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Abstract

Frameshift mutations in the TTN gene encoding titin are a major
cause for inherited forms of dilated cardiomyopathy (DCM), a heart
disease characterized by ventricular dilatation, systolic dysfunc-
tion, and progressive heart failure. To date, there are no specific
treatment options for DCM patients but heart transplantation.
Here, we show the beneficial potential of reframing titin tran-
scripts by antisense oligonucleotide (AON)-mediated exon skipping
in human and murine models of DCM carrying a previously identi-
fied autosomal-dominant frameshift mutation in titin exon 326.
Correction of TTN reading frame in patient-specific cardiomyocytes
derived from induced pluripotent stem cells rescued defective
myofibril assembly and stability and normalized the sarcomeric
protein expression. AON treatment in Ttn knock-in mice improved
sarcomere formation and contractile performance in homozygous
embryos and prevented the development of the DCM phenotype in
heterozygous animals. These results demonstrate that disruption
of the titin reading frame due to a truncating DCM mutation
can be restored by exon skipping in both patient cardiomyocytes
in vitro and mouse heart in vivo, indicating RNA-based strategies
as a potential treatment option for DCM.
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Introduction

Dilated cardiomyopathy (DCM) is a genetically heterogeneous disor-

der, with mutations in genes encoding cytoskeletal, nucleoskeletal,

mitochondrial, and calcium-handling proteins (Hershberger &

Siegfried, 2011). Most recently, however, approximately 25% of

familial and 18% of sporadic DCM cases have been associated with

truncating mutations in the TTN gene encoding titin (Herman et al,

2012), an extensively modular sarcomeric protein of more than

35,000 amino acids containing many repeating fibronectin-like and

Ig-like domains (LeWinter et al, 2007; Chauveau et al, 2014). Titin

is the biggest known single-copy protein in humans and spans the

length of half the sarcomere, where it acts as a stretch sensor trans-

mitting signals from its anchor at the Z-disk to its carboxyterminal

kinase (TK) domain at the M-band (Kruger & Linke, 2009; Gautel,

2011). Previous work from our group identified, in a large Austra-

lian family, the first human mutation in TTN as a molecular basis

for DCM. The 2-bp insertion, located in exon 326 (c.43628insAT,

p.Ser14450fsX4), causes a frameshift with a premature stop codon
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in A-band titin (Gerull et al, 2002). Subsequent knock-in of this

mutation in the mouse Ttn gene demonstrated embryonic lethality

of homozygous animals due to severe defects in sarcomere assem-

bly, while heterozygous mice are viable and develop DCM when

exposed to cardiac stress (Gramlich et al, 2009).

RNA-based therapeutics and splice-switching approaches have

been explored over the past decade for treating various diseases,

including Duchenne muscular dystrophy (DMD), a severe muscle

disorder caused by mutations in the large modular protein dystro-

phin (Aartsma-Rus, 2010). Antisense oligonucleotide (AON)-

mediated exon skipping aimed at reframing dystrophin transcripts

has been translated into clinical trials (van Deutekom et al, 2007;

Kinali et al, 2009; Cirak et al, 2011; Goemans et al, 2011). Recently,

an exon skipping strategy has been exploited in a Mybpc3-targeted

knock-in mouse model of hypertrophic cardiomyopathy to enhance

the expression of a naturally spliced functional mRNA variant

(Gedicke-Hornung et al, 2013).

Here, we used patient-specific induced pluripotent stem cells

(iPSCs) derived from an affected member of the Australian DCM

family and the corresponding mouse knock-in DCM model

(Gramlich et al, 2009) to investigate the potential of AON-mediated

exon skipping as a therapeutic strategy to restore titin reading frame

(Fig 1A) and preserve myocardial function in DCM.

Results

AON-mediated skipping of Ttn exon 326 in HL-1 cardiomyocytes

We designed four different AON sequences that mask exonic splic-

ing enhancer (ESE) motifs in Ttn exon 326 (Supplementary

Table S1), whose stability was enhanced by phosphorothioate inter-

subunit linkages and a 2’-O modification of the ribose (2’-O-methyl

phosphorothioate, 2OMePS), and first evaluated their efficacy in the

mouse atrial cardiomyocyte tumor cell line HL-1 (Fig 1B and C and

Supplementary Fig S1). RT–PCR analysis (see Supplementary Fig S2

for PCR strategy) and direct sequencing demonstrated that only

2OMePS-AON1 and the combination of 2OMePS-AON1 and 3 were

able to specifically block integration of exon 326 into the transcript

with maintenance of the reading frame. 2OMePS-AON 2, 3, 4, and

other combinations with 2OMePS-AON1 led to no or incorrect skipp-

ing of the exon, suggesting that the different AONs can interfere with

each other (Fig 1B). Moreover, immunofluorescence analysis for the

Z-disk protein a-actinin in 2OMePS-AON1 + 3-transfected HL-1 cells

showed a preserved sarcomere structure (Fig 1C), indicating that loss

of Ttn exon 326 can be accommodated by the cardiomyocytes.

AON-mediated skipping of TTN exon 326 in patient-specific
cardiomyocytes carrying the TTN Ser14450fsX4 mutation

We further validated the efficiency of AON1 and AON3 sequences in

skipping the human mutated TTN exon 326 by generating virus-free

iPSCs from a 62-year-old female affected member of the DCM family

carrying the heterozygous TTN Ser14450fsX4 mutation. The pres-

ence of the 2-bp AT insertion in exon 326 was confirmed by geno-

mic sequencing (Supplementary Fig S3A). After characterization

(Supplementary Figs S3 and S4), two iPSC clones from the DCM

patient and an unrelated healthy female were chosen for further

studies. Transient transfection of iPSC-derived cardiomyocytes with

different doses and combinations of 2OMePS-AONs targeting the

human TTN exon 326 and corresponding to the mouse AON1 and

AON3 (Supplementary Table S1) resulted in incomplete and unspe-

cific skipping of exon 326 at all concentrations tested, although

2OMePS-AON1 + AON3 promoted the highest amount of correctly

skipped transcript in a dose-dependent manner (Fig 2A). This was

likely due to low transduction efficiency, as demonstrated by trans-

fection of a 50-fluorescein-labeled 2OMePS AON (Supplementary

Fig S5A). In order to enhance nuclear AON delivery in human

primary cardiomyocytes, we engineered a lentiviral construct in

which the human AON1 and AON3 sequences were embedded in

a modified U7 small-nuclear RNA (U7snRNA) followed by an

IRES-GFP cassette (U7snRNA-TTNAONs-IRES-GFP). A lentivirus

encoding mismatched scrambled AON sequences (U7snRNA-

ScrAONs-IRES-GFP) was used as control (Supplementary Fig S5B).

