traces of miniature EPSCs in control conditions (black) and in 10 pM 5-HT (gray). Right, cumulative
probability of interevent intervals and amplitude of miniature EPSCs in control conditions and in 10 pM 5-HT (n=10). (B) Top, recording configuration for glutamate
uncaging. With a laser flash glutamate is uncaged in the immediate vicinity of the soma of an O-LM interneuron. Middle, example traces of the glutamate evoked
current before (black) and after the application of 10 pM 5-HT (gray). Bottom, summary of the time course of the glutamate evoked current. Depicted is the normalized
and binned peak amplitude. Note that the amplitude is not decreased after application of 5-HT (n =4). (C) Left, example of connected pyramidal-O-LM pair, top, overlay of
UuEPSCs in control conditions and in 5-HT, middle, time course of successful synaptic transmission and failures. Bottom, time course of the uEPSC amplitude (as shown in
top row) before, during and after washout of 10 pM 5-HT. Note that the failure rate increases during application of 5-HT. Right, summary of failure rate in synaptically

connected paired recordings under control conditions and in 10 uM 5-HT (n=4).

interneurons by serotonin application. Thus, we conclude that
the mechanism is most likely presynaptic.

Mechanism of Action

After having localized the site of action, we aimed to identify the
5-HT receptor subtype mediating inhibition of glutamatergic
transmission. At first, we confirmed with the unspecific 5-HT an-
tagonist dihydroergocristine mesylate that the reduction in EPSC
amplitude can indeed be blocked by antagonizing 5-HT receptors
(n=7, median of normalized amplitude in dihydroergocristine
mesylate 0.84, IQR: 0.26, EPSC amplitude in dihydroergocristine
mesylate vs. EPSC amplitude in dihydroergocristine mesylate
and 5-HT: P=0.3, paired Wilcoxon rank test, Fig. 5A). One candi-
date presynaptic receptor is the 5-HT;p receptor that has been
shown to modulate glutamatergic transmission of CA1 pyram-
idal cells (Winterer et al. 2011). However, application of the

5-HTp receptor agonist CP 94523 did not mimic the effect of
5-HT on evoked EPSCs (median of normalized amplitude in CP
94523 is 0.834, IQR: 0.28, EPSC amplitude in control vs. EPSC amp-
litude in CP 94523: P=0.15, paired Wilcoxon rank test, Fig. 5B).
Next, we investigated the possibility that presynaptic 5-HT4 re-
ceptors might be responsible for mediating the reduction of glu-
tamate release (Schmitz et al. 1995, 1999; Fink and Gothert 2007).
Indeed, application of the 5-HT;, agonist 8-OH-DPAT could, in
part, mimic the effect of 5-HT on evoked EPSCs (median of nor-
malized amplitude in 8-OH-DPAT: 0.76, IQR: 0.21, EPSC amplitude
in control vs. EPSC amplitude in 8-OH-DPAT: P=0.016, paired
Wilcoxon rank test, Fig. 5C1). Furthermore, the 5-HT;4 receptor
antagonist Way100635 reduced the action of 5-HT, when com-
pared with control conditions (median of normalized amplitude:
0.78, IQR: 0.3, EPSC amplitude in Way100635 vs. EPSC amplitude
in Way100635 and 5-HT: P=0.01, paired Wilcoxon rank test,
Fig. 5C2). We conclude that the presynaptic activation of 5-HT15
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Figure 5. Effect of 5-HT receptor subtype (un)specific compounds on eEPSC amplitude. (A-D) Time course of averaged, normalized, and binned amplitude. The paired
Wilcoxon sign rank test was used to compare amplitudes in the indicated conditions (tested on raw, not normalized amplitudes). (A) In the presence of the unspecific
S-HT receptor antagonist dihydroergocristine mesylate the effect of 5-HT on the EPSC amplitude is abolished. (n=7, P=0.30). (B) The 5-HT;3 receptor agonist CP 94523
does not mimic the 5-HT effect. (=8, P=0.15). (C1) The 5-HT;4 receptor agonist 8-OH-DPAT reduces eEPSC amplitudes (n=7, P=0.02). (C2) The 5-HT;4 receptor
antagonist WAY 100635 partially blocks the 5-HT effect on eEPSC amplitude (n =15, P=0.01). For comparison the eEPSC amplitude in control conditions, that is, in the
absence of the antagonist is shown (n=12) (red, compare Fig. 2B, unpaired Wilcoxon test, P =0.0002). (D) In the presence of the GIRK-channel blocker SCH23390 5-HT

still reduces the amplitude of eEPSCs (n=4). Also compare Figure 2B2.

receptors is partially responsible for the inhibition of glutamater-
gic transmission onto O-LM interneurons.

