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Abstract

Aim

20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) are

cytochrome P450 (CYP)-dependent eicosanoids that play opposite roles in the regulation of

vascular tone, inflammation, and apoptosis. 20-HETE aggravates, whereas EETs amelio-

rate ischemia/reperfusion (I/R)-induced organ damage. EETs are rapidly metabolized to

dihydroxyeicosatrienoic acids (DHETs) by the soluble epoxide hydrolase (sEH). We

hypothesized that sEH gene (EPHX2) deletion would increase endogenous EET levels and

thereby protect against I/R-induced acute kidney injury (AKI).

Methods

Kidney damage was evaluated in male wildtype (WT) and sEH-knockout (KO)-mice that

underwent 22-min renal ischemia followed by two days of reperfusion. CYP-eicosanoids

were analyzed by liquid chromatography tandem mass spectrometry.

Results

Contrary to our initial hypothesis, renal function declined more severely in sEH-KO mice as

indicated by higher serum creatinine and urea levels. The sEH-KO-mice also featured stron-

ger tubular lesion scores, tubular apoptosis, and inflammatory cell infiltration. Plasma and

renal EET/DHET-ratios were higher in sEH-KO than WT mice, thus confirming the expected

metabolic consequences of sEH deficiency. However, CYP-eicosanoid profiling also

revealed that renal, but not plasma and hepatic, 20-HETE levels were significantly

increased in sEH-KO compared to WT mice. In line with this finding, renal expression of

Cyp4a12a, the murine 20-HETE-generating CYP-enzyme, was up-regulated both at the
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mRNA and protein level, and Cyp4a12a immunostaining was more intense in the renal arte-

rioles of sEH-KO compared with WTmice.

Conclusion

These results indicate that the potential beneficial effects of reducing EET degradation

were obliterated by a thus far unknown mechanism leading to kidney-specific up-regulation

of 20-HETE formation in sEH-KO-mice.

Introduction
Renal ischemia-reperfusion (I/R) is one of the major causes of acute kidney injury (AKI) [1].
Ischemic AKI greatly contributes to patient morbidity and mortality in various clinical settings
such as cardiovascular surgery and renal transplantation [2–5]. Even after complete recovery,
AKI is an independent risk factor for the development of chronic kidney disease [6,7]. An
effective therapy of ischemic AKI is still lacking [8]. The complex pathophysiology of AKI
involves hemodynamic alterations, inflammation, endothelial dysfunction, and tubular epithe-
lial cell injury [1,8,9].

Recent preclinical studies indicate that arachidonic acid (AA) metabolites generated by
cytochrome P450 (CYP) enzymes play an important role in the development of I/R-injury in
the kidney [10–12], heart [13,14] and brain [15,16]. These metabolites include 20-hydroxyeico-
satetraenoic acid (20-HETE), the primary product of CYP4A/CYP4F-catalyzed AA ω-hydrox-
ylation, and epoxyeicosatrienoic acids (EETs) produced by AA epoxygenases of the CYP2C
and CYP2J subfamilies [17–20]. Whereas inhibition of 20-HETE synthesis reduced I/R injury
in the heart and brain, corresponding studies in the kidney yielded controversial results that
seem to be related to the model systems used, bilateral [10] versus unilateral ischemia [11], as
confirmed in a follow-up study [12]. 20-HETE is excessively released during renal ischemia
[11] and may initiate I/R injury by promoting vasoconstriction [21] as well as endothelial dys-
function [22] and tubular epithelial cell apoptosis [23]. Conversely, 20-HETE mediated inhibi-
tion of tubular salt reabsorption is required for normal kidney function [24] and may play a
protective role in renal I/R injury by reducing oxygen utilization in the reperfusion phase
[10,12].

