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Ultrahigh field MRI in clinical neuroimmunology:
a potential contribution to improved diagnostics
and personalised disease management
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Abstract

Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise
ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current
clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts
inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory
diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making
and personalised disease management.
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Introduction
Magnetic resonance imaging (MRI) revolutionised clinical
neuroimmunology since brain MRI depicted multiple scler-
osis (MS) lesions already in early technical developmental
stages at 0.1 Tesla (T) [1]. During the past decade, MRI be-
came a crucial tool to diagnose and monitor inflammatory
central nervous system (CNS) alterations [2]. Nonetheless,
today’s physicians are faced with a key issue in clinical neur-
ology: many distinct CNS diseases are characterised by
nearly identically appearing white matter changes and brain
lesions that are often unspecific in appearance, limiting the
diagnostic value of conventional MRI.
Ultrahigh field (UHF) MRI at 7 T benefits from increased

signal-to-noise ratio (SNR) and enhanced spatial resolution
as good as 100 μm [3]. Future studies will show whether
these 7 T MRI advantages indeed improve diagnosis and
our understanding of the underlying pathophysiology in
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inflammatory CNS diseases. Following the recommenda-
tions of the "EPMA White Paper" [4], this review summa-
rises technical opportunities, challenges, and findings of
recent clinical 7 T MRI studies on multiple sclerosis,
neuromyelitis optica, and Susac syndrome.
Technical improvements and limitations
SNR is a key factor in MRI and the currency spent for
diagnostic accuracy. Although the level of background
noise increases proportionally with magnetic field
strengths, the magnitude of the MR signal even gains by
square [5], causing the SNR to increase nearly linearly
with the magnetic field strength [6]. Consequently,
increased SNR at 7 T can be used to acquire MR images
of very high spatial resolution, e.g., up to 0.08 mm3

(Fig. 1). Furthermore, UHF MRI benefits (and sometimes
suffers) from increased susceptibility effects that are
caused by, e.g., paramagnetic or ferromagnetic substances
such as iron species (mostly ferritin and haemosiderin)
and deoxyhaemoglobin. These microscopic disturbances
of the magnetic field on cellular and tissue levels cause
a focal signal loss resulting from dephasing spins during
gradient echo image acquisitions and a positive (para-
magnetic) phase shift of the MR signal. Hence, not only
very small brain structures containing paramagnetic
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Fig. 1 Brain structures visualised on 7 Tesla MRI images. a 7 T T1w MPRAGE provides high-resolution anatomical imaging with excellent gray to
white matter contrast. b 7 T SWI depicts very small brain veins. c, d 7 T T2*w FLASH with a resolution of 0.2 mm × 0.2 mm × 2 mm delineates
strongly myelinated structures such as the optic radiation (white arrows) or the stripe of Gennari (black arrows, zoom). In addition, very small veins
are visualised in the periventricular white matter (black arrowheads, zoom). Nevertheless, the image quality of 7 T gradient echo images is
sometimes reduced due to inhomogeneities or artifacts (asterisks)
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substances such as veins but also highly aligned or densely
myelinated structures such as the optic radiation or even
the small line of Gennari that is part of the primary visual
cortex may be visualised in 7 T T2* weighted (T2*w)
images (Fig. 1). Furthermore, deep brain stem structures
such as nerve roots, or pons fibers [7], and the habenula
[8] can now be visualised in great detail.
However, there are still few practical and technical con-

siderations to be made when applying UHF MRI: Some
patients may be excluded from an examination at 7 T due
to an increased number of contraindications at UHF as
compared to lower field strengths, such as tattoos, dental
implants, metallic intrauterine devices, stents, surgical clips,
and piercings. These may also include otherwise "MRI-safe"
implants such as pacemakers or orthopaedic replacements.
Furthermore, there are technical challenges that de-

