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Abstract

Background: Chondrocytes are the main cellular component of articular cartilage. In healthy tissue, they are
embedded in a strong but elastic extracelluar matrix providing resistance against mechanical forces and friction for
the joints. Osteoarthritic cartilage, however, disrupted by heavy strain, has only very limited potential to heal. One
future possibility to replace damaged cartilage might be the scaffold-free growth of chondrocytes in microgravity
to form 3D aggregates.

Results: To prepare for this, we have conducted experiments during the 20th DLR parabolic flight campaign, where
we fixed the cells after the first (1P) and the 31st parabola (31P). Furthermore, we subjected chondrocytes to isolated
vibration and hypergravity conditions. Microarray and quantitative real time PCR analyses revealed that hypergravity
regulated genes connected to cartilage integrity (BMP4, MMP3, MMP10, EDN1, WNT5A, BIRC3). Vibration was clearly
detrimental to cartilage (upregulated inflammatory IL6 and IL8, downregulated growth factors EGF, VEGF, FGF17). The
viability of the cells was not affected by the parabolic flight, but showed a significantly increased expression of
anti-apoptotic genes after 31 parabolas. The IL-6 release of chondrocytes cultured under conditions of vibration
was not changed, but hypergravity (1.8 g) induced a clear elevation of IL-6 protein in the supernatant compared
with corresponding control samples.

Conclusion: Taken together, this study provided new insights into the growth behavior of chondrocytes under
short-term microgravity.
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Background
Joint friction at the extremities of long bones is reduced
by articular cartilage. This kind of tissue is highly spe-
cialized, avascular, not innervated and consists mainly
of a single cell type: the chondrocytes. The chondro-
cytes are tightly embedded in an extracellular matrix
(ECM), which is composed of a network of collagens
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(predominantly collagen type II) and aggrecan. The colla-
gen network contributes to the strength and mechanical
resistance of cartilage tissue, whereas the aggrecan, a pro-
teoglycan, comprising such molecules as chondroitin sul-
fate or keratin sulfate, is responsible for its viscoelasticity
and flexibility due to its ability to absorb and retain con-
siderable amounts of water [1-3]. Degenerative diseases of
the cartilage like osteoarthritis are characterized by a pro-
gressive degradation of the ECM, caused by the increased
secretion of matrix metalloproteinases (MMP) [4,5]. This
process is triggered by pro-inflammatory cytokines, such
as tumor necrosis factor-α (TNF-α) or interleukin-1β
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Table 1 Top 30 most differentially expressed genes under
hypergravity as detected by microarray analysis

Symbol p-value Fold-Change (1.8 g vs. 1 g)

ANGPTL4 3,41336E-05 4,82382

ADAM19 1,31184E-03 3,65686

LOC401233 3,46212E-05 3,59384

ARHGDIB 6,38141E-06 3,37183

TAGLN 4,66727E-04 3,34324

CTAG2 4,76891E-05 3,28068

PRG4 2,57465E-04 3,27652

CXCL12 3,59100E-04 3,20598

LAMC2 4,52723E-05 3,09657

CXCL12 3,10216E-05 3,09447

RAGE 4,92007E-04 3,07122

PRG4 2,73879E-04 3,01963

MSLN 1,29948E-06 2,95963

SRGN 6,35801E-05 2,93607

ZNF185 7,53193E-06 2,92161

MT1F 5,01022E-06 -3,61603

FGFBP2 1,36152E-04 -3,68509

COL2A1 1,85922E-04 -3,70943

HYAL1 1,90804E-05 -3,83367

MMP3 7,88772E-05 -3,88035

LRRC32 1,77468E-05 -3,88223

SMOC2 2,93763E-05 -3,89646

SERPINA3 4,50468E-06 -4,56156

STMN2 4,95960E-04 -4,71568

OGN 2,69302E-05 -4,95328

DLK1 2,78088E-05 -5,78629

GSTM1 6,42006E-06 -7,46130

FOXQ1 5,44745E-05 -9,50597

GSTM1 3,27945E-07 -9,80354

TMEM119 1,61898E-06 -13,59590
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(IL-1β), which are transported into the cartilage via the
synovial fluid [6,7]. The absence of vasculature and the
extremely limited influx of chondrocyte progenitor cells
[8] limit the tissues healing and restorative potential, so
that in advanced stages of osteoarthritis a surgical replace-
ment of the affected joint with a prosthesis is usually
necessary.
Apart from the influences of age and use intensity, other

factors have been found to mediate cartilage integrity. Most
notably, microgravity (μg) has a strong impact on cartilage.
It has been reported, that astronauts, after staying a longer
time in Space, suffer from a reduction of cartilage mass [9]
due to mechanical unloading. In addition, when cultured in
Space, cartilage tissue showed a reduced aggrecan density
and a less-organized collagen subtype 2 organization hint-
ing towards an impaired resistance to mechanical stress
and breaking [10,11]. It is therefore of high interest, to
study the impact of microgravity on chondrocytes. On the
one hand, this will help to understand the detrimental ef-
fects of prolonged stays in Space on the cartilage, but on
the other it might also help to find ways to counteract this
phenomenon in Space as well as to ameliorate cartilage
problems caused by wear on Earth in the future.
Microgravity (μg) provides unique conditions for cell