EETs share the capacity of 20-HETE to inhibit tubular sodium transport but show a profile
of vascular activities that opposes that of 20-HETE [21,24]. EETs mediate vasodilator responses
and have been identified as the major endothelium-derived hyperpolarizing factor in renal
arterioles [21,25]. EETs repress pro-inflammatory activation of endothelial cells by inhibiting
cytokine-induced nuclear factor-κB (NF-κB) activation and vascular cell adhesion molecule 1
(VCAM-1) expression [26]. Moreover, EETs have the potential of inhibiting hypoxia/reoxy-
genation-induced apoptosis and cell death as first shown in cultured endothelial cells [27] and
cardiomyocytes [28]. EETs are rapidly metabolized to less active dihydroxyeicosatrienoic acids
(DHETs) by the action of the soluble epoxide hydrolase (sEH) [29]. The sEH enzyme is
encoded by the EPHX2 gene and consists of an N-terminal phosphatase and C-terminal hydro-
lase domain. Inhibitors targeting the hydrolase domain increase the endogenous EET levels
and have been shown to be antihypertensive and anti-inflammatory, and to protect the brain,
heart and kidney from damage [30,31]. Renoprotective actions of sEH-inhibitors were demon-
strated in various animal models of cardiovascular disease [32] and specifically also in mouse
models of renal I/R-injury [33] and obstructive nephropathy [34]. Human studies revealed
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significant associations between genetic variation in EPHX2 and allograft function after kidney
transplantation [35] as well as with the risk of IgA nephropathy progression [36].

In the present study, we used sEH-knockout and corresponding wildtype mice to test the
hypothesis that sEH gene deficiency protects against renal I/R-injury. Unexpectedly, we
observed that EPHX2 deletion aggravated the disease process. Searching for the potential
mechanisms, we found that the sEH-KO mice displayed kidney-specific upregulation of
20-HETE formation.

Methods

Animals
The sEH-KOmice were originally established by Boehringer Ingelheim Pharmaceuticals, Inc
[37] and were then further backcrossed for nine generations onto C57BL/6ByJ before being
used in our studies [38]. sEH-KO mice and corresponding WT littermates were kept under
specific pathogen free (SPF) conditions with a standard 12:12 h light-dark cycle and had ad
libitum access to water and standard chow. This study was carried out in strict accordance with
the recommendations in the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health and the ethics policies of Charité-University Berlin and the Land Berlin.
The protocol was approved by the Committee on the Ethics of Animal Experiments of the
Charité and Land Berlin (Permit Number: G0121/11).

Genotyping
Genomic DNA was extracted from mouse tail biopsies for polymerase chain reactions (PCR)-
based genotyping. The primers (BioTez, Berlin-Buch GmbH) were as follows: SEPOH-FP, 50-
CCACCTACCTTGTGCTTGCC-30, SEPOH-RP, 50-GGGAAGAGGGGAAGGATTGT-30, and
LTR2, 50-AAATGGCGTTACTTAAGCTAGCTTGC-30. The PCR products were separated on 2%
agarose gels and visualized under UV light after staining with GelRedTM (41003, Biotium, Hay-
ward, USA). The genotype-specific PCR products had a size of 308 (homozygous WT) and 230
bp (homozygous sEH-KO mice).

Determination of sEH activities
Renal and hepatic cytosolic fractions were prepared as described previously [39]. The assay was
performed at 37°C for 20 min in a final volume of 100 μL potassium phosphate buffer (0.1 M,
pH 7.2) containing 50 μM 14,15-EET as substrate. The reactions were started by adding the
cytosolic fraction (3.5 μg of protein) and terminated with 300 μl ethyl acetate. The remaining
substrate and its product (14,15-DHET) were extracted and analyzed by reversed-phase high
performance liquid chromatography (RP-HPLC) [39].

Renal I/R injury
Male mice were used at the age of 10–13 weeks, 25–30 g in weight. Animals were anesthetized
with isoflurane (“Forene”, Abbott GmbH & Co., KGWiesbaden) and placed on a temperature-
controlled heating table, maintaining the body temperature in the range of 36.5–37.5°C. After
removal of the right kidney, ischemia was induced in the remaining kidney by applying a non-
traumatic vascular clamp (FST, Essen, Germany) to the left renal pedicle for 22 min. Renal-
reflow was confirmed after releasing the clamp by visual inspection. Before wound closure, 1
ml of pre-warmed (37°C) saline was placed in the abdominal cavity to prevent dehydration.
For analgesia, mice received a single injection of buprenorphine followed by tramadol in drink-
ing water during the next two days. Sham (control) groups went through the identical
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procedures including uninephrectomy, however, without clamping of renal pedicle. One day
after surgery, the animals were individually placed in metabolic cages for urine collection over
a period of 24 h. Blood, urine, and kidneys tissue samples were collected 48 h after I/R. The kid-
neys were cut in half through the long axis. One half of the kidney was fixed in 4% paraformal-
dehyde for paraffin embedding, while the second half was snap frozen in liquid nitrogen and
stored at −80°C for subsequent mRNA, protein, or CYP-eicosanoid analysis. Before analysis,
the stored samples were homogenized in liquid nitrogen using a Biopulverizer (BioSpec Prod-
ucts Inc., USA). Completely untreated sEH-KO andWTmice were used for evaluating the oxy-
lipin profiles, sEH activities and Cyp4a12a expression under baseline conditions.