serve attention: Increased magnetic field inhomogeneity
may impact post-processing procedures despite excellent
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gray to white matter contrast. Radiofrequency (RF)
power deposition constitutes another practical challenge
since it scales superlinearily with the magnetic field
strength. Local RF coils that offer improved transmission
efficiency versus large volume coils can be instrumental
to offset this challenge [9–11].
When considering these constraints, UHF MRI is be-

lieved to be safe and it is well tolerated by the vast major-
ity of patients [12, 13]. Nonetheless, temporary adverse
events were reported during 7 T at higher frequency com-
pared to 1.5 T MRI [14]. In addition, 5 % of all subjects or
patients reported vertigo during UHF MR exams [14].
During scan with magnetic field gradients being rapidly
switched, visual disturbances or temporary muscle
contractions may occur [15–17]. Deteriorating vital
signs or long-term effects have—to the best of our
knowledge—not been described during or after 7 T MRI
investigations [13, 18, 19], but the relevance of preliminary
in vitro studies on potential deoxyribonucleic acid (DNA)
damage caused by a static magnetic field of 1.5 T or by
rapidly changing magnetic fields is still subject to discussion
[20, 21]. A recent analysis of DNA double-strand breaks
(DSB) in human peripheral blood mononuclear cells after
exposure to 7 T did not show a significant increase in DSB
levels compared to the unexposed control group [16].

Multiple sclerosis
Multiple sclerosis is an inflammatory and neurodegener-
ative autoimmune CNS disorder affecting white as well
as gray matter of the brain and spinal cord [22–24]. The
disease is characterised by a wide range of symptoms
and a large heterogeneity in clinical presentation. Besides
neurological impairment in visual, pyramidal, cerebellar,
sensory, and vegetative functional systems, more global
symptoms of CNS dysfunction such as fatigue and cog-
nitive dysfunction may occur that negatively impact pa-
tients’ quality of life [23, 25–30]. MRI and more recently
optical coherence tomography (OCT) have emerged as
valuable imaging tools for contributing to diagnosis,
differential diagnosis, and disease monitoring [31–39].
These imaging techniques have shown that beyond focal
lesions, diffuse and widespread tissue damage occurs in
both the gray and the white matter already in early dis-
ease stages [40–43] and more pronounced in progressive
disease [44]. However, diagnosis and treatment decisions
in clinical routine are still widely based on the detection
of focal cerebral white matter lesions hyperintense on
T2 weighted (T2w) or fluid attenuated inversion recov-
ery (FLAIR) images. An accurate diagnosis of MS
remains challenging given the insufficient specificity of
focal white matter lesions [45, 46]. In this regard, UHF
MRI improves both the detection and morphological de-
scription of MS lesions and may thus be used in the future
to distinguish MS from lesions of other origins and to
improve our understanding of the disease. This is of high
clinical relevance as the broadening MS treatment land-
scape will pave the way for an individualised and tailored
MS therapy [47]. However, with the increasing number
of available efficacious immunosuppressive and immu-
nomodulatory drugs for MS, a correct and timely
diagnosis is a prerequisite for personalised medicine
that weighs benefits and risks of these drugs in every
individual patient [24, 48–54].

Cortical gray matter lesions
The detection of cortical lesions is greatly improved by 7
T MRI [55]. Gray matter pathology accumulates during
disease progression and may affect major areas of the
cortex in long-standing multiple sclerosis [56–58]. Re-
cent studies revealed that cortical lesions are associated
with disease progression, disability, and cognitive dys-
function [59–61]. In conventional MRI, the vast majority
of cortical lesions remain undetected even when apply-
ing double inversion recovery (DIR) techniques at 1.5 T
[62, 63]. UHF MRI at 7 T improves the detection of cortical
lesions and depicts up to 48 % of all cortical lesions re-
vealed by ex vivo immunohistochemical staining for myelin
[64]. These results were confirmed by several in vivo
studies. Magnetisation transfer imaging at 7 T was reported
to detect roughly 25 % more cortical lesions than 3 T DIR
in a recent study [65]. Furthermore, 7 T 3D FLAIR is highly
sensitive in detecting cortical lesions and detects 89 % more
lesions than 7 T 3D DIR [66]. A multi-contrast 3 T versus
7 T comparative study reported 7 T MRI to detect up to
238 % more cortical lesions than 3 T [67]. In addition, it
was shown that 7 T T1 weighted magnetisation prepared
rapid acquisition gradient echo (MPRAGE) imaging
increases the detection rate of cortical lesions by twofold in
comparison to 1.5 T MPRAGE [65, 68].
Owing to the high spatial resolution at UHF, cortical le-