and tissue growth. It has been shown on various cell types,
including chondrocytes, that cultivation under conditions
of μg can induce the formation of 3D aggregates. These
aggregates are especially interesting, as they do not require
any potentially interfering scaffolding like those being gen-
erated under normal gravity conditions [12-16].
Cell cultivation in Space, however, is an extremely com-

plicated and expensive venture. Therefore, pre-studies such
as a parabolic flight, providing 31×22 s of short-term real
μg, or simulated μg on ground-based facilities such as the
rotating wall vessel bioreactor, clinostats or the random po-
sitioning machine (RPM) have been established [17-19].
Especially the parabolic flight is an attractive method to
achieve real μg without going into Space. It should be
taken into consideration, however, that every μg-phase is
flanked by two 20 s-lasting hypergravity phases of 1.8 g.
Moreover, during the flight vibrations occur and have to be
taken into account for interpretation of the results [20].
This study aimed to investigate the influence of short-

term real μg during a parabolic flight campaign on the gene
expression profiles of cultivated chondrocytes. In addition,
the effects of 1.8 g hypergravity as well as of vibration in an
extent comparable to those during a parabolic flight were
separately investigated.

Results
Influence of hypergravity on chondrocyte gene expression
Using the Microarray analysis technique, we found a total
of 210 genes (top 30 are listed in Table 1, for a complete list
see Additional file 1) which were significantly differentially
expressed and showed a Fold-Change of >2 or < −2 under
conditions of hypergravity of 1.8 g. An enrichment analysis
for Gene Ontology (GO) Biological Processes (BP) terms
(top 15 given in Table 2, for a complete list see Additional
file 1) revealed that mainly development-related processes
were detected. GO:0048598 (embryonic morphogenesis,
p = 2.28×10−5), GO:0001501 (skeletal system development,
p = 3.33×10−5), and GO:0048729 (tissue morphogenesis,
p = 3.83×10−5) were the most prominent. However, many
genes belonging to these BP are also implicated in cartilage
development (GO:0051216, p = 5.59×10−4) or cell adhesion
(GO:0007155, p = 5.96×10−4) and biological adhesion
(GO:0022610, p = 6.05×10−4), such as the bone morpho-
genetic protein 4 (BMP4), fibroblast growth factor 9 (FGF9),



Table 2 Top 15 significantly enriched Gene Ontology biological processes under hypergravity

GO ID Process p-value Genes represented

GO:0048598 embryonic morphogenesis 2.28*10−5 BMP4, WNT5A, FGF9, GDF5, EDN1, COL2A1, HOXD10, MSX1, LAMA5, ALDH1A3,
TFAP2A, TXNRD1, FBN2

GO:0001501 skeletal system development 3.33*10−5 BMP4, WNT5A, AEBP1, FGF9, TUFT1, EDN1, COL2A1, DLK1, HOXD10, HOXC8,
MSX1, TFAP2A, GPNMB

GO:0048729 tissue morphogenesis 3.83*10−5 BMP4, FOXQ1, CRYGS, PGF, LAMA5, ALDH1A3, TGM3, TFAP2A, TXNRD1, CA2

GO:0048736 appendage development 4.16*10−5 WNT5A, MSX1, MEOX2, FGF9, GDF5, COL2A1, FBN2, HOXD10

GO:0060173 limb development 4.16*10−5 WNT5A, MSX1, MEOX2, FGF9, GDF5, COL2A1, FBN2, HOXD10

GO:0035295 tube development 1.79*10−4 WNT5A, BMP4, FGF9, PGF, LAMA5, EDN1, HOPX, TFAP2A, HHIP, CXCL12

GO:0035107 appendage morphogenesis 2.81*10−4 WNT5A, MSX1, FGF9, GDF5, COL2A1, FBN2, HOXD10

GO:0035108 limb morphogenesis 2.81*10−4 WNT5A, MSX1, FGF9, GDF5, COL2A1, FBN2, HOXD10

GO:0002009 morphogenesis of an epithelium 3.13*10−4 BMP4, CRYGS, PGF, LAMA5, ALDH1A3, TFAP2A, CA2

GO:0001525 angiogenesis 4.01*10−4 BMP4, MEOX2, FGF9, PGF, LAMA5, EDN1, CXCL12, ANGPTL4

GO:0060541 respiratory system development 4.49*10−4 WNT5A, BMP4, FGF9, LAMA5, ALDH1A3, HOPX, HHIP

GO:0051216 cartilage development 5.59*10−4 WNT5A, BMP4, MSX1, FGF9, EDN1, COL2A1

GO:0007155 cell adhesion 5.96*10−4 HAPLN1, AEBP1, EPDR1, CPXM2, COL2A1, CDH2, EMILIN2, CXCL12, OMD, PGM5,
LAMA5, ITGB1BP1, MSLN, LAMC2, GPNMB, THBS2, NTM

GO:0022610 biological adhesion 6.05*10−4 HAPLN1, AEBP1, EPDR1, CPXM2, COL2A1, CDH2, EMILIN2, CXCL12, OMD, PGM5,
LAMA5, ITGB1BP1, MSLN, LAMC2, GPNMB, THBS2, NTM

