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identifies PARP as a novel off-target for the
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Abstract

Background: Searching for two-dimensional (2D) structural similarities is a useful tool to identify new active compounds
in drug-discovery programs. However, as 2D similarity measures neglect important structural and functional features,
similarity by 2D might be underestimated. In the present study, we used combined 2D and three-dimensional (3D)
similarity comparisons to reveal possible new functions and/or side-effects of known bioactive compounds.

Results: We utilised more than 10,000 compounds from the SuperTarget database with known inhibition values for
twelve different anti-cancer targets. We performed all-against-all comparisons resulting in 2D similarity landscapes. Among
the regions with low 2D similarity scores are inhibitors of vascular endothelial growth factor receptor (VEGFR) and
inhibitors of poly ADP-ribose polymerase (PARP). To demonstrate that 3D landscape comparison can identify similarities,
which are untraceable in 2D similarity comparisons, we analysed this region in more detail. This 3D analysis showed the
unexpected structural similarity between inhibitors of VEGFR and inhibitors of PARP. Among the VEGFR inhibitors that
show similarities to PARP inhibitors was Vatalanib, an oral “multi-targeted” small molecule protein kinase inhibitor being
studied in phase-III clinical trials in cancer therapy. An in silico docking simulation and an in vitro HT universal colorimetric
PARP assay confirmed that the VEGFR inhibitor Vatalanib exhibits off-target activity as a PARP inhibitor, broadening its
mode of action.

Conclusion: In contrast to the 2D-similarity search, the 3D-similarity landscape comparison identifies new functions
and side effects of the known VEGFR inhibitor Vatalanib.

Keywords: Bioinformatics, Drug action, Drug discovery, Polyadenylation, Vascular endothelial growth factor (VEGF),
3D similarity landscapes, Drug-discovery, Vatalanib, PARP

Background
Drugs often not only interact with their intended target
but also with so-called off-targets, thereby causing side-
effects [1]. Prediction of side-effects is still a big challenge
during drug design and studies have shown the potential
of computational methods for target and off-target ana-
lysis [2, 3]. These studies deal with pathway- and network-
based approaches combined with the chemical structure

of small molecule compounds regarding their binding site
at the target protein [4–6].
To identify compound similarities it is important to

take a detailed look at 2D- and 3D-similarities [7]. 2D
structural similarity algorithms were generated to predict
and create a drug-target adverse drug reactions (ADR)
network [3, 8]. These 2D-fingerprints represent the struc-
ture and properties of small molecules by a bit or integer
string. Although several methods exist to measure the
similarity between 2D fingerprints, the Tanimoto coeffi-
cient has been proven to be reliable [9, 10]. However,
several problems can occur while working with finger-
prints: size of compounds as well as functional groups
or side chains have an impact on the similarity

* Correspondence: robert.preissner@charite.de
†Equal contributors
1Structural Bioinformatics Group, Charite - University Medicine Berlin & ECRC,
Lindenberger Weg 80, 13125 Berlin, Germany
3German Cancer Consortium (DKTK) and German Cancer Research Center
(DKFZ), Heidelberg, Germany
Full list of author information is available at the end of the article

© 2015 Gohlke et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Gohlke et al. BMC Bioinformatics  (2015) 16:308 
DOI 10.1186/s12859-015-0730-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0730-x&domain=pdf
mailto:robert.preissner@charite.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


calculations. Hence, functional and structural features of
compounds can be neglected. These problems can be over-
come by using 3D similarity search methods.
Non-commercial drug- or target-related databases, which

have been established in the last decade, can be used for 2D
and 3D comparisons. Millions of compounds can be found
in databases like ChEMBL [11] or PubChem [12] and their
availability can be verified via the ZINC database [13].
We recently established our SuperTarget database,

which was developed with the intention to accentuate
drug–target interactions and to provide references to
other resources for more elaborate analysis [14]. The
SuperTarget database contains a core dataset of about
330,000 drug-target interactions, of which about 310,000
interactions have calculated binding affinity data [15]
and were used to compare 2D and 3D structures of
promising anticancer drugs.
Among these drugs are inhibitors of the poly ADP-ribose