U7snRNA is normally involved in histone pre-mRNA 3’-end proces-

sing (Galli et al, 1983) and by a small change in the Sm/Lsm

protein-binding sites (Stefanovic et al, 1995) can be directed

to the spliceosome and used as a shuttle for antisense sequences

(Goyenvalle, 2012). After lentiviral infection, ~85% of both control

and DCM iPSC-derived cardiomyocytes were GFP positive (GFP+)

(Supplementary Fig S5C), and a virtually complete, specific skipping

of TTN exon 326 was achieved in both groups exclusively with

U7snRNA-TTNAONs-IRES-GFP, as detected by RT–PCR and

sequencing (Fig 2B and Supplementary Fig S6A). We further

confirmed the efficiency of TTN exon 326 skipping at the protein

level using mass spectrometry (MS)-based shotgun proteomics

(Fig 2C and Supplementary Fig S6B). Among ~63,000 detected total

peptides, 1,719 corresponded to the human titin protein and 298

mapped to the part encoded by exon 326. Unsupervised hierarchical

clustering of titin peptides from control and DCM cardiomyocytes

infected with U7snRNA-ScrAONs-IRES-GFP highlighted the presence

of a cluster, which was significantly enriched in exon 326 peptides

and down-regulated in the diseased cells, as expected (Fig 2C).

Down-regulation of exon 326 was also detected in DCM cells after

treatment with U7snRNA-TTNAONs-IRES-GFP when compared to

Scr-AONs, confirming specific skipping of the targeted exon

(Fig 2C). Similar results were obtained in control cells (Supplemen-

tary Fig S7B).

Rescue of sarcomeric assembly and stability in TTN Ser14450fsX4
iPSC-derived cardiomyocytes by skipping of TTN exon 326

We next investigated the impact of the TTN A-band truncating

mutation on sarcomere organization of iPSC-derived cardiomyo-

cytes and evaluated the effects of reframing TTN transcripts by exon

skipping in patient-specific DCM cells (Fig 3A). We dissociated

single cardiomyocytes from spontaneously beating foci and

analyzed them 7 days later, to provide the time necessary for reor-

ganization of the myofibrils that typically undergo disarray during

the dissociation process (Atherton et al, 1986). Initial immunocyto-

chemical analysis for titin and various proteins marking different

portions of the sarcomere—a-actinin (Z-disk), cardiac troponin T

(cTNT, A-band), and myosin heavy chain (MHC, M-line)—revealed,

in the DCM group, a higher percentage of cardiomyocytes in which

organized myofibrils occupied only half of the whole cytoplasm or

less (Fig 3B). Moreover, the immunofluorescence signal of Z-disk
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Figure 1. Exon skipping strategy and evaluation of 2OMePS antisense oligonucleotides (AONs) in HL-1 mouse cardiomyocytes.

A Schematic of the study design.
B RT–PCR analysis (top) and representative direct sequencing (bottom) of Ttn exon 326 transcripts from HL-1 cardiomyocytes transiently transfected with different

2OMePS AONs. Only 2OMePS-AON1 and 2OMePS-AON1 + 3 (*) lead to a correct excision of exon 326 as confirmed by direct sequencing.
C Immunofluorescence images of sarcomeric a-actinin in untransfected and 2OMePS-AON1 + 3-transfected HL-1 cardiomyocytes. Scale bars, 10 lm.
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titin in striated myofibrils appeared more diffuse in patient cells

(Fig 3C). These results suggested that truncated titin mutants could

alter assembly and/or stability of the sarcomeric units in human

embryonic myocytes. To gain a better understanding of sarcomere

remodeling in iPSC-derived cardiomyocytes after dissociation, we

stably overexpressed actin as a fusion with a red fluorescent protein

(RFP) in single cells by baculovirus technology (Supplementary

Fig S7A), which has been recently successfully applied to mamma-

lian cells (Sung et al, 2014), and performed live-cell imaging over

time (Supplementary Fig S7B). This analysis showed that, similarly

to neonatal cardiomyocytes (Atherton et al, 1986), there is a consid-

erable heterogeneity in the degree of myofibril organization at day

1–2 after dissociation, but most of the cells presented striated RFP+

sarcomeres mainly around the nucleus, suggesting this as starting

site of myofibril reassembly. With the time, the myofibril organiza-

tion extended to the whole cell and this associated with the onset of

rhythmic contraction. However, around 7–10 days of culture as

single cells, few of the ‘fully organized’ cardiomyocytes began to

lose their sarcomeric striated pattern, starting at the perinuclear

region and eventually throughout the whole cytoplasm till the cell

periphery (Supplementary Fig S7B). On the basis of these observa-

tions, we hypothesized that sarcomere remodeling in iPSC-derived

cardiomyocytes after dissociation is a radially occurring process

that mimics the one earlier observed in neonatal cardiomyocyte

(Atherton et al, 1986).

A subsequent detailed analysis of cellular myofilament arrange-

ment in iPSC-derived cardiomyocytes 7 days after dissociation

demonstrated that ~80% of control and only 50% of DCM cells had

structured myofibrils occupying the entire cytoplasm under basal

conditions (Fig 3D). On the contrary, the fractions of cells with

organized sarcomeres only in the perinuclear or peripheral region

were significantly increased in the patient group (Fig 3D), suggest-

ing defects in both myofibril reassembly and sarcomere stability.