Renal function and histology
Creatinine and urea nitrogen in serum and urine were measured by an automated chemistry
analyzer. Histomorphologic analysis of Hematoxylin and Eosin (HE) and Periodic Acid-Schiff
(PAS) stained renal paraffin embedded sections (2 μm) were used to determine acute tubular
necrosis (ATN) score as described previously [40]. TUNEL staining was performed to detect
DNA fragmentation associated with programmed renal cell death by In Situ Cell Death Detec-
tion Kit, TMR red (Roche Diagnostics GmbH, Mannheim, Germany) according to the manu-
facturer’s instructions. For the evaluation of monocyte/macrophage infiltration, acetone-fixed
frozen renal sections (6 μm) were incubated with the mixture of primary antibodies rat-anti-
mouse macrophage F4/80 (1:100, Serotec, Oxford, UK) and rat-anti-mouse CD11b (1:250,
clone 1/70, Pharmingen, Oxford, UK) by immunofluorescence staining. The location of
Cyp4a12a in renal sections was analyzed using an affinity purified antibody (1:200) raised in
rabbit against a Cyp4a12a-specific peptide [39] without or after pre-saturation with the corre-
sponding synthetic peptide. A goat anti-rabbit IgG Alex Red 568 conjugate (1:1000, Vector
Labs, Burlingame, CA, USA) served as secondary antibody. Images were examined with a
microscope and AxioVision digital imaging system (Zeiss, Jena, Germany) in 10 randomly
chosen fields of view (FoV) at 200× or 400× magnification. The quantification of positive sig-
nals was evaluated as the percentage of total area per FoV.

Quantitative analysis of mRNA expression
Total RNA was extracted with the Qiazol RNeasy Micro kit including DNase digestion (Qia-
gen, Hilden, Germany) and then reverse-transcribed into cDNA using a high-capacity cDNA
reverse-transcription kit (Applied Biosystems, Foster City, CA, USA). Subsequent TaqMan
analysis of Cyp4a12a and sEH mRNA expression was conducted as described previously [39].
The relative amount of gene transcript was calculated by using the standard curve method and
then normalized on GAPDH.

Western blot analysis
Aliquots (30 μg of protein per lane) of kidney or liver homogenates were separated by 10%
SDS-PAGE and transferred onto PVDF membranes (GE Healthcare, Amersham, UK). Recom-
binant Cyp4a12a protein was included as positive control. The primary antibodies used were
raised in rabbits against mouse Cyp4a12a [39], sEH (Cayman Chemicals, Ann Arbor, USA),
and GAPDH (HyTest, Turku, Finland) and were applied in dilutions of 1:1000, 1:1000 and
1:20000, respectively. Anti-rabbit IgG peroxidase conjugate (1:10000, Jackson ImmunoRe-
search, West Grove, PA, USA) served as secondary antibody. Immunoreactive bands were
detected by chemiluminescence using the Super Signal West Dura substrate (Thermo Scien-
tific, Rockford, IL, USA) and quantified with the G:BOXChemi XL 1.4 imaging system (Syn-
gene, Cambridge, UK).
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Plasma and tissue oxylipin profiles
Plasma and homogenized tissue (kidney and liver) samples were subjected to alkaline hydroly-
sis and solid-phase extraction was performed as described previously [41]. 10 ng of each
20-HETE-d6, 14,15-EET-d8, 14,15-DHET-d11, and 15-HETE-d8 (Cayman Chemicals, Ann
Arbor, MI, USA) served as internal standards. Subsequent analysis of the endogenous eicosa-
noid profiles was performed by liquid chromatography tandem mass spectrometry (LC-MS/
MS; Lipidomix GmbH, Berlin, Germany) as established previously [42]. Results are given in ng
metabolites per ml plasma or per g of organ wet weight.