sions are much easier to be differentiated from subcortical
lesions—or artifacts—at 7 T compared to 3 T MRI [55].
Accordingly, an excellent inter-rater-reliability of 7 T (k =
0.97) was reported in contrast to 3 T DIR (k = 0.12) in de-
tecting cortical lesions [69]. Most importantly, UHF MRI
can differentiate the various cortical lesion subtypes as
defined by histology [70], including leukocortical (type I)
lesions, purely intracortical (type II) lesions, and subpial
(type III/IV) lesions (Fig. 2) [71–74]. The latter were found
to be very specific for MS in a histopathological study
[75]. Interestingly, 7 T T2*w fast low angle shot (FLASH)
is superior over 3 T DIR in detecting subpial (type III/IV)
lesions [69]. Accordingly, a recent study using the T2*
mapping technique at 7 T revealed subpial T2* relaxation
time changes in large cortical areas in long-standing MS
[76]. In addition, thalamic gray matter lesions visualised
on 7 T MRI images correlate with disability and are more
often detectable in progressive MS [77].



Fig. 2 Cortical gray matter lesions in multiple sclerosis. Cortical gray matter lesions can be differentiated into distinct lesion subtypes on 7 T T2*w
images. Leukocortical (type I) lesions (a) cross the border (white arrow) between the white and the gray matter. Purely intracortical (type II) lesions
(b) are commonly small and centered on a small blood vessel (white arrowhead). Finally, subpial (type III/IV) lesions (c, black arrowhead) grow
from the subpial cortical area into the cortex. The purely intracortical (type II) lesion depicted in this figure has previously been published in: “Ultrahigh
field MRI in context of neurological diseases.” Kuchling J, Sinnecker T, Bozin I, Dörr J, Madai VI, Sobesky J, Niendorf T, Paul F, Wuerfel J. Nervenarzt.
2014;85(4):445–58. doi:10.1007/s00115-013-3967-5. [3]
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In sum, there is increasing evidence that 7 T MRI
detects significantly more (subpial) cortical lesions than
3 T, but the detection of some type III lesions still
remains challenging [69].

Improved depiction of white matter lesions
Persisting T1 weighted (T1w) hypointense lesions—
namely black holes—contribute to disability in MS in
addition to cortical lesions [78, 79]. At UHF strength—and in
contrast to conventional MRI at 1.5 T—virtually, every T2w
hyperintense lesion is visible as a distinct hypointense plaque
on 7 T T1w MPRAGE images as shown by our group and
others [68, 80]. Contrarily, 1.5 T T1w MPRAGE delineated
only 68 to 78 % of T2w lesions in the same study [68]. More-
over, 7 T T1w MPRAGE is even more sensitive in detecting
MS lesions than 1.5 T T2w (728 versus 545 lesions) [68] or
3 T FLAIR imaging (1043 versus 812 lesions) [80].
In contrast to these improvements, 7 T T2w or FLAIR

does not depict a significantly higher lesion count
compared to 3 T T2w MRI [67, 81].
In conclusion, 7 T T1w MPRAGE is highly sensitive in

detecting MS white matter lesion damage (Fig. 3a), but
Fig. 3 Exemplary multiple sclerosis lesions. 7 T T1w MPRAGE (a, spatial reso
(spatial resolution 0.5 mm × 0.5 mm × 2.0 mm) are displayed. 7 T T2*w FLA
centered on a small venous vessel (white arrows). In addition, a hypointens
lesions (black arrowheads). A subpial (Type III/IV) lesion is visible in the righ
T1w hypointensity (a) within the cortical gray matter
the T2w lesion count is not substantially increased at 7 T
compared to 3 T MRI. The true advantage of 7 T T2w
imaging is the visualisation of very small morphological
lesion details as described in the following paragraph.