Moreover, isoproterenol (Iso) treatment exacerbated the phenotype

of DCM cardiomyocytes, with no significant impact on the control

counterparts (Fig 3D), demonstrating that patient cells are more

susceptible to catecholamine-induced stress. Importantly, infection

with the U7snRNA-TTNAONs-IRES-GFP lentivirus followed by

analysis of striated myofibril distribution in GFP+ cardiomyocytes

revealed that skipping of TTN exon 326 partially rescued the sarco-

mere abnormalities of DCM cells, while no effects were observed in

the control group or after infection with the U7snRNA-ScrAONs-

IRES-GFP virus (Fig 3E). Lentiviral infection had no influence on

sarcomere remodeling in both healthy and disease cellular settings

(Supplementary Fig S8).

Normalization of sarcomeric protein expression and Nbr1/p62/
SQSTM1/MURF2 signalosome in TTN Ser14450fsX4 iPSC-derived
cardiomyocytes by skipping of TTN exon 326

Titin is not only required as molecular scaffold during sarcomero-

genesis and assists in the process of myofibrillar assembly, but it is

also a hot spot for protein–protein interactions and a putative medi-

ator of mechanotransduction. About 20 interaction partners have so

far been identified, linking titin to multiple stress signaling path-

ways that control muscle gene expression and protein turnover

(Linke & Kruger, 2010; Linke & Hamdani, 2014). One of the most

extensively studied is the Nbr1/p62/SQSTM1/MURF2 signaling

complex that associates with titin TK and activates the serum

response factor (SRF) upon mechanical stimuli (Lange et al, 2005).
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Figure 2. AON-mediated skipping of exon 326 in TTN Ser14450fsX4 induced pluripotent stem cell (iPSC)-derived cardiomyocytes.

A RT–PCR analysis of TTN exon 326 transcripts from DCM cardiomyocytes transiently transfected with 2OMePS-AON1, 2OMePS-AON3, and 2OMePS-AON1 + 3.
B RT–PCR analysis (left) and representative direct sequencing (right) of TTN exon 326 transcripts from DCM cardiomyocytes infected with the U7snRNA-TTNAONs-IRES-

GFP lentiviral vector carrying the AON1 and 3 sequences (TTN-AON) or with a control vector (U7snRNA-ScrAONs-IRES-GFP).
C Mass spectrometry-based analysis of titin peptides in cells infected with the U7snRNA-ScrAONs-IRES-GFP (Scr-AON) and U7snRNA-TTNAONs-IRES-GFP (TTN-AON)

vectors. Unsupervised hierarchical clustering identified a cluster significantly enriched in peptides mapping to exon 326 that was down-regulated in DCM Scr-AON
cardiomyocytes compared to CTR Scr-AON cardiomyocytes (n = 3, P = 9.03E�8, Fisher’s exact test, FDR = 0.04, top). Down-regulation of exon 326 was also detected
in DCM TTN-AON cells when compared to DCM Scr-AON cells (n = 3, P = 0.02, Fisher’s exact test, bottom).
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TK mutations affecting this interaction result in the dissociation of

the Nbr1/p62/SQSTM1/MURF2 complex and translocation of

MURF2 into the nucleus, which in turn leads to suppression of SRF-

dependent muscle gene transcription (Lange et al, 2005). Therefore,

we analyzed expression levels of SRF targets (Miano et al, 2004;

Balza & Misra, 2006) in control and patient cardiomyocytes after

infection with U7snRNA-ScrAONs-IRES-GFP and U7snRNA-

TTNAONs-IRES-GFP viruses. When compared to the control coun-

terpart, a significant down-regulation of a- and b-myosin heavy

chain (MYH6 and MYH7) transcripts as well as cardiac a-actin
(ACTC1) was measured in the DCM cells untreated or transduced

with scrambled AONs (Fig 4A). Blocking of exon 326 transcription

partially rescued SRF target levels in patient cardiomyocytes, with

no effects on control cells (Fig 4A). In concordance, immunocyto-

chemistry assessment of SRF localization in iPSC-derived cardio-

myocytes at 7 days after dissociation revealed a significant higher

percentage of cells with increased extranuclear expression of SRF in

the DCM group (Fig 4B). Moreover, we observed differences in the
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Figure 3. Exon skipping-based rescue of sarcomeric defects in TTN Ser14450fsX4 iPSC-derived cardiomyocytes.

A Experimental design.
B Percentage of iPSC-derived cardiomyocytes with cross-striated myofibrils occupying a fraction (partially organized, dark gray) or the whole cytoplasm (fully organized,

light gray) from two control and two patient clones. Statistical difference was tested using the two-sided chi-squared test (CTR1 basal: n = 283, CTR2 basal: n = 250,
DCM1 basal: n = 255, DCM2 basal: n = 236; ***P = 1.93E�16).

C Immunofluorescence images of titin (Z-disk portion) and cardiac troponin T (cTNT, A-band) in well-organized sarcomeres from CTR and DCM single cardiomyocytes
under basal conditions. Scale bars, 5 lm.

D Immunofluorescence images (left) of a-actinin and cTNT in CTR and DCM single cardiomyocytes, illustrating 3 different levels of sarcomeric organization (perinuclear,
fully and peripherally organized). Percentage of cells with different levels of sarcomeric organization (right) under basal and stress conditions. Statistical difference
was tested using the chi-squared test (CTR1 basal: n = 283, CTR2 basal: n = 250, DCM1 basal: n = 255, DCM2 basal: n = 236, CTR1 Iso: n = 245, CTR2 Iso: n = 230;
DCM1 Iso: n = 242 and DCM2 Iso: n = 269; ***P = 1.93E�16 CTR basal versus DCM basal; ***P = 9.61E�34 CTR Iso versus DCM Iso, **P = 0.001 DCM basal versus
DCM Iso). No significant differences were observed comparing CTR basal and CTR Iso groups. Scale bars, 25 lm.