polymerase (PARP). PARP binds to single-strand DNA
breaks and plays a critical role in cell recovery from DNA
damage. PARP inhibitors show activities not only in cancer
therapy but are also being evaluated for the treatment of
stroke, myocardial infarction and other diseases. Additional
promising anticancer drugs, which can be found in the
SuperTarget database, are inhibitors of the vascular endo-
thelial growth factor receptor (VEGFR). The approved
VEGFR inhibitor Vatalanib (PTK787 or PTK/ZK) is
currently studied in several phases of clinical trials for
different cancer therapies [16–18]. Vatalanib is an oral
“multi-targeted” small molecule protein kinase inhibitor
that binds to the intracellular kinase domain of all VEGF
receptor subtypes, thereby inhibiting angiogenesis [19]. In
addition, it binds to c-KIT and platelet-derived growth
factor receptor (PDGFR) but with lower affinity.
While applying a 3D similarity landscape analysis on

inhibitors for different cancer targets by using the Super-
Target database, we found unexpected similarities between
PARP and VEGFR inhibitors, which could not be detected
by 2D similarity searches. As a proof of concept of our
similarity landscape analysis, both in silico and in vitro as-
says confirmed Vatalanib’s off-target activity as a PARP in-
hibitor. In this paper we provide a combined approach of
2D and 3D similarity landscapes for target and off-target
analysis, which can be applied to a larger number of tar-
geted anti-cancer therapeutics.

Methods
2D-similarity - 2D-similarity was calculated with the
Tanimoto coefficient for pairs of compounds, i.e. inhibi-
tors [20]. For many of these inhibitors the half-maximal
inhibitory concentration (IC50), effective concentration
(EC50), or dissociation constant (Kd) values are listed in
the SuperTarget database. These known affinities of
the inhibitors were the basis of our filter algorithm

and, to avoid unwanted and therefore incomputable
off-target effects, only interactions described by binding
affinities <10 μM (IC50, EC50 or Kd) were considered for
further analysis. Using this filter method, we identified
nearly 10,000 inhibitors for the twelve different anti-
cancer targets. To compare these inhibitors, a combin-
ation of fingerprint 2 (FP2; http://openbabel.org/wiki/FP2)
and fingerprint 4 (FP4) were calculated. FP2 is used to
compare small molecules; it links linear segments of a
fragment up to seven atoms to an index and considers
atoms and bonds of a fragment and whether a complete
ring exists. Based on these calculations, fragments are
assigned to set bits in a 1,024 bit vector. FP4 uses SMART
patterns of functional groups of the small molecules to set
bits in a bit vector. The calculated fingerprints were subse-
quently compared by the Tanimoto similarity measure for
bit strings [7]. The Tanimoto coefficient is based on a
similarity ratio and can assume values between zero and
one, indicating no similarity or identical structures re-
spectively. It is calculated using the bits of the binary fin-
gerprint vectors set to one in molecule A and molecule B:

Tanimoto coefficientA;B ¼ AB
Aþ B − AB

where AB is the number of bits set to one in both
molecules, A is the number of bits set to one in molecule
A and B is the number of bits set to one in molecule B.
Another method to calculate the Tanimoto coefficient

are the extended-connectivity fingerprints (ECFP) [21].
These are used to cover the calculated 2D-similarity by
OpenBabel fingerprints, which belong to the class of ra-
dial fingerprints and are based on the Morgan algorithm
[22]. To calculate the extended-connectivity fingerprints
the cheminformatics toolkit of ChemAxon was used
(JChem compr (14.10.20.0), 201n (2014), ChemAxon
(http://www.chemaxon.com)).
3D-similarity - For 3D-similarity comparisons pre-cal-

culated conformers are superimposed using the Kabsch algo-
rithm [23]. Based on the normalised set of atoms in a
coordinate system the centres of mass for both conformers
were calculated and superimposed. Then the principal axes
of inertia are estimated and aligned. Thereby the possible ro-
tations are strongly reduced and only four orientations have
to be considered. For every orientation a mapping of atom
pairs was performed whereupon atoms were fitted to each
other with the smallest possible distance. Because for atom
pair assignment a maximal distance threshold is applied, not
every atom is assigned. The rotation with the highest amount
of mapped pairs was used for further calculations. The nor-
malised variant with the most minimal distance is chosen if
more than one rotation with the same amount of mapped
atom pairs exists. For this mapping a root-mean-square-
deviation (rmsd) was calculated and further optimised.
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Every molecule’s conformation was compared with
each conformation of the second molecule, resulting in
up to 2,500 separately calculated rmsd values. Here, only
the smallest rmsd value, i.e. the best superposition of the
compounds, was stored.
Ligand Docking - The docking study was performed