GO:0048514 blood vessel morphogenesis 6.81*10−4 BMP4, MEOX2, FGF9, PGF, LAMA5, EDN1, CDH2, CXCL12, ANGPTL4
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hyaluronan and proteoglycan link protein 1 (HAPLN1),
collagen type 2 α 1 (COL2A1), or laminin α 5 (LAMA5).
Influence of vibration on chondrocyte gene expression
Selected genes were analysed by quantitative real-time
PCR. After 2 hours of vibration, gene expression of
interleukin-6 (IL6, Figure 1B) and −8 (IL8, Figure 1D),
were significantly elevated, while epidermal growth factor
(EGF, Figure 1E), vascular endothelial growth factor D
(VEGFD, Figure 1J), and fibroblast growth factor 17
(FGF17, Figure 1K) transcripts were significantly down-
regulated (p<0.05). No changes were observed for con-
nective tissue growth factor (CTGF, Figure 1A), caveolin 2
(CAV2, Figure 1C), protein kinase, AMP-activated, α 1
(PRKAA, Figure 1F), vascular endothelial growth factor
A (VEGFA, Figure 1G), protein kinase c alpha (PRKCA,
Figure 1H), ezrin (VIL2, Figure 1I), and interleukin-15
(IL15, Figure 1L).
Influence of hypergravity and vibration on soluble factor
release
Hypergravity induced a more than 2-fold increase in the
release of IL-6 in the supernatant (Figure 2A). IL-8, EGF,
VEGFD and FGF17 concentrations in the culture super-
natant of hypergravity samples were below the detection
limit.
ELISA analysis revealved no significant change in the

concentration of IL-6 protein in chondrocytes cultured
under conditions of vibration (Figure 2B), whereas IL-8,
EGF, VEGFD and FGF17 concentrations in the culture
supernatant were below the detection limit.
Parabolic flight maneuvers induced expression changes in
chondrocytes
The influence of the parabolic flight after 1P and 31 P was
investigated. Shortly, the 1 g vs. first parabola (1P) vs. 31st
Parabola (31P) set was subjected to an F-test. Resulting
significant differential expressed probes (5% FDR) were
clustered using k = 6. Individual expression characteristics
of the 6 clusters are documented in Figure 3.
Influence of the parabolic flight
Gene array analysis
Cluster 1 (Table 3) of the parabolic flight set consists of
112 genes, which were upregulated after both 1P and 31P.
The predominant biological processes (Additional file 1, for
all following clusters) which were found to be significantly
enriched were mostly transcription- and metabolism-
related (GO:0045449 regulation of transcription, p =
6.08×10−8; GO:0051252 regulation of RNA metabolic
process, p = 1.59×10−7; GO:0006355 regulation of tran-
scription, DNA-dependent, p = 1.48×10−6; GO:0006357
regulation of transcription from RNA polymerase II
promoter, p = 8.69×10−6; GO:0006350 transcription, p =
1.09×10−5; GO:0019220 ~ regulation of phosphate meta-
bolic process, p = 6.90×10−5). Interestingly, there was also
anti-apoptosis (GO:0006916, p = 1.42×10−4), represented
by such genes as vascular endothelial growth factor A
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Figure 1 Quantitative real-time PCR analysis of chondrocytes exposed to the Vibraplex device. The Vibraplex device provides vibration
profiles corresponding to those occurring during parabolic flight and allows the isolated analysis of their effects on cultivated cells. In all diagrams, the
x-axis represents the experiment conditions and the y-axis the relative gene expression in % of control. Results are given as mean value ± SD. Significant
changes (p < 0.05) are indicated by brackets above the bars. The analyzed genes were A: CTGF; B: IL6; C: CAV2; D: IL8; E: EGF; F: PRKAA; G: VEGFA; H: PRKCA;
I: VIL2; J: VEGFD; K: FGF17; L: IL15.
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Figure 2 ELISA analysis of IL-6 released in the cell culture supernatant. A: IL-6 concentraion in the cell culture medium (pg/ml) from the
hypergravity experiments. A significant increase in the secretion of IL-6 is detectable in cells cultured on the SAHC compared with static 1 g samples.
B: IL-6 concentration in the cell culture medium (pg/ml) from the vibration experiments compared to the control sample. No significant changes could
be detected. Significant changes (p<0.05) are indicated by brackets above the bars.
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Figure 3 Heatmap showing the clustering of differentially expressed transcripts for the parabolic flight microarray experiments.
Analysis after one (1P) and 31 parabolas (31P); red: strong expression; blue: weak expression.
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(VEGFA), neurogenic locus notch homolog protein 2
(NOTCH2), or high-mobility group protein B1 (HMGB1).
51 genes were downregulated after 31P showed an inter-

mediate state after 1P constitute cluster 2 (Table 3). Only
few significantly enriched BP were identified and their
composition resembled cluster 1 with transcriptional
(GO:0045449 regulation of transcription, p = 6.35×10−4;
GO:0006350 transcription, p = 1.44×10−4; GO:0006355
regulation of transcription, DNA-dependent, p = 1.90×10−2),
metabolic (GO:0051252 regulation of RNA metabolic
process, p = 2.15×10−2), and developmental (GO:0007498
mesoderm development, p = 9.48×10−3) processes.
Cluster 3 (Table 3), comprising of 59 genes which were