E Percentage of perinuclear, fully, and peripherally organized single cardiomyocytes from two CTR and two DCM iPSC clones after infection with the U7snRNA-
ScrAONs-IRES-GFP and U7snRNA-TTNAONs-IRES-GFP lentiviruses. Statistical difference was tested using the two-sided chi-squared test (CTR1 Scr-AON: n = 190,
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n = 243; ***P = 4.22E�15 CTR Scr-AON versus DCM Scr-AON; ***P = 4.61E�02 DCM Scr-AON versus DCM TTN-AON). No significant differences were observed
comparing CTR Scr-AON and CTR TTN-AON groups.
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Figure 4.
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subcellular distribution of MURF2, Nbr1, and p62/SQSTM1 in the

DCM cardiomyocytes, with an increased number of cells showing a

marked nuclear accumulation of MURF2 and a cytosolic, more

diffused non-sarcomeric expression of Nbr1 and p62/SQSTM1

(Fig 4B). Infection with U7snRNA-TTNAONs-IRES-GFP lentivirus

partially normalized the cellular localization of all these proteins in

the diseased cells, while no effects were observed in the control cells

(Fig 4B).

Taken together, these findings suggest that defective sarcomere

assembly and stability of DCM myocytes may partly derive from

reduced expression of structural sarcomeric proteins resulting from

disruption of the Nbr1/p62/SQSTM1/MURF2 signalosome.

Restoration of sarcomere assembly and cardiac function in
mouse Ttn Ser14450fsX4 knock-in DCM embryos by skipping of
Ttn exon 326

We further assessed the efficacy and impact of reframing Ttn tran-

scripts by AON-mediated skipping in the heart muscle and used the

mouse DCM model based on the human TTN exon 326 A-band trun-

cating mutation (Gramlich et al, 2009). We generated U7snRNA-

AONs-IRES-GFP lentiviral constructs encoding the mouse specific

AON1/3 (U7snRNA-mTtnAONs-IRES-GFP) or scrambled AON

(U7snRNA-mSrcAONs-IRES-GFP) sequences. We first analyzed

knock-in mouse embryos, which were collected at day 8.5 and

cultured for 24 h after lentiviral infection or transient transfection of

mouse 2OMePS oligos—AON1/3 (mTtnAON) or scrambled AONs

(mScrAON)—in order to compare the efficacy of the two delivery

methods (Fig 5A). Wild-type (WT) untreated hearts displayed

proper formation of sarcomeres with clearly distinguishable Z-disks

(Fig 5B) and beat normally (Fig 5C). In contrast, homozygous Ttn-

mutant myocardium of the same stage showed no striations

(Fig 5B), indicative of impaired sarcomerogenesis, and conse-

quently did not develop contractile function (Fig 5C). Mutants

treated with mTtnAONs exhibited rescued sarcomere assembly and

Z-disk formation (Fig 5B) and a significant increase in contractile

function when compared to untreated or mScrAON-treated homo-

zygous littermates (Fig 5C). Moreover, mTtnAON application

restored normal filament width, as detected by electron microscopy

(Fig 5D and E). Beneficial effects after mTtnAON treatment were

similar in both 2OMePS- and lentivirus-based systems (Fig 5B and

C), suggesting a comparable efficacy of the two methods in trans-

ducing the myocardium ex vivo.

Prevention of DCM development in heterozygous
Ttn Ser14450fsX4 knock-in mice by skipping of Ttn exon 326

Next, we evaluated the effects of AON-mediated skipping of Ttn

exon 326 on cardiac function in adult heterozygous Ttn knock-in

mice (HET) in vivo. Since gene transfer using viral-based

approaches has limited translational potential into the clinic, we

sought to test whether efficient Ttn exon 326 skipping in the heart

could be achieved by systemic administration of oligonucleotides.

Although used in several of the preclinical and early clinical trials

for DMD, the 2OMePS oligos are reported to have low effectiveness

in targeting cardiac muscle in vivo (Heemskerk et al, 2009; Betts &

Wood, 2013). Indeed, in a preliminary screening for AON chemistry

that allows skipping of Ttn exon 326 in the heart in vivo, systemic

infusion of the mouse 2OMePS-AON 1 and 3 did not produce any

skipping of cardiac Ttn in HET animals, even at the highest doses

tested (Supplementary Fig S9A), while local skeletal muscle injec-

tion of the same 2OMePS AONs led to correct skipping of such exon

in the skeletal muscle transcript (Supplementary Fig S9A). There-

fore, we chose to use vivo-morpholino-modified AONs (vPMO-

AONs, see Materials and Methods), which have been described to

better penetrate heart tissue (Mendell et al, 2013). Intraperitoneal

(I.P.) injection of 6 mg/kg body weight of mouse vPMO-AON1 and

3 allowed skipping of cardiac Ttn exon 326 in HET mice, but in an

incomplete and unspecific manner (Supplementary Fig S9B).

However, extension of the v-PMO-AON1 sequence from a 23mer

to a 28mer markedly improved AON efficiency and specificity

(Supplementary Fig S9C). Therefore, the 28-mer vPMO-AON1

(vPMO-mTtnAON) and its correspondent scrambled sequence

(vPMO-mScrAON) were further used in our in vivo studies.

Figure 6A illustrates our experimental design. Heterozygous Ttn

knock-in mice did not show any obvious cardiac phenotype under

sedentary conditions. However, when exposed to cardiac stress they

develop features of DCM (Gramlich et al, 2009). Thus, we

implanted osmotic minipumps delivering Ang II (1.4 mg/kg) in WT

(n = 6) and HET animals (n = 30). One subgroup of HET mice was

Figure 4. Exon skipping-based rescue of SRF target gene expression and Nbr1/p62/SQSTM1/MURF2 subcellular distribution in TTN Ser14450fsX4 iPSC-derived
cardiomyocytes.