by using LibDock, a high-throughput docking algorithm
for library design and library prioritisation. This docking
program was provided by Accelrys Discovery Studio
(http://accelrys.com). The algorithm positioned ligands
in the protein’s active site based on polar and non-polar
interaction sites.
MCF-7 cell lines - Breast cancer cell lines MCF-7 were

cultured in RPMI-1640 medium supplemented with
10 % inactivated FBS, 100 U/ml penicillin and 0.1 mg/ml
streptomycin. Cells were cultured at 37 °C with 5 % CO2

in a fully humidified atmosphere.
IC50values of PARP inhibitors - For the determination

of IC50 values of Vatalanib and Compound 1 we used
the HT universal colorimetric PARP assay kit with histone-
coated strip wells (Trevigen, USA). Absorbance was mea-
sured in a Sunrise microplate reader (Tecan, Switzerland)
at 450 nm.
γH2AX foci analysis - For immunofluorescence micro-

scopic analyses, MCF-7 cells were grown on coverslips.
24 h post treatment with 0 (control), 1, 10, and 100 μM

Compound 1 or Vatalanib, cells were washed in PBS,
fixed in 3 % paraformaldehyde/PBS (15 min), permeabi-
lised with 0.5 % Triton-X 100/PBS (2 min) and blocked
in 5 % fetal bovine serum for 60 min at room temperature.
After incubation with anti-phospho-Histone H2A.X
(Ser139) clone JBW301 (mouse monoclonal IgG from
Millipore, Billerica, MA, USA) overnight at 4 °C, cells
were incubated with Alexa Fluor 488-labelled chicken
anti-mouse IgG secondary antibody (Molecular Probes,
The Netherlands) for 2 h at room temperature and
counterstained with DAPI. Images of γH2AX foci and
DAPI-labelled nuclei were acquired with a fluorescent
microscope (BX50; Olympus, Germany) equipped with
a 40×/0.75 objective lens (UPlanFL; Olympus, Germany)
and a camera (micropublisher 5.0 RTV; QImaging, Canada)
with Openlab software (Perkin Elmer, Germany).

Results
First, we performed an in silico screening for a variety of
known inhibitors against twelve promising anti-cancer
targets (listed in Fig. 1) using our SuperTarget database
(http://bioinformatics.charite.de/supertarget) [15]. The over-
all 2D-similarity of about 10,000 inhibitors was then
displayed in heat-maps (Additional file 1: Figure S1),
where the values are coloured according to the similarity
of the analysed inhibitors as calculated by the Tanimoto
score: high similarity is displayed in red and low similarity
in yellow data points. To allow for a better access to these
values, we represent these heat-maps as landscapes of
similarity. Here, high similarity is represented by

Fig. 1 2D similarity landscape. 2D similarity landscape of about 10,000 inhibitors for the twelve anti-cancer targets. High similarity, calculated by
the Tanimoto score, is visualised by mountains (white-yellow) and low similarity by valleys (dark red). We focused on the similarity between PARP
and VEGFR inhibitors (blue square, upper left corner
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mountains and low similarity by valleys (see Fig. 1).
Within each group and in between groups, inhibitors dis-
play similarity as indicated by high Tanimoto scores
depicted by ridges and mountains. In contrast, the 2,547
VEGFR inhibitors showed only little structural similarity
to the other classes of inhibitors, but especially to the
1,080 PARP inhibitors (Fig. 1, upper left corner).
Because 2D-similarity analyses often neglect important

structural and functional features, we expanded our com-
parison to 3D-superpositions measured by the root-mean-
square deviation (rmsd) based on the Kabsch algorithm.
Although current computers calculate 3D-comparisons of
compounds relatively fast, it would still take months to
compare all inhibitors with each other. We therefore fo-
cused on the 3D-structural comparison of VEGFR and
PARP inhibitors, which showed only little structural simi-
larity in the 2D-similarity analyses. For this comparison
up to 50 conformers were calculated by using Accelrys
Discovery studio 3.5 (Accelrys Software Inc., Discovery
Studio Modeling Environment, Release 3.5, San Diego:
Accelrys Software Inc., 2012). To create diverse ligand
conformations, the ‘fast’ search method was used to gener-
ate multiple low-energy conformations. The rmsd calcula-
tions are based on overlaying the anchor points of both
conformers and to rotate at single bonds (degrees of
freedom) to minimise the rmsd. We arbitrarily chose a
5 % quantile (rmsd of 0.215) to evaluate the similarity
of related 3D structures and analysed only compounds
with both low rmsd (high similarity) and low Tanimoto
scores (low 2D-similarity).