downregulated after 31P, and also showed very few
enriched BP, namely GO:0045449 (regulation of transcrip-
tion, p = 8.41×10−3), and GO:0006350 (transcription, p =
1.00×10−2).
Cluster 4 (Table 3) represents 37 genes which were

downregulated after 1P and showed intermediate effects
after 31P. No significantly enriched BP was identified.
Cluster 5 (Table 3), consisting of 59 genes upregu-

lated after 1P only, showed BP involved in transcription
(GO:0006350 transcription, p = 2.75×10−5; GO:0045449
regulation of transcription, p = 3.01×10−5), but also regula-
tion of tumor necrosis factor production (GO:0032680,
p = 3.57×10−3) and rhythmic processes (GO:0048511 rhyth-
mic process, p = 5.90×10-3; GO:0007623 circadian rhythm,
p = 7.73×10−3).
73 genes were upregulated only after 31P were pooled

into cluster 6 (Table 3). This cluster differs consider-
ably from the other five, as a strong emphasis of (anti)-
apoptotic BP was observed. Genes such as IL6, IL8,
baculoviral IAP repeat-containing protein3 (BIRC3), induced
myeloid leukemia cell differentiation protein (MCL1),
or TNF receptor-associated factor 1 (TRAF1) lead to the
enrichment of BP, such as GO:0006916 (anti-apoptosis,
p = 1.66×10−5), GO:0043066 (negative regulation of apop-
tosis, p = 7.39×10−5), GO:0043069 (negative regulation
of programmed cell death, p = 8.15×10−5, GO:0060548
(negative regulation of cell death, p = 8.31×10−5), or
GO:0006915 (apoptosis, p = 1.15×10−4) (Figure 4).

Quantitative real-time PCR
In addition to the microarray analysis, we also employed
the quantitative real-time PCR technique to validate se-
lected genes of interest. CCNA2 as well as IL8 were sig-
nificantly upregulated only after 31P (Figure 5A, D). CD44
and TNFA were significantly upregulated only after 1P
(Figure 5B, G). VCAM showed a significant downregu-
lation after 31P (Figure 5E). No effects were observed
for IL6, EDN1 and FGF9 (Figure 5C, F, H).

Discussion
In this study we investigated the effects of short-term
real μg, continuous hypergravity and vibration on human
chondrocytes growing in monolayers. For these aims, we
employed parabolic flight maneuvers as well as ground-
based devices to expose the cells to isolated acceleration
profiles and to vibrations as they occur in a combined
manner during the flight conditions.

Short-term hypergravity affects chondrocytes
The microarray analysis of chondrocytes exposed for 2 h
to 1.8 g revealed that only a very moderate amount of
genes was affected in comparison to the parabolic flight ef-
fects. It is interesting to notice, that mainly biological
processes were affected, which are involved in tissue
morphogenesis or skeletal system development. This is
a strong indication, that hypergravity directly affects cartil-
age development.
It has recently been shown, that mechanical load can

induce vascular endothelial growth factor A (VEGF-A)
expression [21]. VEGF-A belongs to a family of growth
factors comprising VEGF-A, −B, −C, −D, −E, and placenta
growth factor (PGF) [22,23] and is one of the key compo-
nents to control angiogenesis, the development of new



Table 3 Overview of the top 5 significantly enriched Gene Ontology biological processes in the 6 clusters of
significantly differentially expressed genes during conditions of parabolic flight

Cluster GO ID Process p-value Genes represented

1 GO:0045449 regulation of transcription 6.08*10−8 HMGB1, SBNO2, ELF4, FOXO1, NFKB2, TRIB1, LIF, TSC22D1, HEXIM1, ZNF697,
PER2, SIK1, SERTAD2, NFATC1, MAFG, BMP2, EGR2, CEBPB, KLF9, KLF13, RELB,
LOC100131261, PURB, FOXN3, SOD2, PTHLH, NOTCH2, PHF1, ETS1, JMJD6,
VEGFA, ERN1, FOXC2, HABP4, ZBTB2, NCOR2

GO:0051252 regulation of RNA metabolic
process

1.59*10−7 HMGB1, SBNO2, ELF4, FOXO1, MAPKAPK2, NFKB2, LIF, TSC22D1, HEXIM1,
PER2, SIK1, NFATC1, SERTAD2, MAFG, BMP2, EGR2, CEBPB, KLF9, KLF13,
RELB, FOXN3, PURB, SOD2, NOTCH2, JMJD6, ETS1, VEGFA, FOXC2, NCOR2

GO:0006355 regulation of transcription,
DNA-dependent

1.48*10−6 HMGB1, SBNO2, ELF4, FOXO1, NFKB2, LIF, TSC22D1, HEXIM1, PER2, SIK1,
NFATC1, SERTAD2, MAFG, BMP2, EGR2, CEBPB, KLF9, KLF13, RELB, FOXN3,
PURB, SOD2, NOTCH2, ETS1, VEGFA, FOXC2, NCOR2