A qRT–PCR analysis of SRF target genes (MYH6, MYH7 and ACTC1) in CTR and DCM single cardiomyocytes under basal condition (no infection, NI) and after infection
with control U7snRNA-ScrAONs-IRES-GFP (Scr-AON) and the U7snRNA-TTNAONs-IRES-GFP (TTN-AON) lentiviruses. Statistical difference was tested using the two-
sided Student’s t-test (**P = 0.009, CTR Scr-AON versus DCM Scr-AON; *P = 0.04, DCM Scr-AON versus DCM TTN-AON for MYH6; **P = 0.002, CTR Scr-AON versus
DCM Scr-AON; **P = 0.002, DCM Scr-AON versus DCM TTN-AON for MYH7; **P = 0.004, CTR Scr-AON versus DCM Scr-AON; *P = 0.02, DCM Scr-AON versus
DCM TTN-AON for ACTC1). No significant differences were observed comparing the CTR NI, CTR Scr-AON and CTR TTN-AON groups and comparing the DCM NI and
DCM Scr-AON groups. Expression values were relative to CTR Scr-AON, normalized to GAPDH, and presented as mean � SEM, n = 3.

B Immunofluorescence images showing normal (a, b, e, f, i, l, o, p) and altered (c, d, g, h, m, n, q, r) intracellular distribution of SRF (a and b, nuclear; c and d,
cytoplasmic), MURF2 (e and f, sarcomeric; g and h, nuclear), Nbr1 (i and l, sarcomeric; m and n, diffused), and SQSTM1/p62 (o and p, sarcomeric; q and r, diffused) in
representative single cardiomyocytes (left). Sarcomeres are marked by a-actinin. On the right, percentage of CTR and DCM cardiomyocytes showing cytoplasmic
expression of SRF, nuclear accumulation of MURF2, and diffused expression of Nbr1 and of SQSTM1/p62 after infection with control U7snRNA-ScrambleAONs-IRES-
GFP (Scr-AON) and the U7snRNA-TTNAONs-IRES-GFP (TTN-AON) lentiviruses (right). Data represent mean values � SEM from two control and two DCM clones.
Statistical difference was tested using the two-sided chi-squared test (CTR Scr-AON: n = 874, n = 874, n = 882 and n = 890, CTR TTN-AON: n = 880, n = 990, n = 878
and n = 890, DCM Scr-AON: n = 890, n = 887, n = 884 and n = 886, DCM TTN-AON: n = 900, n = 875, n = 899 and n = 891 for SRF, MURF2, Nbr1 and SQSTM1/p62,
respectively; *P = 0.01, CTR Scr-AON versus DCM Scr-AON; *P = 0.04, DCM Scr-AON versus DCM TTN-AON for SRF; *P = 0.02, CTR Scr-AON versus DCM Scr-AON;
*P = 0.04, DCM Scr-AON versus DCM TTN-AON for MURF2; *P = 0.03, CTR Scr-AON versus DCM Scr-AON; *P = 0.03, DCM Scr-AON versus DCM TTN-AON for Nbr1;
**P = 0.009, CTR Scr-AON versus DCM Scr-AON; *P = 0.01, DCM Scr-AON versus DCM TTN-AON for SQSTM1/p62). No significant differences were observed comparing
CTR Scr-AON and CTR TTN-AON groups. Scale bars, 50 lm.
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Figure 5. Exon skipping-based rescue of the DCM phenotype in Ttn Ser14450fsX4 knock-in embryos.

A Experimental design.
B, C Immunofluorescence images of sarcomeric a-actinin and myosin (B) and assessment of cardiac function (C) in homozygous Ttn knock-in embryos cultured for 24 h

after mScrAON and mTtnAON transient transfection (n = 3 per group) or lentivirus delivery (n = 7 per group). Scale bars, 10 lm.
D Electron microscopy analysis in Ttn knock-in embryos cultured for 24 h after mScrAON and mTtnAON transient transfection. mTtnAON treatment of homozygous

embryos rescued myofibril formation (left, black arrows), resulting in thicker filaments (right).

Data information: Statistical difference was tested using the two-sided Student’s t-test (**P = 0.007 and *P = 0.01 for fractional area change and **P = 0.009 for
filament width differences). Data represent mean values � SEM. Scale bars, 0.2 lm.
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intraperitoneally injected with 6 mg/kg body weight of vPMO-

mTtnAON (n = 14) at day 0 and day 7. Another subgroup received

the same dose of a mismatched vPMO-mScrAON (n = 10) or no

oligos (n = 6) (Fig 6A). Echocardiographic analysis of systolic and

diastolic function revealed that all subgroups developed a similar

hypertrophic response after 1 week of Ang II infusion, with

decreased ventricular end-diastolic diameters (LVEDD) and

increased left ventricular ejection fraction (LV-EF) and wall thick-

nesses (IVSd and PWd) (Fig 6B). Consistent with our previous find-

ings (Gramlich et al, 2009), after 2 weeks of Ang II HET animals

that were injected with saline or vPMO-mScrAON displayed a

DCM-like phenotype characterized by a reduction in LV-EF, IVSd,

and PWd and by an increase in LVEDD (Fig 6B). In contrast,

vPMO-mTtnAON-treated HET mutants did not develop DCM and

showed a response similar to WT animals with continued hypertro-

phy (Fig 6B). Furthermore, vPMO-mTtnAON injections in HET

animals reversed the development of interstitial fibrosis that typi-

cally occurs in these mice after a 2-week treatment with Ang II

(Fig 6C). At the end of each experiment, the animals were carefully

analyzed for organ damage (e.g., liver failure). We could not detect

any signs of toxicity in vPMO-treated mice.

To assess whether the functional improvement was associated

with exon skipping, animals were sacrificed at the end of the 2-week

treatment and molecular analyses were performed in ventricular

tissue (Fig 7). Fluorescence in situ hybridization (FISH) with a

specific probe complementary to the mTtnAON sequence (Ttn-A
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Figure 6. Prevention of DCM phenotype development in adult Ttn Ser14450fsX4 knock-in mice by injection of vivo-morpholino-modified antisense
oligonucleotides.