5-HT;4 receptors might mediate the observed effect of 5-HT
on glutamatergic transmission by hyperpolarizing the presynap-
tic pyramidal cell. This hyperpolarization is mediated by the
opening of G-protein-gated inwardly rectifying K* channels
(GIRK) (Andrade and Nicoll 1987; Segal et al. 1989; Schmitz et al.
1995). However, application of the GIRK-channel blocker
SCH23390 did not prevent the reduction of excitatory synaptic
transmission onto O-LM interneurons by 5-HT (mean inhibition
of amplitude: 42.73% + 9.7, n =4, Fig. 5D).

5-HT receptor activation could target calcium channels via
G-proteins (Mizutani et al. 2006) resulting in a reduced Ca®" influx
and thereby decreasing Ca®*-dependent vesicle release. To test
this hypothesis, we evaluated if 5-HT reduces Ca®* influx into
the presynaptic terminals of CA1 pyramidal cell axons that are
predominantly contributing to the glutamatergic synaptic trans-
mission onto O-LM interneurons. We adapted an optical record-
ing method described previously (Regehr and Tank 1991;
Breustedt et al. 2003), in which the presynaptic fibers in stratum
oriens are labeled with the low-affinity fluorescent Ca®* indicator
dye magnesium green AM. These recordings were done in the
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Figure 6. Decreased presynaptic calcium influx can account for the reduction of glutamatergic transmission by 5-HT. (A) Ca**-imaging recording configuration. Axonal
fibers were filled with the Ca?*-sensitive dye magnesium green AM (green) by bulk loading and stimulated with an extracellular electrode positioned at the border of
the alveus and stratum oriens. The resulting Ca®* transients were measured with a photodiode. (B) Top, example traces of the Ca®* transients in control and in 20 pM
CdCl,. Bottom, time course of AF/F amplitude of the Ca?* transients shown above. Note that the transient is abolished in the presence of the calcium channel blocker
CdCl2. (C) Top, example traces of the calcium transient in control, in 10 pM 5-HT and after wash. Bottom, time course of AF/F amplitude of the above transients.

(D) Summary of time course of AF/F amplitude (n=11).

presence of NBQX and D-AP5 to exclude a postsynaptic contribu-
tion to the signal. AP driven Ca®* influx into the presynaptic ter-
minal was elicited by a single extracellular stimulation electrode
positioned at the border of stratum oriens and alveus. The rise in
presynaptic Ca®* was quantified using the transient increase of
the fluorescence signal (see Materials and Methods; Fig. 6A). To
ensure that the detected signal was actually due to Ca** influx,
we applied the unspecific Ca®* channel blocker CdCl, which
abolished the Ca®* transient (Fig. 6B). We then tested the effect
of 5-HT on the presynaptic Ca®* transient and found that in-
deed 5-HT reversibly decreased the Ca?* transient amplitude
by 13.9+3.2% on average (n=11, amplitude in 5-HT is signifi-
cantly different from control: P=0.006, paired Student’s
T-test, Fig. 6C,D).

To further corroborate this finding, we tested whether a re-
duction in Ca?* influx can account for the inhibition in glutama-
tergic transmission induced by serotonin. We therefore reduced

the extracellular Ca®* concentration from 2.5 to 2.0 mM (n=>5,
amplitude in 2.5 mM Ca®* is significantly different from the amp-
litude in 2 mM Ca®*: P=0.0022, paired Student’s T-test, Fig. 7A,C)
and compared the reduction in amplitude of the calcium transient
to the reduction observed under 5-HT: 5-HT application as well as
lowering the extracellular Ca®* concentration displayed a com-
parable amount of reduction of the Ca®* transient (13.9+3.2%
in 5-HT vs. 16.0 + 1.7% in 2 mM Ca®*, the reduction in amplitude
observed in 5-HT and lowered Ca®* concentration are not differ-
ent: P=0.6731, unpaired Student’s T-test, Fig. 7A,C, left).