GO:0006357 regulation of transcription from
RNA polymerase II promoter

8.69*10−6 HMGB1, BMP2, EGR2, CEBPB, KLF9, ELF4, KLF13, FOXO1, SOD2, LIF, ETS1,
HEXIM1, VEGFA, FOXC2, SIK1, NCOR2

GO:0006350 transcription 1.09*10−5 SBNO2, ELF4, FOXO1, NFKB2, TSC22D1, HEXIM1, ZNF697, PER2, NFATC1,
SERTAD2, MAFG, EGR2, CEBPB, KLF9, KLF13, RELB, FOXN3, LOC100131261,
PURB, NOTCH2, PHF1, JMJD6, ETS1, ERN1, HABP4, FOXC2, ZBTB2, NCOR2

2 GO:0045449 regulation of transcription 6.34*10−4 TXNIP, ZNF84, RCOR2, PPM1A, NFYA, ZNF514, ZNF512, MEN1, LHX2, ZNF239,
ZNF471, ZNF599, THAP11, RNF14

GO:0006350 transcription 1.44*10−3 TXNIP, ZNF84, RCOR2, LHX2, ZNF239, ZNF471, ZNF599, NFYA, ZNF514,
THAP11, ZNF512, RNF14

GO:0007498 mesoderm development 9.48*10−3 NUP133, OSR1, LHX2

GO:0006355 regulation of transcription,
DNA-dependent

1.90*10−2 MEN1, ZNF84, LHX2, PPM1A, ZNF471, ZNF599, NFYA, ZNF514, RNF14

GO:0051252 regulation of RNA metabolic
process

2.16*10−2 MEN1, ZNF84, LHX2, PPM1A, ZNF471, ZNF599, NFYA, ZNF514, RNF14

3 GO:0045449 regulation of transcription 8.41*10−3 DPF2, ZBTB22, EID2B, ZNF451, ZNF25, BANP, ZKSCAN1, ZNF514, UBN1,
NR2C1, PIAS4, PRMT6, BAZ2B, TIGD7, IRAK1BP1

GO:0006350 transcription 1.01*10−2 DPF2, ZBTB22, EID2B, ZNF451, ZNF25, BANP, ZKSCAN1, ZNF514, NR2C1,
PIAS4, PRMT6, BAZ2B, IRAK1BP1

4 None

5 GO:0006350 transcription 2.75*10−5 ERF, EGR3, ELL, NR4A2, C14ORF43, ZNF16, MEF2D, CRY2, NAB2, MNT,
SERTAD3, BCL3, PER1, RARA, VGLL4, CHD6, NFIL3, SERTAD1

GO:0045449 regulation of transcription 3.01*10−5 ERF, EGR3, ELL, NR4A2, ZNF16, C14ORF43, DLX3, MEF2D, CRY2, ID1,
NAB2, MNT, SERTAD3, BCL3, PER1, RARA, VGLL4, CHD6, NFIL3, SERTAD1

GO:0032680 regulation of tumor necrosis
factor production

3.57*10−3 NOD1, BCL3, RARA

GO:0048511 rhythmic process 5.90*10−3 EGR3, CRY2, PER1, NFIL3

GO:0007623 circadian rhythm 7.74*10−3 EGR3, CRY2, PER1

6 GO:0006916 anti-apoptosis 1.66*10−5 CSF2, IER3, MCL1, HIPK3, NFKBIA, IL1B, TNFAIP3, BIRC3

GO:0043066 negative regulation of apoptosis 7.39*10−5 CSF2, IER3, IL6, MCL1, HIPK3, NFKBIA, IL1B, TNFAIP3, BIRC3

GO:0043069 negative regulation of programmed
cell death

8.15*10−5 CSF2, IER3, IL6, MCL1, HIPK3, NFKBIA, IL1B, TNFAIP3, BIRC3

GO:0060548 negative regulation of cell death 8.31*10−5 CSF2, IER3, IL6, MCL1, HIPK3, NFKBIA, IL1B, TNFAIP3, BIRC3

GO:0006915 apoptosis 1.15*10−4 TRAF1, RNF144B, IER3, IL6, MCL1, HIPK3, NFKBIA, IL1B, ZC3H12A, TNFAIP3,
BIRC3
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vessels from existing ones. VEGF is predominantly found
in osteoarthritic cartilage/chondrocytes and contributes
further to the disintegration of the cartilage by inducing
matrix metalloproteinases, which are able to disrupt the
extracellular matrix [24,25]. We have observed a similar
tendency for VEGFA gene expression, which was signifi-
cantly elevated by a factor of 1.65, but was omitted for the
GO BP analysis due to our cut-off of a Fold-Change >2.
Interestingly, MMP3 and MMP10 transcripts were down-
regulated under hypergravity. We speculate that this
might be due to the fact that the chondrocytes form a
monolayer in the culture flasks and are not embedded in
an ECM-like matrix as in their physiological environment.
This strong MMP downregulation might therefore be an