Statistics
Statistical analysis was performed by using GraphPad Prism 5 software (GraphPad Inc., La
Jolla, USA). All results were tested for normal distribution and expressed as mean ± standard
error of mean (SEM). Two-tailed t-test was used for comparing the difference in terms of mean
values between two different groups. The significance of variability among multi groups was
evaluated by one-way ANOVA with a Bonferroni multiple comparison post-test. P<0.05 (�),
<0.01 (��) and<0.001 (���) were considered as statistically significant.

Results

Confirmation of functional sEH gene disruption
Evaluation of renal and hepatic sEH activities was performed using 14,15-EET as natural sub-
strate and analyzing its conversion to 14,15-DHET by RP-HPLC. The cytosolic fractions pre-
pared from the organs of WT mice metabolized 14,15-EET with hydrolase activities of about
20 (kidney, Fig 1A–1C) and 60 nmol/min/mg (liver, Fig 1D–1F). In contrast, 14,15-EET hydro-
lysis was not catalyzed by any of the corresponding samples derived from homozygous
sEH-KO mice (Fig 1A–1F). Polyclonal antibodies raised against recombinant mouse sEH rec-
ognized a 62 kDa protein band in the kidney and liver samples of WT but not sEH-KO mice
(Fig 1G). Taken together, these results confirmed that sEH gene disruption resulted in a com-
plete loss of functional sEH expression.

I/R-induced impairment of renal function was aggravated in sEH-KO
mice
Serum creatinine and urea levels were determined two days after reperfusion in order to evalu-
ate the extent of I/R-induced impairment of renal function. In WT mice, I/R resulted in a
3.5-fold increase of serum creatinine (Fig 2A) and a 5.5-fold rise in serum urea (Fig 2B), com-
pared with sham-operated uninephrectomized controls. The extent of I/R-induced impairment
of renal function was more pronounced in sEH-KO than WTmice (creatinine: 2.54 ± 0.20 vs.
1.42 ± 0.12 mg/dl, P<0.001; urea: 561.6 ± 29.63 vs. 404.4 ± 13.93 mg/dl, P<0.001; Fig 2).

sEH-KOmice displayed increased I/R-induced tubular damage and
renal inflammation
In line with the differences observed in renal functional impairment, sEH-KO mice showed
higher tubular necrosis scores (Fig 3), stronger tubular apoptosis (Fig 4), and intensified
inflammatory cell infiltration (Fig 5) compared with WTmice. The corresponding histological
examinations were performed using the kidneys harvested two days after reperfusion. I/R-
induced renal tubular damage was indicated by the occurrence of widened tubular lumina,
exfoliated tubular epithelial cells, hyaline cast formation, and necrotic tubules (Fig 3A). Tubular
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damage was primarily detectable in the outer medulla and adjacent cortex following the vascula-
ture along the collecting ducts. The degree of necrotic renal injury was significantly higher in
sEH-KO thanWTmice as quantified by the ATN score: 3.40 ± 0.09 vs. 2.50 ± 0.17, P<0.001; Fig
3B. The sEH-KO animals also showed augmented apoptosis of tubular epithelial cells as quanti-
fied by morphometric analysis of TUNEL staining (0.92 ± 0.08, vs 0.40 ± 0.02% per field of view
(FoV), P<0.001; Fig 4A and 4B). I/R-induced inflammation was indicated by dense infiltration
of monocytes/macrophages into the damaged zones of the outer medulla and renal cortex. Mor-
phometric quantification revealed aggravated inflammatory cell infiltration in sEH-KO com-
pared to WTmice (0.43 ± 0.049%, vs. 0.13 ± 0.004 per FoV, P<0.001; Fig 5A and 5B).

Oxylipin analysis revealed increased renal 20-HETE formation in
sEH-KOmice
Searching for potential mechanisms predisposing the sEH-KO mice to increased I/R-induced
renal damage, we compared the oxylipin profiles of WT and sEH-KO mice under baseline

Fig 1. sEH gene disruption abolished sEH activities and sEH protein expression. Representative HPLC chromatograms showing the metabolism of
14,15-EET to 14,15-DHET by cytosolic fractions prepared from kidney and liver of WT (A and C) and sEH-KO (B and D) mice. The sEH activity in renal (C)
and liver (F) cytosolic fractions from sEH-KO andWTmice revealed complete loss of activity by gene knock out. Data are given as mean ± SEM (n = 5–6 per
group). Statistically significant differences were observed as indicated: ** p<0.01 vs WT. (G): Representative Western blot of liver and kidney homogenates
from sEH-KO andWTmice.

