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ABSTRACT 

 

De novo assembled alphoidtetO-type human artificial chromosomes (HACs) represent a novel 

promising generation of high capacity episomal vectors. Their function and persistence, and 

any adverse effects, in various cell types in live animals, have not, however, been explored. In 

this study we transferred the alphoidtetO-HAC into mouse ES cells and assessed whether the 

presence of this extra chromosome affects their pluripotent properties. AlphoidtetO-HAC-

bearing ES cells were indistinguishable from their wild-type counterparts: they retained self-

renewal potential and full capacity for multilineage differentiation during mouse development, 

whereas the HAC itself was mitotically and transcriptionally stable during this process. Our 

data provide the first example of fully synthetic DNA behaving like a normal chromosome in 

cells of living animals. It also opens a new perspective into functional genetic studies in 

laboratory animals as well as stem cell-based regenerative medicine. 
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INTRODUCTION 

 

Gene therapy remains a challenging approach for the treatment of various disorders, including 

monogenic and polygenic diseases. Gene therapy requires either the correction of a defective 

gene or provision of a wild-type copy of a damaged gene. The former can be addressed using 

recently developed gene editing tools: Zinc Finger Nucleases (ZFNs), Transcription Activator-

Like Effector Nucleases (TALENs), and, most potently, the Clustered Regularly Interspaced 

Short Palindromic Repeat (CRISPR)/CAS9. 1 For the latter approach, virus-based delivery 

systems are usually used, but there no available system that simultaneously meets all the 

criteria of an ideal gene therapy vector: high cloning capacity, episomal maintenance, stable 

long-term expression of a gene of interest in quiescent as well as dividing cells, and lack of 

toxicity or immunogenicity. Typically, some of these criteria are achieved with a trade-off of 

others. All of them, however, are readily met by one class of DNA vectors, the Human 

Artificial Chromosomes (HACs). 

Most characterized HACs have been generated by a top-down approach involving 

truncation of various human chromosomes, 2,3 which, strictly speaking, makes them modified 

natural chromosomes (mini-chromosomes) rather than artificial ones. All these HACs are 

maintained as episomes and are mitotically stable. The most advanced HAC of this type 

(21HAC) was generated by truncation of human chromosome 21. 4 The 21HAC, presumably 

free of any known genes, has been further modified to contain multiple recombination sites to 

facilitate loading of sequences of interest. 5 Importantly, this HAC has demonstrated its utility 

as a high capacity gene therapy vector in mouse models of muscular dystrophies. 3, 6-8 This 

HAC has also been successfully used to deliver reprogramming factors, but its subsequent 

removal from de novo generated iPS cells is quite problematic and relies on spontaneous loss 

during mitotic divisions, which is extremely rare. 9 

A novel, truly artificial HAC has recently come to the fore as a highly promising vector 

system. This HAC has been assembled de novo from a synthetic alphoid DNA array with 

embedded tetracycline operator (tetO) that binds tet-repressor fusion proteins, providing the 

option to incorporate conditional inhibition of kinetochore assembly, resulting in subsequent 

loss of the HAC from populations of dividing cells. 10-13 The bottom-up assembled alphoidtetO-

HAC vector therefore has a significant advantage over top-down constructed HACs because it 

can be deployed in a hit-and-run fashion, which is the preferred option for several applications. 

The megabase-size synthetic alphoid DNA array of the alphoidtetO-HAC is fully defined, 14 

ruling out any encoding of undesired cryptic transcripts. In addition, structural integrity of the 
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HAC during gene loading and transfer into different host cells has been demonstrated, along 

with the high mitotic and transcriptional stability of embedded genes over multiple rounds of 

cell division in culture. 15, 16 Although the alphoidtetO-HAC vector seems to satisfy many 

features required for a gene delivery vector, data have been lacking regarding its behavior in 

vivo, i.e. in the context of tissues and organs in the developing and adult organism. Contrary to 

the described above top-down constructed mini-chromosomes, the behavior of the de novo 

synthesized alphoidtetO-HACs in living organism is highly unpredictable due their synthetic 

nature. To address this issue, we have generated mouse ES cells bearing an alphoidtetO type 

HAC and then demonstrated its tolerance in vitro by the pluripotent cells and differentiated 

cells derived thereof, as well as its robust maintenance and expression throughout mouse 

ontogeny. 