Figure 4 STRING analysis of the cluster 6 from the parabolic flight experiment. Chondrocytes were fixed after parabola 1 and 31 during a
parabolic flight. In parallel, corresponding 1 g control samples were prepared. K-mean clustering of the resulting microarray data revealed 6 clusters of
differentially expressed genes. Clusters 1–5 revealed mostly unspecific transcriptionally active genes, while cluster 6 showed a strong dominance by
anti-apoptotic and cell-proliferative transcripts. Possible interactions of the corresponding proteins were visualized using the STRING software and
genes involved in anti-apoptosis and cell proliferation were highlighted with white and black circles, respectively.
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attempt to build up a thick ECM, and a stronger stimulus
than the VEGFA induction.
BMP4, on the other hand, coding for the bone morpho-

genetic protein 4 (BMP-4; Additional file 1) was found to
be downregulated under hypergravity. BMP-4 stimulates
the synthesis of collagen type 2 and aggrecan and thus,
enhaces the production of articular cartilage [26,27].
EDN1 (endothelin 1) gene expression was observed to
be enhanced (Additional file 1). It has been reported, that
overexpression of endothelin 1 is associated with cartilage
degeneration [28]. In contrast to this, the inhibitor of
apoptosis, BIRC3 (Additional file 1) [29], was enhanced
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Figure 5 Quantitative real-time PCR analysis of chondrocytes after exposure to parabolic flight. Chondrocytes were taken on a parabolic
flight and fixated at two different timepoints. Subsequently, qPCR analyses were performed on these samples and the corresponding 1 g controls.
In all diagrams, the x-axis represents the experiment conditions and the y-axis the relative gene expression in % of control. Results are given as
mean value ± SD. Significant changes (p < 0.05) are indicated by brackets above the bars. The analyzed genes were A: CCNA2; B: CD44; C: IL6; D: IL8;
E: VCAM1; F: EDN1; G: TNFA; H: FGF9. 1P: fixation after first parabola; 31P: fixation after 31st parabola.
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hinting towards an improved cell survival. Furthermore,
the gene expression of wingless-type MMTV integra-
tion site family, member 5A (WNT5A) was decreased
(Additional file 1). Wnt-5a has been shown to be able
to induce cartilage degradation through upregulation of
MMPs [30]. All in all, it is obvious that in our setup chon-
drocytes are sensitive to mechanical stress by hypergravity,
but at the moment, no definite answer can be given about
the nature of the effect.

Short-term vibration is detrimental to chondrocytes
In contrast to hypergravity, the effects of vibration on cul-
tured chondrocytes were clearer. In our experimental setup,
the vibrations which were transmitted into the culture flask
also caused the culture medium to stir to a certain dregree,
which, as we speculate, resulted in additional shear forces.
Shear forces have been shown to have a negative effect on
chondrocytes and cartilage [31,32]. It has been reported,
that cartilage, that was treated in such a way or was degen-
erating, produced increased amounts of proinflammatory
interleukins, such as IL-6 or IL-8 [33,34]. In our qPCR
analysis we found a strong increase of both IL6 and IL8
(Figure 1B + D) gene expression, although no increase
in IL-6 secretion (Figure 2), accompanied by decreases
of EGF, VEGFD, and FGF17 (Figure 1E, J, K) gene expres-
sion. The presence of these factors has been described
as beneficial for cartilage development [35,36]. Taken to-
gether, our results indicate that vibration drives chondro-
cytes towards an inflammatory, cartilage destabilzing state.

The influence of parabolic flight maneuvers
The microarray analysis showed, that after only 1P rela-
tively unspecific effects on the cells were observed, mainly
connected to transcription. This is an indication that the
cells have perceived the change in gravity and that they
were preparing their transcriptional apparatus for an al-
tered gene expression as a reaction to this stimulus. After
31P, we observed an increase in the enrichment of anti-
apoptotic genes. The qPCR analysis reflects the same
tendency. Most of the investigated genes showed only
transitional or no changes, such as CD44, IL6, EDN1,
TNFA, and FGF9 (Figure 5B, C, F, G, H). This seems to
hint toward a short μg “shock” that the cells are able to
overcome very quickly. Only CCNA2 (Figure 5A), a cyclin
involved in cell cycling and proliferaton [37] and the anti-
apoptotic IL8 (Figure 5D) [38] are expressed in a manner
that they exert a growth-promoting, cell-survival effect. It
should be kept in mind, that these effects originate from
only a short-term altered gravity (PFC) treatment and that
longer exposure times have to be investigated in order to
assess their significance. It is interesting to note that RPM
exposure experiments resulted in increased expression
of several genes responsible for cell motility, structure
and integrity; control of cell growth, cell proliferation, cell
differentiation and apoptosis [39] and that these results
are also in very good accordance with earlier studies that
also reported that chondrocytes are quite robust under μg
stress [40].

Conclusions
We have shown that chondrocytes are very robust under
conditions of parabolic flight maneuvers. They are able to
adapt quickly to this new environment and actually profit
from real μg by reducing their apoptotic rate. However,
they are prone to damage/injury by hypergravity and espe-
cially by vibration/shear forces. All in all, these results
are very promising and are a step further along the way
to understand chondrocyte growth in μg, leading perhaps
to new methods of scaffold-free preparation of cartilage
grafts.