doi:10.1371/journal.pone.0145645.g001
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Fig 2. sEH gene disruption aggravated I/R-induced impairment of renal function. Kidney function was evaluated by measuring the serum levels of
creatinine (A) and urea (B) two days after reperfusion. sEH-KOmice presented significantly stronger increases of serum creatinine and urea levels compared
to theWT-I/R or uninephrectomized control groups. Data are given as mean ± SEM (n = 5–8 per group). ***p<0.001 vs WT.

doi:10.1371/journal.pone.0145645.g002

Fig 3. sEH gene disruption enhanced I/R-induced tubular damage. (A): Representative images of PAS-stained sections of kidneys harvested two days
after reperfusion or sham surgery (magnification 200×, scale bar: 50 μm). Images were taken at the border of cortex and outer medulla. Arrows indicate
necrotic tubules, and asterisks indicate tubular casts. (B): Evaluation of Acute Tubular Necrosis (ATN) score. sEH-KOmice subjected to I/R injury showed
significantly increased tubular damage compared to theWT I/R or uninephrectomized control groups. Data are given as mean ± SEM (n = 5 per group).
***p<0.001 vs WT.

doi:10.1371/journal.pone.0145645.g003
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conditions. Our LC-MS/MS analysis included several of the linoleic acid- and AA-derived
endogenous substrates and products of sEH-mediated hydrolysis in order to evaluate the direct
metabolic consequences of sEH deficiency. Moreover, we determined the levels of various AA-
derived monohydroxy-metabolites (HETEs) to gain insight into sEH deficiency-associated
alterations in other branches of AA metabolism. The sEH product/substrate-ratios were
reduced in sEH-KO compared to WTmice, as congruently demonstrated by the oxylipin pro-
files of plasma, kidney, and liver samples (Figs 6, 7 and 8; S1, S2 and S3 Tables). In particular,
sEH-KO mice displayed markedly increased plasma and tissue levels of the sEH substrates
12,13-epoxyoctadecenoic acid (12,13-EpOME) and 14,15-EET, whereas the corresponding
products 12,13-dihydroxyoctadecenoic acid (12,13-DiHOME) and 14,15-DHET were signifi-
cantly reduced. In contrast to this clear effect of sEH deficiency on the maintenance of epoxy-
genase metabolites, WT and sEH-KO mice showed almost identical plasma and tissue levels of
5-, 8-, 9-, 11-, 12-, and 15-HETE, indicating that sEH deficiency was not associated with major
changes in the formation of monohydroxy-metabolites via 5-, 12- or 15-lipoxygenases and/or
AA-autoxidation. Also, the occurrence of 19-HETE, the product of AA (ω-1)-hydroxylation,
was not different in WT and sEH-KOmice. Remarkably, however, our data indicate that sEH
deficiency was associated with a kidney-specific upregulation of 20-HETE formation. The
renal 20-HETE levels were 2-fold higher in sEH-KO than WTmice (Fig 7D and S1 Table). In
contrast, plasma 20-HETE levels were decreased and hepatic 20-HETE levels were not signifi-
cantly different comparing sEH-KO and WTmice (Figs 6D and 8D; S1 and S3 Tables).

Fig 4. sEH gene disruption increased I/R-induced apoptosis of tubular epithelial cells. (A): Representative images of renal sections after TUNEL-
staining (magnification 400×, Scale bar 100 μm). Apoptosis was detected in the kidneys of all mice subjected to I/R-injury but not in the corresponding control
mice. (B): Quantification of apoptosis in the cortex and outer medulla of kidneys harvested two days after reperfusion. The intensity of positively stained
nuclei was related to the area of each chosen field of view (FoV) in the renal sections. sEH-KOmice displayed significantly stronger apoptosis compared to
theWT-I/R or control groups. Data are given as mean ± SEM (n = 5 per group). ***p<0.001 vs WT.