We hypothesized that if the reduced calcium influx into the
presynaptic terminal is responsible for the inhibition of glutama-
tergic transmission, a reduction of the extracellular calcium con-
centration should also be able to mimic the 5-HT effect on EPSCs
evoked by electrical stimulation. Indeed, reducing the available
calcium by the same amount as in the imaging experiments
(0.5 mM), resulted in a reduction of the amplitude of the eEPSCs
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Figure 7. The 5-HT induced reduction of the presynaptic Ca®* transient as well as the reduction of the glutamatergic synaptic transmission can be mimicked by a reduction
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Ca?* concentration from 2.5 to 2 mM. (C) Summaries of the effect of 5-HT and the reduced extracellular Ca?* concentration on the amplitude of the Ca?* transients

and on the amplitude of stimulus-evoked EPSCs.

by 37.4+8.6% (n=>5, Fig. 7B,C right), similar to the reduction we
observed with 5-HT (n=12; 50.1 +6.1%, Fig. 7C, right, P =0.2676,
unpaired Student’s T-test).

In summary, we could show that 5-HT inhibits excitatory syn-
aptic transmission at the pyramidal cell-O-LM interneuron syn-
apse in CA1l. This effect most likely involves a decrease of
calcium influx into the presynaptic terminal and is mediated by
presynaptic 5-HT receptors.

Discussion

Here we show by means of electrophysiological recordings and
Ca?" measurements that 5-HT reversibly reduces excitatory glu-
tamatergic synaptic transmission onto O-LM interneurons,
which leads to a decrease in spiking probability of O-LM inter-
neurons in area CA1 of the hippocampus. Our findings indicate
that 5-HT decreases the Ca®* influx into the presynaptic terminal
of CA1 pyramidal cells and that this modulation is most likely re-
sponsible for the reduction in glutamatergic synaptic transmis-
sion at the pyramidal cell-O-LM interneuron synapse.

At first, we observed a reduction of the frequency of spontan-
eous EPSCs in O-LM interneurons by the application of 5-HT.
Spontaneous EPSCs are generated either by Ca®*-independent
spontaneous fusion of vesicles with the presynaptic plasma
membrane (mEPSCs) or by Ca®*-dependent vesicular release in
response to spontaneous APs. We found that the observed neuro-
modulation by 5-HT critically depends on presynaptic APs, as the
decrease in the frequency of sEPSCs was lost after application of
TTX. The finding that mEPSCs are not affected, neither in fre-
quency nor in amplitude, could be in line with the following scen-
ario: 5-HT could induce a hyperpolarization of the presynaptic
pyramidal cell, mediated by the opening of GIRK channels by
5-HT4 receptor activation (Andrade and Nicoll 1987; Segal et al.
1989; Schmitz et al. 1995). This would diminish the frequency of
SEPSCs because of a decrease in the number of spontaneous
spikes as has been shown in vivo (Richter-Levin and Segal
1992). This possibility seems to be unlikely because application
of a GIRK-channel blocker could not prevent the reduction of ex-
citatory synaptic transmission onto O-LM interneurons by 5-HT.

Another potential target of 5-HT might be astrocytes, which have
been shown to react on 5-HT (Schipke et al. 2011), and in turn are
able to modulate neurotransmission (Araque et al. 1999). How-
ever, the time course of reaction to 5-HT in astrocytes (Schipke
et al. 2011) differs largely from the type of modulation described
here.

The more likely site of action is an activation of 5-HT receptors
at the axon terminals of the presynaptic cell, which leads to a de-
crease in Ca®* influx; this mechanism would not affect the prob-
ability of spontaneous vesicle fusion, and is in line with our
finding that 5-HT does not affect mEPSCs.