The resulting overall 2D- and 3D-structural similarities
of VEGFR and PARP inhibitors were again displayed in
heat-maps and as landscapes of similarity (Fig. 2). The
2D-similarity clearly depicts that the inhibitory compounds
of VEGFR and PARP are similar within each group, but
that there is only little similarity detectable between both
classes of inhibitors. The 3D-screening results are visua-
lised in a similar heat-map and corresponding landscape
that shows overall reduced similarity of inhibitors within
each group. Nevertheless, selected PARP inhibitors display
high similarity when compared to the VEGFR inhibitors.
Interestingly, there is a remarkable similarity between some
inhibitors of both classes (rmsd values between 0.1 and
0.3) depicted by the ridges, which cannot be seen in the
2D-similarity landscape, thereby proving the importance of
additional 3D superposition analysis.
Among these similar inhibitors (for a more detailed list

see Additional file 2: Table S1), we found Vatalanib (N-
(4-chlorophenyl)-4-(pyridin-4-ylmethyl)phthalazin-1-
amine; CID 151194) an approved inhibitor for VEGFR,
which showed similarity to a well-known PARP inhibitor
(1-benzyl-4-(1-oxidopyridin-1-ium-2-yl) sulfanylphthalazine;
CID 6413221) [24], hereinafter referred to as Compound 1
(Fig. 3). Based on the fact that Vatalanib is a well-known
drug, we decided to further investigate pair of compounds.
The 3D screening identifies Vatalanib as a potential in-

hibitor of PARP (rmsd: 0.194) whereas OpenBabel fin-
gerprints calculated a low Tanimoto score of 0.4 and
therefore failed to recognise the similarity of these two
compounds. To analyse in more detail if other 2D

Fig. 2 Similarity comparison of compounds of PARP to VEGFR. Comparison of PARP- (upper left corners) and VEGFR- (lower right corners) inhibitors
displayed in heat-maps and landscapes. 2D-similarity (left) based on the Tanimoto coefficient, 3D-similarity (right) based on rmsd values. High similarity
is visualised in yellow and low similarity in dark red. To display 3D similarity as mountains the rmsd values were transformed by the following formula:
rmsd-score = overlapped atoms/possible overlapped atoms x e-rmsd. Points with small RMSD are depicted higher than ones with large RMSD.
3D-similarity landscape analysis reveals two ridges along the left and the upper side of the graph
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fingerprints uncover the similarity between Vatalanib
and Compound 1, Tanimoto scores were likewise calcu-
lated by extended connectivity fingerprints (ECFP),
which result in a score of 0.32 for Compound 1 and
Vatalanib (data matrix not shown). In addition, MACCS
and FP3 fingerprints also computed low Tanimoto
scores of 0.37 and 0.33, respectively. This confirmed that
2D analyses are unsuccessful in identifying the similarity
between Vatalanib and Compound 1.

To verify Vatalanib’s function as an inhibitor of PARP,
we first performed an in silico docking simulation to ana-
lyse the binding of both compounds into the active site of
PARP (Fig. 4). The docking was performed by using the
3L3L PDB structure. PARP catalyses the NAD-dependent
addition of poly (ADP-ribose) (PAR) onto various cyto-
plasmic and nuclear proteins, and PARP inhibitors are
thought to compete with the enzyme substrate NAD+
at the active site. The high spatial similarity is displayed
by overlapping both compounds as well as docking them
to PARP. By using the high-throughput docking algorithm
LibDock [25] the best docking positions of both com-
pounds were calculated. In addition the docking score of
3-AB was calculated as a reference. According to the inte-
grated scoring function, the best-ranked poses for Vatala-
nib and Compound 1 have comparable LibDock scores of
114.8 and 128.2, respectively, showing that Vatalanib, like
Compound 1, fits neatly into the active site of PARP. Both
structures have a higher docking score than the reference
structure 3-AB with a docking score of 86.45 for the
best-suited pose.
To confirm our computational hypothesis that Vatala-