 

MATERIALS AND METHODS 

 

Ethics statement 

All animal procedures were performed according to the guidelines for the humane use of 

laboratory animals, with standards corresponding to those prescribed by the American 

Physiological Society. Mouse work was performed strictly in agreement with the animal 

protection legislation acts of the Russian Federation, and was approved as humane use of 

laboratory animals by the Institute’s Ethical Board.  

Cell culture 

All media and components were from Life Technologies and Sigma, unless indicated. CHO 

(Chinese Hamster Ovary) cells were routinely maintained in 5% CO2 atmosphere in 

DMEM/F12 medium supplemented with 10% Fetal Bovine Serum, 100 U/ml penicillin, 100 

mg/ml streptomycin, 2 mM L-glutamine. Mouse ES cells (E14 Tg2a, BayGenomics) were 

cultured on gelatin-coated dishes in Knockout-DMEM supplemented with 15% ES cell-

qualified fetal bovine serum, 100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM L-

glutamine, non-essential amino acids, 50 μM β-mercaptoethanol, 1000 U/ml LIF (PAA). For 

routine passaging, cells were rinsed in PBS, treated with TrypLE and split 1:4. Mouse tail-tip 

fibroblasts were grown in DMEM containing 1 g/l glucose (Gibco, Germany), supplemented 

with 10% Fetal Bovine Serum, 100 U/ml penicillin, 100 mg/ml streptomycin, and 2 mM L-

glutamine.  
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Microcell-mediated chromosome transfer (ММСТ) 

This procedure was performed as described elsewhere. 15, 17 Microcells were collected from 

1x108 CHO cells containing the alphoid-TetO-HAC carrying GFP gene. HAC was transferred 

into E14 mouse ES cells (3x106) via fusion of microcells with target cells. For fusion we used 

Neo EX HVJ Envelope Transfection Kit (Cosmo Bio, Japan). Bsd selection (4 μg/ml) was 

applied 48 hrs later and ES cell clones were picked after 2 weeks of growth in the selective 

conditions. 

 

Immunocytochemistry 

ES cells were fixed in 4% paraformaldehyde (Sigma)-PBS, permeabilised in 0.1% Triton X-

100 (Sigma)-PBS, incubated with blocking buffer (3% BSA-PBS) for 30 minutes. Samples 

were then incubated overnight at 4°C with primary antibodies to Oct4 (sc-5279, Santa Cruz 

Biotechnology Inc), Nanog (REC-RCAB0002P-F, COSMO BIO CO., Tokyo, Japan), SSEA-1 

(MC-480, Developmental Studies Iowa Hybridoma Bank), all diluted 1:100 in the blocking 

buffer supplemented with 0.1% Tween20. Then samples were rinsed 5 times in washing buffer 

(0.1% Tween in PBS) and stained with goat anti-mouse-Cy3 (Jackson Immunoresearch 115-

165-146) or donkey anti-Rabbit-Cy3 (Jackson Immunoresearch 711-165-152) for 1 hour. 

Subsequently, samples were washed 5 times in washing buffer and counterstained with 10 

mg/ml Hoechst 33342 (Sigma). Stained cells were examined on a Keyence BZ-9000 

fluorescent microscope with 40x-air and 63x-oil immersion objectives or on a confocal Leica 

TCS SP5 microscope with 206air and 636oil immersion objectives. UV (405 nm), Argon (488 

nm) and HeNe (633 nm) lasers were used to excite the fluorophores.  