A Experimental design.
B Echocardiographic analysis of adult knock-in mice. Statistical difference was tested using the two-sided Student’s t-test (WT: n = 6, HET: n = 6; HET + vPMO-

mScrAON: n = 10 and HET + vPMO-mTtnAON: n = 14; *P = 0.013, HET versus HET + vPMO-mTtnAON and *P = 0.02, HET + vPMO-mScrAON versus HET + vPMO-
mTtnAON for LVEDD differences; **P = 0.006, HET versus HET + vPMO-mTtnAON and *P = 0.02, HET + vPMO-mScrAON versus HET + vPMO-mTtnAON for LV-EF
differences; *P = 0.03, HET versus HET + vPMO-mTtnAON and *P = 0.04, HET + vPMO-mScrAON versus HET + vPMO-mTtnAON for IVSd differences; **P = 0.001, HET
versus HET + vPMO-mTtnAON and *P = 0.03, HET + vPMO-mScrAON versus HET + vPMO-mTtnAON and for PWd differences). No significant differences were
observed among groups at day 0 and day 7. Data represent mean values � SEM.

C Masson’s trichrome staining of heart sections from HET animals injected with vPMO-mScrAONs and vPMO-mTtnAON. Scale bars, 1 mm.
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probe) demonstrated an almost complete penetrance of the vivo-

morpholino into the heart of the vPMO-mTtnAON-treated HET

animals, while no signal was detected in HET mice that received the

vPMO-mScrAON (Fig 7A and Supplementary Fig S9D). RT–PCR and

direct sequencing of cardiac cDNA demonstrated that vPMO-

mTtnAON treatment restored the Ttn reading frame, although the

resulted transcript was shorter than expected, including the first

189 bp of exon 326 and lacking the first 267 bp of exon 327
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Figure 7. Efficient skipping of exon 326 in vivo-morpholino-modified antisense oligonucleotide-treated adult Ttn Ser14450fsX4 knock-in mice.

A Fluorescence in situ hybridization (FISH) of heart muscle tissue from adult knock-in mice with a probe complementary to vPMO-mTtnAON. Scale bars, 250 and 50 lm
(magnification).

B RT–PCR analysis of Ttn exon 326 transcripts from heart tissue of untreated WT and HET animals and vPMO-mScrAON- and vPMO-mTtnAON-treated mice (left).
Representative direct sequencing of Ttn exon 326 transcripts from vPMO-mTtnAON-treated HET heart tissue (right).

C Mass spectrometry-based analysis of titin peptides in adult knock-in mice injected with vPMO-mScrAONs and vPMO-mTtnAONs. Unsupervised hierarchical clustering
identified a cluster enriched in exon 326 peptides that was down-regulated in vPMO-mTtnAON-treated animals compared to vPMO-mScrAON-treated littermates.
Another cluster enriched in C-terminal peptides was up-regulated in the vPMO-mTtnAON group compared to the vPMO-mScrAON group (n = 3, P = 0.02, Fisher’s
exact test, FDR = 0.04).
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(Fig 7B). Finally, evaluation of titin protein by MS-based proteomic

analysis revealed a down-regulation of peptides mapping to mouse

exon 326 and an up-regulation of peptides downstream of exon 326

(that we refer as ‘C-terminus’) in ventricular tissue of HET animals

treated with vPMO-mTtnAON compared to vPMO-mScrAON

(Fig 7C). By calculating the percentage change of the relative inten-

sity of ‘C-terminus’ peptides to all titin peptides, we estimated an

~8% skipping efficiency of the mutated 326 exon after the applica-

tion of vPMO-mTtnAON (see Supplementary Information for

details). These results are in accordance with data in dystrophic

mdx mice reporting a ~5–10% dystrophin induction in heart muscle

after intravenous injection of 6–300 mg/kg morpholinoE23 (Wu

et al, 2010).

Taken together, these results demonstrate an effective targeting

of the myocardium by systemic application of vPMO-AONs and

suggest that partial skipping of the mutated exon 326 with restora-

tion of Ttn open reading frame is sufficient to prevent the develop-

ment of the DCM phenotype in vivo.

Discussion

Mutations in TTN are a major cause for DCM, occurring in approxi-

mately 30% of cases (Herman et al, 2012). The bulk of them is

located in the A-band portion of the protein and mainly produces

truncated products lacking part of the A region, which associates

with the myosin filament, and the M-band, which encompasses the

TK and several adjoining domains and is established as a hot spot

for protein–protein interactions, including cytoskeletal and signaling

proteins as well as protein turnover regulators (Herman et al, 2012;

Chauveau et al, 2014; Linke & Hamdani, 2014).

Our study demonstrates that RNA-based rescue of the A-band

truncating titin Ser14450fsX4 mutation in exon 326 ameliorates the

DCM phenotype at both structural and functional levels in mouse and

patient-specific models of the disease. We used the HL-1 cardiomyo-

cyte cell line to evaluate optimal sequence, chemistry and combina-

tion of AONs to block integration of Ttn exon 326 into the transcript.

We showed that excision of this exon has a negligible effect on sarco-

mere structure in both HL-1 cells and human healthy iPSC-derived

cardiomyocytes. Skipping of the mutated exon in patient-specific

cardiomyocytes carrying the TTN Ser14450fsX4 mutation improved

myofibril assembly and stability and normalized the expression of

muscle genes regulated by TK. Finally, we validated the skipping

approach in Ttn knock-in mutant mice and were able to rescue the

DCM phenotype of homozygous and heterozygous animals.