Materials and methods
Parabolic flight
The parabolic flight experiments were conducted aboard
the Airbus A300 ZERO-G operated by Novespace and
based in Bordeaux-Merignac, France [19,41-43]. Standard
parabolic flights were performed, each with 31 parabolas
in a row during the three to four hours flight. The flight
manoeuver starts from the horizontal flight level followed
by a 45° ascent for 20 s. During this time 1.5 g to 1.8 g are
acting on the passengers and the experiments. Then the
thrust is reduced and the aircraft follows the path of a par-
abola. The free fall (microgravity) phase starts and persists
for 22 s. Afterwards, the engines are fully powered again
and another phase of 1.8 g of 20 s terminates the parabola.
Due to the aerodynamic forces and turbulences acting on
the aircraft, the μg quality is in the range of about 10−2 g.

Cells and cell culture medium
Commercially available human chondrocytes (Provitro®,
Berlin, Germany) were cultured in Chondrocyte Growth
Medium basal (CGM, Provitro®, Berlin, Germany) sup-
plemented with 10% fetal calf serum (Provitro®, Berlin,
Germany), 100 IU penicillin/mL and 100 μg streptomycin/
mL (Provitro®, Berlin, Germany).

Cell culture procedure
Cells were grown as published recently [19,44]. Briefly,
the cells were cultured in 24 T75 cell culture flasks
(75 cm2; Sarstedt, Nümbrecht, Germany) until subcon-
fluent monolayers were obtained. During this time, the
cells were covered by 20 mL (T-75 flasks) CGM. One
half of the flasks was used as ground control cells (1 g;
n = 12), cultured and fixed further in the laboratory, the
other half was taken on the parabolic flight (n = 12).
During the parabolic flight, RNAlater (Applied Biosystems,
Darmstadt, Germany) was injected via syringes containing
the appropriate fixative. The syringes were connected to
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the T-75 flasks through a flexible tube and a 3-way-valve.
One hour before each flight, the cell culture flasks were
transported to the aircraft and placed into the 37°C pre-
heated incubator on an experimental rack (Figure 6A).
Cell fixation
The cells were fixed after the first parabola (1P) and
after the 31st parabola (31P) using RNAlater (Applied
Biosystems, Darmstadt, Germany) at a ratio of 4:1
(RNAlater:medium). After the flight, the fixative was dis-
carded, the cells were briefly washed with PBS and cov-
ered with 10 ml of fresh RNAlater. Subsequently, the
flasks were stored at 4°C and transported to the labora-
tory. For the quantitative real-time PCR, we collected
n = 6 T75 cell culture flasks from both parabolic flight
samples (1P and 31 P) and the 1 g control group, the
remaining flasks were used for microarray analyses.
Hypergravity experiments
We performed experiments on the Short Arm Human
Centrifuge (SAHC, DLR, Cologne, Germany) (Figure 6B),
with cells cultured in T75 cell culture flasks (75 cm2;
Sarstedt, Nümbrecht, Germany), growing in a monolayer.
We installed two containers with floating mountings for
the incubators on the SAHC (Figure 6C). In this configur-
ation the T75 cell culture flasks were always exposed to a
correct vertical gravity (acceleration) vector during centri-
fugation. By using the power supply on the SAHC the in-
cubators were constantly heated to 37° C.
Figure 6 Overview of the facilities used to expose cells to parabolic f
experimental rack; B: The Short Arm Human Centrifuge (SAHC) at the DLR,
D: The Vibraplex device with T25 cell culture flasks mounted on it.
On the SAHC, we exposed the samples to a continu-
ous hypergravity phase of 1.8 g of about 2 hours corre-
sponding to the total time frame of 31 parabolas.
We designed a homogenous centrifuge profile with con-

stant spin-up and spin-down times of each 34 seconds.
We collected n = 5 static 1 g controls and n = 5 1.8 g

hyper-g samples for the Microarray analysis. The 1 g con-
trols were cultivated in parallel in a neighboring identical
incubator. Immediately after the run, the culture medium
was discarded and replaced with 25 mL RNAlater solu-
tion. For the measurement of cytokines released in the
supernatant, an additional run of the SAHC was per-
formed to obtain n = 12 static 1 g samples and n = 12
1.8 hyper-g samples for the ELISA technique.

Vibration experiments
The detailed method was published earlier [20]. In short,
the Vibraplex vibration platform (frequency range 0.2 Hz -
14 kHz) was used to create vibrations comparable to those
occurring during parabolic flights (Figure 6D). Corre-
sponding vibrations to the three phases of pull-up (1.8 g),
free fall (μg), and pull-out (1.8 g) were recorded and ana-
lysed by Schmidt [45]. These data were then used for the
simulation experiments with the Vibraplex. For quantita-
tive real-time PCR analyses, we collected n = 5 samples of
each of the two groups (1 g controls and cells subjected to
a vibration profile corresponding to 31 parabolas of a
parabolic flight). The 1 g controls without vibration were
grown separately in a similar incubator.
For the measurement of cytokines released in the

supernatant, three additional vibration experiments were
light, hypergravity, and vibration. A: The parabolic flight
Cologne, Germany; C: Transportable incubator mounted on the SAHC;



