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Two publications in the current issue of Cell introduce novel methods for high-

throughput single cell transcriptomics by using droplet microfluidics and 

sophisticated barcoding schemes for transcriptional profiling of thousands of 

individual cells. 

 
Single cell RNA-seq has recently gained enormous popularity and is currently being 

adopted by many laboratories around the world (Sandberg, 2014; Shapiro et al., 

2013). Macosko et al., 2015 and Klein et al., 2015 have now developed new 

technologies that will allow researchers to massively increase the numbers of cells 

that can be sequenced. But why should we care about single cells, and why is it 

crucial to profile so many of them? 

 

 The tissues and organs of multicellular organisms are composed of different 

cell types whose transcriptional programs, spatial positions, and interactions with 

other cells are subject to intricate control mechanisms. Much of this complexity is lost 

in traditional ensemble-based methods such as bulk RNA-seq. Flow sorting can 

separate heterogeneous cell populations into their constituent cell types, but this 

approach requires a priori knowledge of all cell types present, and good markers for 

these cell types. Often, neither of these are available. However, this information can 

be obtained by single-cell RNA-seq. By sequencing cells from dissociated tissues 

such as the lung (Treutlein et al., 2014) and the brain (Zeisel et al., 2015), 
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researchers have been able to group cells by their gene expression profiles in a 

completely unbiased way, identifying many novel cell type markers along the way. 

Single-cell transcriptomics thus enables researchers to distinguish cell types without 

any prior knowledge, and allows systematic definition of cell types and cell states 

based on quantitative data.  

 

 In the last few years, several methods for preparation of single-cell RNA-seq 

libraries have been established and refined. More recently, the focus of attention has 

shifted towards innovative techniques for efficient handling of large numbers of cells. 

Increasing the number of cells to be sequenced is particularly important when 

analyzing rare cell types (Macosko et al., 2015). While previous publications have 

studied only a tiny subset of the cells in a tissue, the new methods by Klein et al. and 

Macosko et al. will soon enable researchers to profile entire organs at much greater 

depth. Combination of large single-cell sequencing datasets with known spatial 

expression patterns of marker genes will then allow reconstruction of the complex 3D 

architecture of entire embryos or organs (Achim et al., 2015; Junker et al., 2014; 

Satija et al., 2015). 

 

But increasing the number of cells has important implications beyond 

detection of rare cells: Better statistics is also crucial since single-cell sequencing 

data is intrinsically noisy because of low detection efficiencies and the small numbers 

of molecules involved. With more cells, variation of gene expression profiles between 

cells of the same cell type, and subtle changes of expression profiles during 

development and aging will become accessible as well. Likewise, studies of 

regulatory interactions based on correlations of genes will benefit greatly from 

increased numbers of cells (Klein et al., 2015). 

 

 Early publications in single-cell RNA-seq relied heavily on cumbersome 

manual manipulation of cells and reagents. Automation by chip-based microfluidics 

(Treutlein et al., 2014; Zeisel et al., 2015) or by flow sorting and liquid handling 

robotics (Jaitin et al., 2014) has already allowed a considerable increase of cell 

throughput. However, the number of cells is mostly still limited to hundreds or a few 

thousand cells. Furthermore, serial processing of individual cells is relatively slow 

and typically requires multiple sequential preparations, introducing the risk of batch 

effects. The technique developed by Klein et al. and Macosko et al. is based on 
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droplet microfluidics, using nanoliter-sized water droplets in carrier oil as reaction 

chambers (Figure 1). While the fundamental principle is the same – single 

microparticles coated with barcoded polyT primers and single cells are co-

encapsulated in an aqueous droplet – there are also considerable differences 

between the two experimental protocols. To ensure that single cells rather than 

doublets are loaded into droplets, both strategies rely on low loading rates, which 

entails that most droplets will not contain a cell (Figure 1A). Macosko et al. use the 

same strategy of stochastic mixing for coated microparticles, so that only a small 

fraction of droplets contains a cell and a microparticle. Klein et al., on the other hand, 

ensure that almost every droplet is loaded with a microparticle by making use of 

closely packed deformable hydrogel beads. In the next step, both strategies lyse the 

cells and hybridize the mRNA inside the droplets (Figure 1B). Macosko et al. then 

break the droplets and reverse transcribe the mRNA in bulk (Figure 1C). In the 

protocol by Klein et al., however, reverse transcription proceeds inside droplets after 

cleavage of barcoded primers (Figure 1C), and droplets are only broken after cDNA 

has been generated. Finally, the strategy for cDNA amplification is different in the two 

protocols (Figure 1D). It is important to note that droplet microfluidics is in no way a 

new technology. However, a lack of efficient barcoding strategies has so far 

prevented its use for single cell sequencing applications. Hence, the authors’ 

strategies for ensuring that each microparticle is coated with a unique barcode 

sequence are crucial for the success of the experiment. 

 

Droplet-based single-cell RNA-seq will be an attractive method for many 

laboratories because of its seemingly unlimited scalability. Since this technology 

accelerates cell handling while reducing the cost of library preparation, the cost of 

sequencing will possibly be the bottleneck in the near future. We anticipate that the 

impact of droplet-based single-cell RNA-seq will continue to grow as the cost of 

sequencing decreases. For this to happen, it will however be important that this 

technology is also accessible to researchers without microfluidics experience. There 

is clearly big potential for commercialization of the technique. The data by Klein et al. 

and Macosko et al. is of very high technical quality. However, it will be an important 

task for the field to systematically determine the influence of different cell handling 

techniques on data quality. 
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Figures 
 

 
 

Figure 1. Schematic summary of experimental protocols for droplet-based single-cell 

RNA-seq using the methods by Klein et al. and Macosko et al. (see main text for details). 

Droplets are shown in gray, microparticles are purple (Klein et al., 2015) or black (Macosko et 

al., 2015). Cells are sketched in orange with blue nuclei. mRNA/cDNA molecules are drawn in 

different colors (blue and green) for different cells to illustrate cell-specific DNA barcodes. A. 

Mixing of cells and polyT-coated microparticles in nanoliter-scale droplets. Productive droplets 

containing a microparticle as well as a single cell are circled in red. B. Cell lysis and mRNA 

hybridization to microparticles. C. Reverse transcription. D. Amplification strategy. 
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