Little is known about the precise biological and pathophysiologi-

cal mechanisms related to the different DCM TTN mutations, due to

the limited availability of patients’ myocardial tissue and the techni-

cal difficulties of studying such a huge and complex protein. In

patient-specific iPSC-derived cardiomyocytes carrying the truncating

A-band TTN Ser14450fsX4 mutation we observed defects in building

up and maintenance of a stable sarcomeric structure (Fig 3), which

were associated with perturbations of the TK interacting Nbr1/p62/

SQSTM1/MURF2 signalosome and reduction of SRF-dependent

muscle gene expression (Fig 4). Since the Nbr1/p62/SQSTM1/

MURF2 complex regulates ubiquitin/proteasome and autophagy/

lysosomal pathways as well as SRF transcriptional program (Lange

et al, 2005; Kotter et al, 2014; Linke & Hamdani, 2014), both

pathophysiological mechanisms are likely to be involved in the

observed myofibril phenotype. Moreover, since the Ser14450fsX4

mutation leads to a truncated titin protein missing a more than half

of the A-band and the entire M-band, and thereby lacking a strong

connection with the thick filaments and many important protein–

protein interactions, several other structural and signaling effects

are expected to play a major role in the disease phenotype.

Exon 326 is the largest exon of titin and consists entirely of

highly repetitive Ig and FN III motifs, which might explain why its

loss by exon skipping can be tolerated by the organism. Out of the

69 reported TTN mutations associated with DCM, 14 of them (seven

frameshift variants, six nonsense changes, and one predicted splic-

ing mutation) are located in exon 326 (Chauveau et al, 2014). Thus,

skipping of such exon may provide a molecular rescue of ~20% of

the known DCM-causing TTN mutations. It is noteworthy that exon

skipping events in TTN also occur naturally and modulate the frac-

tional extensions of the tandem Ig and PEVK (region that is rich in

proline, glutamate, valine, and lysine) segments, thereby influenc-

ing myofibrillar elasticity (Freiburg et al, 2000). Not all of the DCM-

associated variants, however, may be amenable to exon skipping

therapy in equal ways (e.g., missense, compound heterozygous,

and splicing mutations as well as variants in asymmetric exons or

exons with nonredundant domains). Thus, it would be of great

interest to investigate whether the applicability of exon skipping

could be extended to other TTN exons belonging to the A-band

mutation hot spot region and to other types of DCM-causing non-

truncating TTN mutations, which would broaden such a therapeutic

approach to larger cohorts of DCM patients. Our work demonstrates

that patient-specific iPSCs can provide an exciting new cellular plat-

form for such screening (Grskovic et al, 2011).

AON-mediated exon skipping aimed at reframing transcripts is

emerging as a promising therapeutic strategy since the encouraging

results of the recent phase 2/3 clinical trials for treatment of DMD

(van Deutekom et al, 2007; Kinali et al, 2009; Cirak et al, 2011;

Goemans et al, 2011). By demonstrating that a human DCM-causing

TTN mutation can be corrected to preserve cardiac function, our

proof of concept study suggests exon skipping as a potential treat-

ment approach for a substantial proportion of DCM patients. More-

over, beneficial effects of exon skipping in vivo were achieved by

systemic application of vPMO-AONs, a chemistry that is currently

under extensive investigation and is rapidly becoming safer and

more efficient (Betts et al, 2012).

One limitation of the current work is that the DCM phenotype in

the adult Ttn-mutant mice needs to be induced by a cardiac stressor,

for example, angiotensin II infusion. Simultaneous injections of

mTtnAONs prevented the development of heart failure and led to the

expected hypertrophic response seen in WT animals. However, it

remains unclear whether AON therapy is able to reverse an already

existing DCM phenotype. This is the subject of ongoing investigation.

Current approaches to the management of DCM are focused on

correcting deranged secondary pathophysiological processes, includ-

ing neurohumoral activation and both structural and electrical

cardiac remodeling. However, these treatments are generally applied

late in the disease trajectory, with these patients remaining at high

risk of death and hospitalization. In our work, we provide a novel

RNA-based approach, which aims to address the underlying molecu-

lar pathophysiology of a sizable proportion of patients affected by

DCM. This could potentially allow more effective management and,
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if applied early, the prevention of the heart failure phenotype.

Future preclinical studies in large animal models will be needed to

address optimal chemistry, application regime, and pharmaco-

kinetics of AON in vivo for optimal rescue of DCM-associated

truncating mutations in TTN.

Materials and Methods

An extended Materials and Methods section is available in the

Supplementary Information.

Antisense oligonucleotide modifications

AONs were designed using previously published guidelines

(Aartsma-Rus, 2012). 2OMePS-AONs consisted of 2’-O-methyl RNA,

had a full-length phosphorothioate backbone, and were synthesized

and purified at Eurogentec, Germany. In vPMOs (vivo-phosphorodi-

amidate morpholino oligomers), the sugar ribose backbone of the

RNA was replaced by a six-membered morpholino moiety and a

peptide conjugation with eight terminal guanidinium groups on a

dendrimer scaffold was added. vPMO-AONs were synthesized and

purified at GeneTools, LLC (Philomath, OR, USA) as described

(Morcos et al, 2008).

Individuals involved in the study

For the generation of iPSCs, we recruited a 62-year-old female

affected member of the previously described DCM family (Gerull

et al, 2002) and an unrelated age- and gender-matched control indi-

vidual. The control had a normal health status without a history of

cardiac disease or any cardiovascular risk factors.

This study was performed following a human research subject

protocol approved by the Institutional Review Board and the Ethic

Committee of the Klinikum rechts der Isar, Technische Universität

München. Written informed consent was obtained from the affected

patient and the healthy volunteer, and experiments were performed

in compliance with the principles set out in the WMA Declaration of

Helsinki and the Department of Health and Human Belmont Report.

Human iPSC generation and cardiomyocyte differentiation

For iPSC generation, control and patient primary skin fibroblasts

(PSF, passage 3) were infected with Sendai viruses encoding OCT4,

SOX2, KLF4, and c-MYC (Life Technologies, 3 MOI each) and

cultured as previously described (Moretti et al, 2010; Jung et al,

2012; Bellin et al, 2013).

The presence of the TTN-c.43628insAT mutation was verified in

control and patient PSFs and iPSCs by PCR and direct sequencing

using 50 ng of genomic DNA (Genomic DNA Purification Kit; Gentra

Systems). Primer sequences are listed in Supplementary Table S3.

Karyotyping of the iPSC lines was performed at the Institute of

Human Genetics of the Technische Universität München using

standard methodology.