 

Teratoma formation test 

Mouse ES cell carrying HAC (clones A1, B1, C1, D1, F1) exponentially growing on gelatin 

coated dishes in ES medium, were harvested with TrypLE express (Gibco), resuspended in 

PBS and injected subcutaneously (1×106 cells) into athymic CD-1 NUDE mice. After 4-6 

weeks teratomas were removed from euthanized animals and processed for histological and 

immunohistochemical analysis.  

 

Immunohistochemistry 

Teratomas were excised and fixed in 4% PFA prepared on PBS at 4ºC overnight. After 

washing in PBS (2 times, each for 2 hrs) they were dehydrated in an ethanol series (70-100%) 

and isobutanol : paraffin series (2:1-1:1-1:2) and were embedded in paraffin (Sigma). 7 μm 

sections were prepared using Leitz 1208 microtome (Germany). Paraffin sections were washed 
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in xylene, rehydrated through an ethanol series (100-70%) and washed in 0.1% Tween20-PBS. 

After blocking in 1% BSA-0.1% Tween20-PBS for 30 minutes sections were incubated 

overnight with primary antibodies against GFP (Life Technologies A-11120) at 4°C. Then, 

sections were washed several times in 0.1% Tween20-PBS and incubated with secondary 

antibodies conjugated with Alexa488 (Abcam ab150113) for 3 hrs at room temperature (RT). 

After that, sections were washed in 0.1% Tween20-PBS, counterstained with DAPI and 

embedded into an anti-fading media under coverslips. Primary and secondary antibodies were 

diluted in 1% BSA-0.1% Tween20-PBS, respectively, 1:200 and 1:500. The samples were 

examined on BZ-9000 (Keyence) or Axiovert 40 (Zeiss) fluorescent microscopes.  

 

Preparation of metaphase spreads 

Metaphase spreads were prepared as previously described in refs. 18 and 19 with 

modifications. Exponentially growing (80% confluent) HAC-CHO cells were treated for 2-4 

hrs at 37°C with 0,1 μg/ml colcemid (KaryoMAX, Life Technologies) in 5% CO2 atmosphere. 

Cells were harvested by trypsinization and incubated in hypotonic (0.56% KCl) solution for 20 

min. After that cells were fixed in a fixative solution (Methanol/Acetic acid 3:1, v/v) washed 3 

times in the fixative solution and stored, if necessary, in fixative solution at -20°C. For 

metaphase spreads the cells suspension was placed dropwise on pre-cleaned microscope glass 

slides (Superfrost, Thermo Scientific, Germany), air-dried and aged at least 3 days or longer at 

RT in dust-free place. For preparation of metaphases from tail-tip fibroblasts, the cells were 

cultured overnight in 0.05 μg/ml colcemid at 37°C in 5% CO2 atmosphere and processed as 

described above. 

 

FISH 

Fluorescent in situ hybridization analysis was performed as described elsewhere with 

modifications. The construct containing the alphoid-tetO array p3.5 20 was labeled with 

Alexa546, using the ULYSIS® Nucleic Acid Labeling Kit (Life Technologies) as per 

manufacturer recommendations. This labeled probe was denatured at 75°C for 5 min, then 

incubated in hybridization solution containing 50% formamide at 37°C for 30-60 min, and 

finally incubated overnight with denatured and dehydrated metaphase spreads under the cover 

slip in a humidified chamber. The slides were washed once in 50% formamide / 2x SSC at 

42°C, twice in 2x SSC at 42°C, once in 1x SSC at 42°C, briefly rinsed with ddH2O, air-dried 

in the dark, and mounted into VECTASHIELD medium containing DAPI (Vector 

Laboratories). Slides were examined on a BZ-9000 (Keyence) fluorescent microscope with 

40x-air and 63x-oil immersion objectives. 
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Blastocyst injection 

Mouse ES cell carrying HAC (clones B1, C1) were trypsinized, resuspended in a small amount 

of ES-medium and kept on ice until the injection. Embryos were recovered by flushing the 

uterine horns with M2 medium (Sigma) from superovulated 23-25 days old C57Bl/6 inbred 

female mice at 3.5 dpc, as previously described. 21 15-17 ES-HAC cells were injected per 

blastocyst and embryos were transferred into uterine horns of 2.5 dpc or to the oviducts of 0.5 

dpc anesthetized pseudopregnant CB6F1 females (10–12 embryos per recipient).  