nib also targets PARP, we next compared the IC50 values
of both compounds. IC50 values were determined by the
use of the HT universal colorimetric PARP assay kit, which
measures the incorporation of biotinylated poly(ADP-
ribose) onto histone proteins. Both compounds inhibited
PARP activity in a concentration-dependent manner with
IC50 values of about 3,000 μM and about 200 μM for
Compound 1 and Vatalanib, respectively (Fig. 5).
To confirm inhibition of PARP and to rule out in vivo

vs. in vitro activity discrepancies, i.e. differences of PARP
expression in cells vs. an isolated PARP enzyme, we ana-
lysed accumulation of DNA damage in a human breast

Fig. 3 3D superposition of Vatalanib and Compound 1. 3D comparison
of Vatalanib (green) and Compound 1 (red)

Fig. 4 Best docking positions of Vatalanib and Compound 1 into PARP. Best docking positions of Vatalanib (green) and Compound 1 (red) into
the active site of PARP
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cancer cell line upon treatment with Compound 1 and
Vatalanib. Because of PARP's involvement in DNA strand
break repair, its inhibition has been proposed to lead to
double-strand break (DSB) formation [26]. These DSBs in-
duce phosphorylation of histone H2AX on Ser-139 at sites
flanking the breakage [27, 28]. Therefore, we analysed
whether treated cells accumulate phosphorylated H2AX,
denoted as γH2AX, which provides a common marker for
DNA damage in vitro [26, 29].
MCF-7 cells were treated with increasing concentrations

of Compound 1 and Vatalanib, incubated for 24 h and
stained for γH2AX. Green immunofluorescence (Fig. 6)
indicates accumulation of γH2AX foci after treatment
with concentrations of 10 and 100 μM of Compound 1 or
Vatalanib. Treatment with either 10 μM of Compound 1
or 10 μM of Vatalanib is sufficient to cause accumulation
of γH2AX foci, indicating accumulation of DNA damage
resulting from PARP inhibition.

Discussion
2D fingerprints similarity search methods are widely used
approaches in the discovery of novel molecules with high
affinity to specific targets and, despite the fact that mole-
cules are active in three dimensions, surprisingly powerful
[30]. In this study we used the freely available software
packages OpenBabel and ChemAxon to analyse the
2D-similarity of about 10,000 inhibitors against twelve
promising anti-cancer targets. Among these VEGFR and
PARP inhibitors showed only little structural similarity,
however, similarity by 2D might be underestimated [31].
Accurate target prediction can be achieved by combin-

ing different measures of chemical similarity based on
both chemical structure and molecular shape [32]. Fur-
thermore it has been shown recently that the combination

of a 2D similarity search and a 3D shape/flexibility-based
similarity search led to an increased hit rate [33]. There-
fore 3D-similarity of VEGFR and PARP inhibitors was
then analysed by a proprietary 3D-superpostion algo-
rithm, which produces reproducible results because of
pre-calculated conformers for every compound. The
3D-similarity method in combination with 2D-similarity
comparison performs quite well by applying a 5 % quantile
threshold (corresponding to an rmsd-value of 0.215) for
early discovery detection. This is possible as our data
follows a normal distribution. Nevertheless, using a thresh-
old means missing out on compounds with larger
rmsd-values (>0.215), which could have the same inhibi-
tory function. By taking 50 conformers into account to
simulate the flexibility and to cover the conformational
space, 2,500 superpositions of the two compounds were
calculated and the best superposition with a minimal
rmsd-value was taken for the similarity measurement.
This makes the method robust with respect to conform-
ation changes. Although the landscape of the 3D-screening
shows an overall reduced similarity of inhibitors compared
to the 2D-landscape, selected PARP inhibitors display
high similarity when compared to the VEGFR inhibitors,
confirming that it is important to take 3D in addition
to 2D similarity into account to increase the hit rate.
Among the inhibitors with similarity we found the anti-
cancer agent Vatalanib, and Compound 1, a similarity
not identified by different 2D fingerprint algorithms. It
might be that the 2D algorithms failed to identify this
similarity, because these fingerprints are based on atom
labels whereas rmsd does not consider these labels.
Structural comparisons as performed by the 3D algo-
rithm used here might perform better generally, as they
compensate for fragments of the molecule and their