doi:10.1371/journal.pone.0145645.g004
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Renal expression of Cyp4a12a was upregulated in sEH-KOmice
Searching for the origin of increased renal 20-HETE levels in sEH-KO mice, we analyzed
untreated kidneys from sEH-KO and WTmice for the expression of Cyp4a12a, the major
murine 20-HETE generating enzyme [39]. As shown in Fig 9, renal Cyp4a12a expression was
about two-fold higher both at the mRNA and protein level in sEH-KO than WTmice.
Cyp4a12a mRNA expression levels determined by TaqMan RT-PCR and normalized to
GAPDH expression were 0.71±0.08 in WT vs. 1.22±0.15 in sEH-KO mice (P<0.05; Fig 9A).
The peptide-specific Cyp4a12a antibody recognized a single 55 kDa protein band that co-
migrated with recombinant Cyp4a12a in SDS-PAGE (Fig 9B). Quantification of Western blots
using GAPDH as loading control showed significantly increased intensities of the Cyp4a12a
immunoreactive band in the renal homogenates of sEH-KO compared to WTmice (0.33±0.02
vs 0.13±0.02, P<0.05; Fig 9C).

Localization of Cyp4a12a in the kidney
To visualize the intrarenal localization of Cyp4a12a, kidney sections were incubated with a
peptide-specific Cyp4a12a antibody followed by a fluorescent labeled secondary antibody.
Immunostaining occurred in renal vascular and tubular structures and could be blocked at
both sites by pre-saturating the Cyp4a12a antibody with the corresponding synthetic peptide
(Fig 10A). Tubular immunofluorescence was rather faint and not different comparing WT and
sEH-KO mice. The structures displaying clearly enhanced immunostaining in sEH-KOmice
represented renal vessels (arcuate, interlobar, and interlobular arteries) as shown in Fig 10B.

Fig 5. sEH gene disruption aggravated I/R-induced renal inflammation. (A): Representative images of renal sections stained for monocytes/
macrophages to evaluate inflammatory cell infiltration as induced by renal I/R injury (magnification 400×, Scale bar 100 μm). (B): Quantification of
inflammatory cell infiltration by evaluating the intensity ratio of positively stained inflammatory cells to the area of the high power view field. sEH-KOmice
displayed significantly more inflammation compared to the WT-I/R or control groups. Data are given as mean ± SEM (n = 5 per group). * p<0.05, ***p<0.001
vs WT.

doi:10.1371/journal.pone.0145645.g005
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Discussion
In this study, we investigated the effect of global sEH gene disruption on the development of
ischemic AKI in mice. Similar to our previous experiments in rat [11], we used a model of uni-
lateral ischemia, i.e. I/R injury was induced after acute uninephrectomy in the remaining kid-
ney. In contrast to our expectation, sEH deficiency did not ameliorate I/R-induced renal
damage, but rather aggravated the impairment of kidney function, tubular injury, and inflam-
matory response. Baseline oxylipin profiling as well as analysis of Cyp4a12a expression
revealed increased renal 20-HETE formation as a factor potentially causing the increased sus-
ceptibility of sEH-KO mice to I/R-induced renal damage.

Fig 6. Plasma oxylipin profiles in WT and sEH-KOmice. (A): The conversion of linoleic acid-derived epoxides (EpOMEs) to the corresponding vicinal
diols (DiHOMEs) was reduced in sEH-KO compared to WTmice as indicated by the decreased DiHOME/EpOME-ratios. (B): The conversion of AA-derived
epoxides (EETs) to the corresponding vicinal diols (DHETs) was reduced in sEH-KO compared to WTmice as indicated by the decreased DHET/EET-ratios.
(C): The plasma levels of AA-derived 5- through 19-HETE were not different in WT and sEH-KOmice. (D): Plasma 20-HETE levels were significantly lower in
sEH-KO compared with WTmice. Results are given as mean ± SEM (n = 5–6 per group). Statistically significant differences were observed as indicated: *
p<0.05, ** p<0.01, ***p<0.001 vsWT.

doi:10.1371/journal.pone.0145645.g006
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In apparent contrast to our findings with the sEH-KOmice, pharmacological inhibition of
sEH activity was recently shown to protect against renal I/R injury in mice [33]. Moreover,
renoprotective effects of sEH gene deletion were reported in mouse models developing chronic
kidney disease [43–45]. There are also several studies indicating that pharmacological sEH
inhibition and sEH gene deletion may produce essentially the same beneficial effects as clearly
demonstrated in mouse models of myocardial infarction [46,47] and stroke [48,49]. Actually,
our study is among the very few indicating that sEH deficiency may also have detrimental
effects in certain disease processes. Other examples include reduced survival of sEH-KO mice
following cardiac arrest and cardiopulmonary resuscitation [50] and increased albuminuria in
mice with progressive renal disease upon pharmacological sEH inhibition [51]. Opposite
effects of sEH gene deletion and pharmacological inhibition were observed analyzing