We next investigated the effects of 5-HT on EPSCs evoked by
extracellular stimulation in stratum oriens/alveus where activation
of axonal fibers from CA1 pyramidal cells is most likely. As exci-
tatory connections on O-LM cells originate predominately from
local CA1 collaterals (Blasco-Ibanez and Freund 1995), the 5-HT-
mediated decrease in amplitude of stimulus-evoked currents is
most likely the result of a depression of glutamatergic transmis-
sion from local CA1 pyramidal cells. We confirmed this assump-
tion with paired recordings from synaptically connected CA1l
pyramidal neurons and O-LM interneurons. In this set of experi-
ments 5-HT mediated a robust increase of synaptic failures, that
is, presynaptic AP initiation without successful synaptic trans-
mission. The very low initial release probability at this synapse
and its further reduction due to 5-HT prevented the analysis of
changes in short-term facilitation upon 5-HT application. In a
further set of experiments, we circumvented a possible seroto-
nergic modulation of the presynaptic site by means of photolyti-
cally activating glutamate. In doing so, the amount of glutamate
that activates postsynaptic glutamate receptors is kept constant.
Under these experimental conditions, we found that 5-HT had no
effect on the glutamate evoked response. Together, these obser-
vations are suggestive for a presynaptic mechanism mediating
the decrease in glutamatergic transmission.

Presynaptic modulation of transmitter release can be
mediated via a G-protein-mediated block of Ca?* channels
(Thomson 2000; Mizutani et al. 2006; but see Gerachshenko
et al. 2009). As a consequence the Ca®* influx into the presynaptic
terminal is reduced. We were able to show that indeed application
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of 5-HT leads to a decrease in presynaptic Ca?* levels. Although
our method does not allow specific loading of axon terminals
on O-LM cells, they are likely to constitute a considerable fraction
of the loaded fibers; hence, they contribute substantially to the
measured Ca®* transient. Since these recordings were performed
under blockade of N-methyl-p-aspartate- and alpha-amino-3-
hydroxy-5-methyl-4-isoxazole-propionate-receptors, a postsy-
naptic contribution to the measured Ca?* signal can be excluded.
The observed inhibition of Ca®* influx upon 5-HT application was
within the expected range since the relationship between Ca?*
influx and transmitter release is nonlinear (Mintz et al. 1995;
Gundlfinger et al. 2007). Furthermore, we could show that a de-
crease in extracellular Ca®* concentration is able to mimic the ef-
fects of 5-HT. This applies for the experiments where we probed
the presynaptic Ca®* influx into the presynaptic terminals by
means of fluorescence measurements as well as in the experi-
ments where we tested the stimulus-induced EPSCs in O-LM
interneurons.

Under physiological conditions, 5-HT is released in the
hippocampus by axons originating from serotonergic neurons
in the midbrain raphe nuclei. With the aim of avoiding the ex-
ogenous application of serotonin by bath, we made use of fen-
fluramine to mimic physiological release of serotonin in the
hippocampus. Indeed, we observed that also endogenously re-
leased serotonin is able to reduce the excitatory synaptic trans-
mission onto O-LM interneurons. O-LM interneurons have been
shown to be active during hippocampal theta oscillations
(Klausberger et al. 2003; Katona et al. 2014). We aimed to
mimic theta-timed input onto O-LM-interneurons by extracel-
lular stimulation and could readily evoke spikes, suggesting
that the low release probability can be overcome by an appropri-
ate stimulus. Furthermore, the serotonergic modulation of glu-
tamatergic transmission described here significantly reduces
the spiking probability and therefore has an impact on the out-
put of O-LM interneurons

Serotonergic neuromodulation of O-LM interneurons could
have an important influence on the dynamics of hippocampal-
entorhinal cortex interaction. Active O-LM cells are presumed
to inhibit input from the entorhinal cortex via postsynaptic
GABA, receptor activation in stratum moleculare and might in add-
ition mediate a reduction of glutamate and GABA release by
presynaptic GABAp receptors (Chalifoux and Carter 2011,
Urban-Ciecko et al. 2015). Deactivation of O-LM cells is likely to
strengthen entorhinal cortex input to CA1 via the TA pathway
(Maccaferri and McBain 1995). Moreover, it has been shown re-
cently that serotonin is able to induce a potentiation of the TA
pathway-CA1 synapses (Cai et al. 2013). In this respect, serotonin
is acting synergistically to increase the input via the TA pathway:
5-HT reduces the excitatory drive onto O-LM interneurons and
consequently releases the target region of the entorhinal projec-
tions from inhibition. The finding that O-LM interneurons differ-
entially modulate the input from CA3 and the entorhinal cortex
onto hippocampal CA1 neurons (Ledo et al. 2012) puts serotoner-
gic neuromodulation of O-LM interneurons at center stage for
switching the information flow from direct TA pathway inputs
with sensory information to inputs with internal representations
stored in CA3.
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