Fig. 5 Colorimetric readout of the inhibition curves for Compound 1 and Vatalanib Graphical representation of the colorimetric readout of the inhibition
curves for Compound 1 and Vatalanib. Percentage of inhibition was calculated as ([normal activity – inhibited activity] / normal activity) x 100 %. Each
point represents the mean ± s.d. from triplicates
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connections of different atom types. Still, there might
be clusters where 2D similarity algorithms might be
faster and better.
Compound 1 was identified as a direct PARP1 inhibi-

tor in a yeast screen assay with an EC50 of approximately
60 μM [24]. By using the HT universal colorimetric
PARP assay kit we calculated an IC50 value of approxi-
mately 3,000 μM. The differences in the IC50 values of
Compound 1 can be explained by differences in the assays
used as well as by differences of PARP expressed in yeast
compared to an isolated PARP enzyme used in our assay.
According to the colorimetric PARP assay, Vatalanib, with
an IC50 value of 200 μM is fifteen-fold more effective than
Compound 1 in inhibiting PARP. The in silico docking
simulation indicates that Vatalanib’s additional chloride
atom, which is missing in Compound 1, is in close prox-
imity to the arginine 204 at the bottom of the binding site
of PARP. A halogen bond between the nitrogen of argin-
ine 204 might be formed, stabilising the binding position,
which results in a more effective drug target inhibition.

Both Vatalanib and Compound 1 have higher LibDock
docking scores than 3-AB, which might be attributed to
the relative small molecule size of 3-AB.
Despite better LibDock docking scores, both Vatalanib

and Compound 1, are less potent than the prototype
PARP inhibitor 3-AB (3-aminobenzamide), which has an
IC50 of about 30 μM [34, 35]. Despite these compara-
tively high IC50 values of Compound 1 and Vatalanib,
10 μM of either of the drugs was able to induce γH2AX
foci formation in human breast cancer cells, demonstrat-
ing DNA damage and PARP inhibition. In regard to this
activity, these results again point to an in vivo vs. in vitro
discrepancy with a higher bioactivity in cells compared to
the enzyme assay. Due to the relative high IC50 of Vatala-
nib, Vatalanib might be of interest as a new PARP inhibi-
tor or for drug design. In addition a putative positive side
effect of Vatalanib against PARP might be important for
the use of Vatalanib as a chemotherapeutical. Vatalanib
doses up to 1,000 mg twice-a-day are well tolerated reach-
ing plasma concentration in patients in the μM range.

Fig. 6 Immunofluorescence of MCF-7 cell lines. Immunofluorescence of MCF-7 cell lines 24 h after treatment with increasing concentrations of
Compound 1 (top) and Vatalanib (bottom). Accumulation of γH2AX foci in green, 4’,6’-diamino-2-phenylindole (DAPI) staining in blue
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Accordingly, the 10 μM of Vatalanib, able to induce
γH2AX foci, is in the rage of cmax plasma concentrations
achieved in patients [36–39].
Vatalanib (PTK787/ZK222584) was initially described

as a selective tyrosine kinase inhibitor (TKI) of VEGFR1-
3. TKIs commonly have additional activity against other
tyrosine kinases. Likewise Vatalanib, which at higher con-
centrations also inhibits other protein tyrosine kinases of
the same family, such as the platelet-derived growth factor
receptor beta tyrosine kinase and the c-Kit protein tyro-
sine kinase [19]. Interestingly, activity across other classes
of drug targets have also been documented for Vatalanib.
It has been shown that Vatalanib significantly inhibits aro-
matase and thus might cross-inhibit two important classes
of targets in breast cancer [40, 41]. This “multi-targeting”
activity, which might also include PARP as a target, could
potentially contribute to the antitumor effect of Vatalanib
and indicates that a drug’s efficacy often might not only
be based on the inhibition of one target but of multiple
targets [42, 43].

Conclusion
3D similarity landscape comparison, as shown in this
study, has the potential to identify new targets of known
drugs. As a proof of principle, we identified Vatalanib’s
additional ability to target PARP, which was demonstrated
in vitro and in vivo. Thus, combined 2D and 3D similarity
landscape comparison analysis can identify new functions
and/or side effects of known bioactive compounds that
are untraceable with 2D similarity searching alone.
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