Fig 7. Renal oxylipin profiles in WT and sEH-KOmice. (A): The conversion of linoleic acid-derived epoxides (EpOMEs) to the corresponding vicinal diols
(DiHOMEs) was reduced in sEH-KO compared to WTmice as indicated by the decreased DiHOME/EpOME-ratios. (B): The conversion of 14,15-EET to
14,15-DHETs was reduced in sEH-KO compared to WTmice as indicated by the decreased 14,15-DHET/14,15-EET-ratio. (C): The renal levels of AA-
derived 5- through 19-HETE were not different in WT and sEH-KOmice. (D): Renal 20-HETE levels were significantly higher in sEH-KO compared with WT
mice. Results are given as mean ± SEM (n = 5–7 per group). Statistically significant differences were observed as indicated: * p<0.05, ** p<0.01 vs WT.

doi:10.1371/journal.pone.0145645.g007
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angiotensin II-induced cardiac dysfunction and myocardial fibrosis in mice [52]. Resembling
the state-of-affairs with renal I/R-injury, cardiac dysfunction and fibrosis were attenuated by
sEH inhibition but aggravated by sEH gene deletion [52]. Differences in the effects of sEH gene
deletion and pharmacological inhibition were also reported regarding the development of hyp-
oxia-induced pulmonary hypertension [53]. Deletion of the sEH gene eliminates the expression
of the whole bi-functional enzyme, whereas the currently developed sEH inhibitors specifically
target its C-terminal epoxide hydrolase domain [29]. Accordingly, differences observed com-
paring the effects of sEH deletion and sEH inhibition may indicate an important role of the N-
terminal phosphatase domain in the given disease model as discussed for hypoxia-induced pul-
monary hypertension [53]. The function of the phosphatase domain is only partially under-
stood [29]; however, recent findings suggest that the N-terminal domain is involved in
regulating the phosphorylation state and activity of endothelial nitric oxide synthase [54,55].

Fig 8. Hepatic oxylipin profiles in WT and sEH-KOmice. (A), (B): Metabolic deficiency of sEH resulted in decreased DiHOME/EpOME- (A) as well as
14,15-DHET/14,15-EET-ratios (B). (C), (D): The hepatic levels of 5- through 19-HETE (C) as well as the hepatic 20-HETE levels (D) were not different in WT
and sEH-KOmice. Results are given as mean ± SEM (n = 5–6 per group). Statistically significant differences were observed as indicated: * p<0.05, **
p<0.01 vs WT.

doi:10.1371/journal.pone.0145645.g008

sEH and Acute Kidney Injury

PLOS ONE | DOI:10.1371/journal.pone.0145645 January 4, 2016 12 / 19



Fig 9. Upregulation of renal Cyp4a12a expression in sEH-KOmice. (A): Quantification of Cyp4a12a
mRNA expression in kidneys of WT and sEH-KOmice by TaqMan RT-PCR. (B): A representative Western
blot comparing the renal expression of Cyp4a12a protein in WT and sEH-KOmice. (C): Quantification of
immunoreactive bands showed 2.5-fold higher Cyp4a12a protein levels in the kidneys of sEH-KO compared
to WTmice. Real time-PCR data (A) andWestern blot data (C) are given as mean ± SEM (n = 5–7 group).
Statistically significant differences were observed as indicated: * p<0.05 vs WT.

doi:10.1371/journal.pone.0145645.g009
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Moreover, both sEH-deletion and sEH-inhibition may cause the development of compensa-
tory mechanisms in response to either increased levels of epoxy-metabolites or reduced levels
of the corresponding hydrolysis products. In line with this hypothesis, sEH-inhibition shifted
the renal AA metabolism towards the lipoxygenase pathway and failed to elicit renoprotective