Table 4 Microarray analyses: projects, samples and
conditions

Experiment Conditions (Replicates)

Hyper-g Two Conditions: 1 g controls (N = 5) and 1.8 g (N = 4)

PFC 1 g control (N = 4), 1 parabola (N = 5), 31 parabola
(N = 5 + 1 outlier)

Table 5 Microaray analyses: comparisons

Experiment Comparisons Significance
criterion used

Hyper-g two way ANOVA(gravity vs. plate):
1 g controls and 1.8 g

5% FDR

PFC ANOVA (parabola) 1 g control,
1 parabola, 31 parabolas

5% FDR
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performed to obtain n = 12 static 1 g samples and n = 12
vibrated samples for the ELISA technique.

RNA isolation and cDNA synthesis
After arrival in the laboratory, the RNAlater solution on
the fixed cells was replaced by PBS (Invitrogen, Darmstadt,
Germany). The cells were scraped off using cell scrapers
(Sarstedt, Nümbrecht, Germany), transferred to 50 ml
tubes, and pelleted by centrifugation (2500 g for 10 min
at 4°C). An RNeasy Mini Kit (Qiagen, Hilden, Germany)
was used according to the manufacturer’s instructions
to isolate total RNA. RNA concentrations and quality
were determined spectrophotometrically at 260 nm using
an Ultrospec 2100 pro Spectrophotometer (Amersham
Biosciences, Freiburg, Germany). The isolated RNA had
an A260/280 ratio of >1.7. cDNA designated for the quan-
titative real-time PCR was then obtained with the First-
Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot,
Germany) using 1 μg of total RNA in a 20-μL reverse
transcription reaction mixture.

Quantitative real-time PCR
Quantitative real-time PCR was used to determine the
expression levels of the genes of interest. Primer Express
software (Applied Biosystems) was applied to design ap-
propriate primers with a Tm of ~60°C (Additional file 2).
The primers were synthesized by TIB Molbiol (Berlin,
Germany). All assays were run on a StepOnePlus Real-
Time PCR System using the Power SYBR Green PCR
Master Mix (both Applied Biosystems). The reaction vol-
ume was 25 μL including 1 μL of template cDNA and a
final primer concentration of 500 nM. PCR conditions
were as follows: 10 min at 95°C, 40 cycles of 30 s at 95°C
and 1 min at 60°C, followed by a melting curve analysis
step (temperature gradient from 60 to 95°C with +0.3°C/
cycle).
If all amplicons showed one single Tm similar to the one

predicted by Primer Express software, the PCR reactions
were considered specific. Every sample was measured
in triplicate, and relative quantification was effected by
means of the comparative CT (ΔΔCT) method. 18S rRNA
was used as a housekeeping gene to normalize the expres-
sion data.

ELISA
ELISAs of IL-6, IL-8, EGF, VEGFD (R&D Systems), and
FGF17 (USCN Life Science Inc.) in the cell culture super-
natant from vibration and hypergravity experiments have
been performed according to the protocols supplied by
the manufacturer.

Microarray analysis
Prior to the analysis, RNA integrity (RIN) was checked
with the bioanalyzer. Only samples meeting the required
quality were included in the analysis. The Illumina
HumanWG-6_V2_0_R3 arrays have been normalized using
the BeadStudio Gene Expression Module v3.3.7 and
quantile normalization without background correction.
After quantile normalization and exclusion of low or not
expressed genes (minimum Illumina detection p-value >
0.05; performed in both analyses separately) the quality
of arrays and the general expression profile has been
checked by Principal Component Analysis (PCA) using
Partek Genomic Suite 6.6, correlation as a dispersion
matrix and normalized Eigenvector scaling. No obvious
batch effect or outlier was found for the hypegravity
analysis, while the outlying general expression profile of
one sample from the parabolic flight experiment was
removed before test statistic (for an overview: see Table 4).
A parametric ANOVA comparing the conditions given

in Table 5 was performed. The selection criteria for the
significant differential expression are also given in Table 2.
Differentiation of the expression profiles was performed
using K-Mean clustering. The cluster analysis was done
using Partek Genomic Suite 6.3 applying the Euclidean
distance function on standardized log2 signal values. K
was selected according to a local minimum of the Davies
Bouldin K estimation procedure. Functional aspects of
the differentially expressed probes were analyzed with g:
Profiler using g: SCS threshold as significance criterion
and the DAVID Bioinformatics Resources 6 [46,47].
Physical and functional interactions between proteins
were determined using the String platform [48] at a low
confidence score of 0.15.
Statistical analysis
All statistical analyses were performed using SPSS 16.0
software (SPSS, Inc., Chicago, IL, USA). We used either
1-way ANOVA or the Mann–Whitney U test. Differences
were considered significant at the level of P < 0.05. All data
are presented as means ± SD.
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Additional files

Additional file 1: This file provides expanded versions of Tables 1
and 2 as well as the complete overview of the GO BP analysis of
the microaray data.

Additional file 2: Primers used for quantitative real-time PCR. All
sequences are given in 5′-3′ direction.
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