White matter lesion morphology
Gaining from increased susceptibility effects and spatial
resolution, T2*w imaging at 7 T delineates distinct morpho-
logical features of MS lesions. Most importantly, a very small
vein can be displayed within the center of the MS lesion on
T2*w images, and the lesion often follows the course of the
vessel (Fig. 3b) [71, 73, 74, 81, 82]. This feature is not only
detectable in relapsing-remitting MS but also observable in
primary progressive MS [83]. In addition, a proportion of
MS lesions is characterised by a T2*w hypointense rim
surrounding the lesion (Fig. 3b) [71, 73, 74]. A comparative
7 T and histopathological study found that these rims cor-
respond to iron-rich CD68-positive cells of the macrophage
lineage [73]. Hence, a positive rather thick rim-like phase
shift is detectable around these lesions at 7 T [84].
Contrarily, rather thin rim-like phase shifts around MS
lesions without major T2*w hypointensity in these areas
lution 1.0 mm × 1.0 mm × 1.0 mm) and 7 T T2*w FLASH images
SH delineates various multiple sclerosis white matter lesions that are
e rim can be depicted at the edge of a proportion of white matter
t hemisphere (circle) as a T2*w hyperintensity (b) and a corresponding
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were associated with blood-brain barrier breakdown and in-
flammatory activity [84]. In general, MRI phase imaging can
provide additional information on the tissue microstructure
that is not encoded in the magnitude of the MR signal. Thus,
MRI phase imaging at 7 T depicts white matter lesions prior
to conventional T2w imaging as revealed by a case series
[85]. Finally, susceptibility changes indicative of iron depos-
ition within the center of a proportion of MS lesions can be
found even in the earliest MS disease stages [86]. The origin
of these iron deposits, however, still remains unclear and
highly speculative. Leakages of haemoglobin through a leaky
blood vessel or dying iron-rich oligodendrocytes releasing
iron into the extracellular matrix are only two hypotheses
among many others [87–91].

Differential diagnosis by 7 T MRI
The detailed description of the lesion morphology facilitates
the distinction of MS lesions versus brain lesions of other ori-
gin [92–95]. A first study on 28 MS patients and 17 subjects
with non-symptomatic lesions presumably caused by small
vessel disease found that the “central vein sign” differentiates
MS patients from these controls by using a central vein cutoff
of 40 % [94]. The same cutoff was reported to be beneficial
in predicting MS conversion of clinically isolated syndrome
(CIS) patients [96]. In detail, each of 13 CIS patients with a
positive central vein sign (>40 %) at baseline included in a
prospective study developed MS, and all CIS patients (n= 9)
with a negative central vein sign (<40 %) at baseline were ul-
timately diagnosed as not having MS [96]. The median
follow-up time in this study was 26 months (range, 4–37
months) [96]. Although these initial results must be con-
firmed in a larger dataset with longer follow-up, this study
illustrates the potential predictive capability of 7 T MRI.
Venous abnormalities in MS
The controversy on cerebrospinal venous insufficiency in
MS [97–100] revitalised a discussion on vascular abnor-
malities within MS lesions that were first described by
Dawson et al. in early 1916 [101]. Today, 7 T T2*w
imaging can depict very small brain veins in vivo (Fig. 1)
[71, 74, 82, 102]. The venous density is reduced in MS
compared to healthy controls presumably as a conse-
quence of hypometabolism, gliosis, and vascular damage
[103]. This reduction in (periventricular) venous density is
already detectable in the earliest MS disease stages and
patients with CIS [103]. Furthermore, shrinkage of intra-
lesional compared to extra-lesional veins was reported
recently [104]. Although the degree of intra-lesional ven-
ous shrinkage was smaller in another study [102], intra-
lesional venous shrinking is a potential in vivo imaging
marker of inflammation since it is hypothesised to be the
consequence of thickened vein walls caused by inflamma-
tion leading to obstruction and reduced blood flow [105].
Structural damage and atrophy in MS
High-resolution 7 T T2*w imaging visualises strongly mye-
linated aligned structures such as the optic radiation (OR,
Fig. 1). Furthermore, very small lesions can be displayed
within the OR on 7 T images [106]. The lesion volume af-
fecting the optic radiation was reported to be associated
with OR atrophy and retinal thinning as revealed by OCT
[106]. This association between OR damage and retinal at-
rophy may reflect retrograde transsynaptic degeneration,
but independent mechanisms may play a role, too.
Quantifying the total volume of brain tissue and vol-