Assessment of pluripotency and differentiation of the iPSCs were

performed as previously described (Moretti et al, 2010; Jung et al,

2012; Bellin et al, 2013) (see Supplementary Information for

details). For PluriTest, RNA was collected from undifferentiated

cells, processed using the Illumina TotalPrep RNA Amplification Kit

(Life Technologies) and hybridized to the Human HT-12 v4 Expres-

sion BeadChip Kit (Illumina). Raw microarray data were uploaded

to the PluriTest website (http://www.pluritest.org) and analyzed

online with the published PluriTest algorithm (Muller et al, 2011;

Bellin et al, 2013). For the quantification of the DNA methylation

levels of RAB25, NANOG, PTPN6, MGMT, GBP3, and LYST, genomic

DNA was collected from control and patient PSFs and iPSCs and the

DNA methylation was assessed by quantitative real-time PCR (qRT–

PCR) using the OneStep qMethyl Human Pluripotent Stem Cell Panel

(Zymo Research) according to the manufacturer’s guidelines.

Spontaneously contracting areas were manually dissected at day

20–30 of differentiation. For single-cell analysis, myocytic explants

were collagenase-dissociated and plated on fibronectin-coated plates

for molecular and immunocytochemical analyses.

2OMePS-AON transfection of HL-1 and
hiPSC-derived cardiomyocytes

Transient transfection of 2OMePS-AONs (200 nM final concentration)

was performed in single HL-1 and hiPSC-derived cardiomyocytes

using the PEI (Fermentas) and the TransIT-LT1 (Mirus) Transfection

Reagent, respectively, according to the manufacturer’s guidelines.

Successful excision of titin exon 326 was confirmed by RT–PCR

and direct sequencing as described in details in the Supplementary

Information.

AON lentiviral infection of hiPSC-derived cardiomyocytes

Lentiviruses were produced in HEK293T cells by transient cotrans-

fection of the CMVDR8.74 packaging plasmid, the VGV.G envelope

plasmid, and one of the U7snRNA-AONs-IRES-GFP lentiviral trans-

fer vector plasmids (for cloning details see Supplementary Informa-

tion) using FuGENE HD (Promega). Viral supernatants were

harvested after 48 h, filtered through a 0.45-lm low-protein-binding

cellulose acetate filter, and used directly to infect single iPSC-

derived cardiomyocytes in the presence of 8 lg/ml polybrene.

Infected cells were harvested 1 day later for the detection of TTN

exon 326 skipping by RT–PCR and sequencing analyses and 5 days

later for immunofluorescence and qRT–PCR studies.

Mass spectrometric analysis

iPSC-derived cardiomyocytes and mouse heart tissue were lysed and

experiments were performed as previously described (Michalski

et al, 2012; Kulak et al, 2014). Raw mass spectrometric data

were processed with MaxQuant (version. 1.4.3.19, http://www.

maxquant.org) (Cox & Mann, 2008) and imported into the MaxQB

database (Schaab et al, 2012). Bioinformatic analyses were

performed with the Perseus software (www.perseus-framework.org).

For details, see Supplementary Information.

Ttn knock-in embryo studies

The knock-in (Ttn c.43628insAT) mouse model used was already

reported (Gramlich et al, 2009). Ttn heterozygous mice were paired

and checked for a vaginal plug the next morning. At day 8.5, post-

coitum embryos were harvested, transferred to an agarose-coated
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24-well plate with supplemented DMEM (0.5% heat inactivated

FBS), and cultured under standard conditions (Hang & Chang, 2012).

Genotypes were obtained from the yolk sac as described previously

(Gramlich et al, 2009). Homozygous Ttn embryos were transfected

with 600 nM 2OMePS-AON1+ AON3 (n = 3 per group, 600 nM final

concentration each) or infected with the U7snRNA-mScrAONs-

IRES-GFP and the U7snRNA-mTtnAONs-IRES-GFP vectors (n = 7).

Wild-type embryos were used as controls (n = 3). Embryonic heart

function was recorded with a camera, and heart function was

analyzed by planimetry (Hang & Chang, 2012). Twenty-four hours

later, heart function was assessed again and the embryos were

processed for immunofluorescence and electron microscopy analyses

as described in the Supplementary Information.

Adult Ttn knock-in mouse experiments

For the administration of angiotensin II (Sigma), osmotic minipumps

(Alzet) were placed into subcutaneous (S.C.) tissue via a midscapular

incision in 3- to 4-month-old mice anesthetized with 2% isoflurane.

Prior to implantation, cardiac function was assessed echocardiograph-

ically (for details, see Supplementary Information). The animals were

treated with angiotensin II (1.4 mg/kg) for 14 days. The AON-treated

group received vPMO-mTtnAON or scrambled vPMO-mScrAON

(6 mg/kg) at day 0 and 7 by intraperitoneal (I.P.) injection (vPMO-

mTtnAON, n = 14; vPMO-mScrAON, n = 10; heterozygous, angioten-

sin only, n = 6; wild-type, angiotensin only, n = 6). Doses and timing

of vPMO injections were adapted from related publications (Wu et al,

2009). After 1 and 2 weeks, mice underwent echocardiographic

examination. At the end of the experiment, heart muscle tissue was

processed for morphological and molecular analyses as described in

theSupplementary Information.

Animals’ care was in accordance with institutional guidelines.

All animal investigations were approved by the Institutional Animal

Care and Use Committee, as well as by the Animal Review Board of

the Eberhard Karls University, Tübingen (Regierungspraesidium

Tuebingen M6/10).

Statistical analysis

Continuous variables in different groups were compared either with

Student’s t-test if they passed tests for normality and equal variance,

or by nonparametric Mann–Whitney U-test.

Categorial data were analyzed using chi-squared test or Fisher’s

exact test. Two-sided P-values of less than 0.05 were considered

statistically significant. When not otherwise specified, error bars

represent standard deviations.

Supplementary information for this article is available online:

http://embomolmed.embopress.org
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