Fig 10. Intrarenal localization of Cyp4a12a protein expression. (A): Representative images of renal sections stained for Cyp4a12a by the
immunofluorescence (magnification 200×; scale bar: 50 μm). sEH gene disruption resulted in upregulating the expression of Cyp4a12a in mouse kidneys
compared to WTmouse. The signals were blocked by pre-saturating the peptide-specific Cyp4a12a antibody with the corresponding synthetic peptide. (B):
Images of a renal section from sEH-KOmice showing how immunostaining relates to the underlying renal structures (magnification 200×; scale bar: 50 μm).
Images were taken at the area of renal cortex. Cyp4a12a immunostaining was most intense in the renal vessels (arcuate, interlobar, and interlobular
arteries). Faint but specific staining occurred in tubules. No staining was detectable in glomeruli.

doi:10.1371/journal.pone.0145645.g010
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effects in the 5/6-nephrectomy mouse model [51]. A shift in AA metabolism was also identified
as the likely cause for increased angiotensin II-induced myocardial fibrosis in sEH-KO mice
compared to pharmacological inhibition of sEH activity in WT mice [52].

EETs function as vasodilators in a variety of vascular beds raising the possibility that sys-
temic hemodynamic effects might impair renal blood flow and thus contribute to the increased
renal I/R injury observed in sEH-KO mice. However, like sEH gene deletion also pharmacolog-
ical sEH inhibition increases endogenous EET levels, but protects against renal I/R injury in
mice [33]. Moreover, despite having increased endogenous EET levels, sEH-KO mice display
normal blood pressure and show a reduced hypotensive response to LPS challenge [37]. The
same study revealed largely increased AA ω-hydroxylase activities in the kidneys of sEH-KO
compared to WT mice. Accordingly, it has been suggested that blood pressure homeostasis is
achieved in sEH-KO mice by compensatory upregulation of renal 20-HETE formation [37].
Our data confirm and extent these findings. On the one hand, plasma as well as renal and
hepatic EpOME/DiHOME and EET/DHET-ratios were higher in sEH-KO than WTmice,
thus confirming the expected direct metabolic consequences of sEH deficiency. On the other
hand, our LC-MS/MS analysis also showed two-fold higher endogenous 20-HETE levels in the
kidneys of sEH-KO compared with WT mice. This indirect “compensatory” effect was obvi-
ously kidney-specific considering that the endogenous 20-HETE levels were not significantly
higher in the liver and even lower in the plasma of sEH-KO than WTmice. In line with the
increased renal 20-HETE content, Cyp4a12a, the major murine 20-HETE generating CYP
enzyme, was significantly upregulated both at the mRNA and protein level in the kidneys of
sEH-KO compared with WTmice. Importantly, immunohistochemistry indicated renal vessels
(arcuate, interlobar, and interlobular arteries) as the major site of increased Cyp4a12a expres-
sion in sEH-KO mice.

The mechanisms are currently unclear that lead to the observed upregulation of renal
20-HETE formation in sEH-KO mice. Renal Cyp4a12a expression is largely male-specific and
can be further increased by treating C57Bl/6 mice with androgens [39] resulting in increased
vascular 20-HETE production [56]. However, male sEH-KO mice feature decreased plasma
testosterone levels [57] and the mechanistic link between sEH gene deletion and vascular
Cyp4a12a overexpression remains to be elucidated. Interestingly, a very recent study revealed
that up-regulation of 20-HETE is a male-specific response, whereas female sEH-KO mice pre-
serve vascular homeostasis by different mechanisms [58].

Taken together, our findings suggest that increased Cyp4a12a-mediated 20-HETE forma-
tion in renal vessels might be responsible for the increased susceptibility of male sEH-KO mice
to renal I/R-injury. Supporting this notion, vascular overproduction of 20-HETE has the
potential of mediating sustained vasoconstriction [21] and to promote inflammatory activation
of endothelial cells [59–61]. In line with the proposed detrimental role of 20-HETE in sEH-KO
mice, we showed previously that inhibition of 20-HETE formation or action protects against
renal I/R injury in uninephrectomized male rats [11]. However, considering the complex vas-
cular and tubular roles of 20-HETE in the kidney and the controversy surrounding its role in
renal I/R injury as already described in the introduction part [10–12], we cannot exclude that
our findings specifically apply to the model of unilateral ischemia that was used in the present
study and also in our previous study with rats [11]. The exact mechanism driving upregulation
of renal vascular 20-HETE formation in male sEH-KO mice remains unclear, but is most likely
the effect of a compensatory, phenotypic response to the loss of sEH and increased renal EETs.
These results further support the notion that finding the delicate balance of modulating EET/
HETE in cardiorenal disease remains challenging.
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