umes of gray or white matter is impeded at 7 T by the
local field inhomogeneity. This limitation may be over-
come by a T1w MPRAGE sequence with two inversion
pulses, e.g., MPRAGE with multiple echoes (MP2RAGE),
a technique recently recommended for generating a
homogenised T1w image free of proton density or T2w
contrast [107]. Indeed, the MP2RAGE approach yielded
sufficient cortical surface reconstructions [108] and voxel-
based morphometry (VBM) analyses estimating gray
matter volume can be of good quality regarding superior
cortical areas [109, 110].

Neuromyelitis optica
Neuromyelitis optica (NMO) is a potentially severe and
disabling disease affecting primarily the spinal cord and
the optic tracts [111]. Since the discovery of a patho-
genic serum antibody against the astrocytic water chan-
nel aquaporin-4, it is no longer considered a variant of
multiple sclerosis, but rather a disease entity of its own
[112–122]. Distinct treatment regimens have been estab-
lished in NMO, and drugs that are beneficial in MS
might be harmful in NMO [123–128]. The distinction
between NMO and MS, however, still remains puzzling
in current clinical practice since brain white matter
lesions—a hallmark of MS—are also detectable in more
than 60 % of NMO cases during the course of the dis-
ease and a subset of NMO patients exhibit short cord le-
sions [129–132]. NMO and MS lesions can be described
in more detail in high-resolution 7 T MR images. As
stated above, MS lesions are characteristically centered
by a small vein that is easily depictable at 7 T gradient
echo images [71, 74, 82, 102]. Recently, two independent
studies—each of them included ten patients with NMO
spectrum disorders—described NMO lesion morphology
at 7 T [92, 93]. Firstly, brain lesions were common in
NMO as expected (92 lesions [93], 140 lesions [92]). A
distinct central vein, however, was not commonly ob-
served within NMO lesions: Kister and colleagues ob-
served a central vein within 9 % (eight lesions) of all
NMO lesions [93] and Sinnecker et al. detected an intra-
lesional vein that was rarely centred within the lesion in
35 % (n = 49) of all NMO lesions (Fig. 4) [92]. In
addition, T2*w hypointense rim-like alterations that can



Fig. 4 Neuromyelitis optica (NMO) versus multiple sclerosis (MS) lesion morphology. 7 T T2*w FLASH images from one exemplary NMO (a) and
MS (b) patient are displayed. A small central vein can be displayed within the inner third of many MS lesions (white arrows). One acute MS lesion
is characterised by a hypointense rim (white arrowheads) and surrounding edema (asterisks). Contrarily, a central vessel is not visible in NMO
lesions (black arrows) despite using a very high spatial resolution of 0.2 mm × 0.2 mm × 2 mm
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be often observed at the edge of MS plaques were only
very rarely detectable around NMO lesions (n = 3) [92].
None of the two 7 T studies on NMO reported any
cortical gray matter lesions in NMO patients [92, 93].
In summary, these 7 T MRI imaging characteristics may

be used in the future to improve the differentiation be-
tween NMO and MS, which is highly relevant for the indi-
vidual patient since therapeutic approaches in MS and
NMO differ considerably [123–126]. The central vein sign
is a potential future biomarker to distinguish MS from
Fig. 5 Callosal damage in Susac syndrome visualised on 7 T T1w images. T
arrows) are typically located within the centre of the corpus callosum and
indicating severe tissue destruction. Contrarily, callosal MS lesions (white ar
areas of the corpus callosum. These typically cap-shaped MS lesions are rat
NMO patients. It is noteworthy that the sensitivity in
detecting venous structures on 7 T gradient echo images
largely relates to the imaging sequence, the post-processing,
and the acquisition parameters such as the spatial reso-
lution, flip angle, or echo time [102]. Thus, a “central vein
cutoff value” for the differentiation of MS versus NMO
lesions may vary in relationship to these parameters. An
important limitation of current studies on NMO and 7 T
MRI is the absence of spinal cord imaging at 7 T and small
sample sizes [92, 93].
he figure displays 7 T T1w MPRAGE images. Susac lesions (white
are often characterised by a prominent T1 hypointensity (white arrows)
rowheads) are often located adjacent to the ventricle within peripheral
her characterised by a moderate T1-hypointensity
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Susac syndrome
Susac syndrome is an orphan disease that was first de-
scribed by John Susac in 1979 as a clinical triad consist-
ing of loss of vision, hearing loss, and encephalopathy
that can present with headache or seizures [133]. It is con-
sidered a small vessel disease causing microinfarctions and
damage to the cochlea, retina, and brain [133–140]. Susac
syndrome is often a monophasic disease, but relapsing-
remitting disease courses were described [135, 141]. In
these cases, continuous immunosuppression may be bene-
ficial, but larger systematic studies are not available to
prove this assumption [142, 143]. Susac lesions within the
corpus callosum can be imaged by MRI with a snowball-
like or spike-like appearance [144]. Apart from callosal
lesions, lesions are often detectable within the periven-
tricular or deep white matter of Susac patients complicat-
ing the distinction from MS [95, 144]. A single study of
five Susac and ten MS patients investigated the morph-
ology of Susac lesions on 7 T MR images [95]. At 7 T,
these lesions are rather unspecific in appearance without
having a central vein or rim-like T2*w hypointense areas.
In addition, callosal atrophy was detectable in many Susac
patients presumably as a consequence of focal callosal
damage and many cerebrospinal fluid (CSF) isointense
black holes within the central part of the corpus callosum
(Fig. 5). Contrarily, callosal MS lesions were often located
in lateral areas of the corpus callosum showing less severe
reduced T1w signal intensity values compared to Susac
lesions. Future studies need to prove these initial findings
in a larger sample size.
Conclusions
An increasing number of 7 T MRI studies described
unique features of MS lesions—most importantly, the cen-
tral vein sign—that may be used in the future to differenti-
ate MS lesions from brain lesions of other origin. Today
there is, however, only limited evidence on these findings
since many 7 T MRI studies comprise small patient
cohorts or are hampered by a cross-sectional design. In
addition, not all differential diagnoses of MS have been in-
vestigated at 7 T yet. From a more technical and practical
perspective, technical limitations such as magnetic field
inhomogeneity and economic as well as safety concerns
have to be solved before widely applying 7 T in clinical
practice. By then, we should aim to apply knowledge from
these preliminary 7 T MRI studies to 3 T MRI platforms
that are available for clinical imaging. Recently, different
approaches to display venous structures within MS lesions
at 3 T were published: FLAIR* combines FLAIR and T2*w
images [145, 146], whereas susceptibility weighted FLAIR
(sFLAIR) combines SWI and FLAIR images [102, 147]. In
addition, optimised 3 T T2*w contrast may improve vessel
detection at 3 T [148].
In the emerging field of personalised medicine, 7 T
MRI may be used in patients with suspected neuro-
inflammatory disease such as MS, but conflicting clinical
or paraclinical findings to support making the correct
diagnosis early. Today, this should be done within the
framework of clinical trials.
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