 

Isolation of mouse tail-tip fibroblasts 

Tail tip (approximately1 cm) biopsies were minced by scalpel to small pieces, incubated with 1 

mg/ml collagenase IV (Sigma) for 15 min at 37°C, washed with PBS, additionally treated with 

TrypLE express (Life Technologies) for 20 min at 37°C, resuspended in fibroblast culture 

medium, collected by centrifugation, resuspended in the same medium and plated in a well of 

6-well plate. Culture media was changed every second day. 

 

RESULTS 

The alphoidtetO-HAC, featuring a CAG-EGFP-polyA cassette flanked by the cHS4 

insulators (Figure 1A), was assembled in CHO cells (Figure 1B, Figure S1) and then delivered 

into mouse ES cells. For over 30 years, the only known route to intercellular chromosome 

transmission remains MMCT. This approach is efficient (10-5) for alphoidtetO-HAC delivery 

into various cultured cancer cell types, 15, 16, 22 but has repeatedly failed for ES cell recipients. 

After an assessment of a series of modifications of the original microcell mediated 

chromosome transfer (MMCT) method, however, we have developed a protocol for EGFP-

HAC delivery into mouse ES cells, albeit with limited efficiency (10-6). The modifications 

included the pre-mixing of HAC-containing microcells and recipient ES cells with the Sendai 

virus envelope prior to their fusion (see Experimental Procedures).   

Five morphologically undifferentiated EGFP-HAC-bearing ES cell colonies (Figure 

1C, Figure S2) selected in blasticidin (Bsd)-containing medium were picked, expanded, and 

analyzed by FISH (Figure 1D). Two EGFP-HAC ES cell clones (B1 and C1) that showed 

mostly normal male karyotype cells (40XY) and autonomic EGFP-HAC (Figure 1D) were 

chosen for further analysis. The other three clones showed either abnormal karyotypes or HAC 
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integration into host chromosomes, and were discarded. ES cell clones B1 and C1 were 

morphologically indistinguishable from their wild-type counterpart, stably expressed EGFP for 

at least 15 passages (Figure S3), and expressed the pluripotency markers Oct4, Nanog, and 

SSEA-1 (Figure 1E). When injected into NUDE mice, these cells formed teratomas with 

clearly visible differentiated cell types belonging to all three germ layers. Immunostaining 

revealed widespread expression of EGFP in the germ layers throughout the tumor (Figure 2). 

These data taken together suggest that the presence of the alphoidtetO-HAC in mouse ES cells 

does not affect pluripotent properties such as self-renewal and multilineage differentiation 

capacity. In addition, this alphoidtetO-HAC is mitotically stable and maintains the expression of 

the constituent EGFP marker gene throughout multiple cell divisions and processes of 

differentiation into virtually all cellular types present in teratomas. 

Our next goal was to assess the ability of the EGFP-HAC-bearing ES cells to contribute 

to embryonic development following their injection into mouse blastocysts (Figure S4), and to 

evaluate the mitotic and transcriptional robustness of this HAC during this process. First, we 

analyzed 10.5 dpc chimeric embryos and found widespread EGFP-HAC-bearing ES cell 

descendants (Figure 3A). We next examined live born chimeric mice (Figure 3B). EGFP-HAC 

was found to be maintained as an autonomous chromosome unit, assessed by FISH analysis of 

primary fibroblast cultures derived from the tail tips of chimeric mice (Figure 3C and D). We 

detected significant contribution of EGFP-HAC ES cell clones (B1 and C1) to cell types of all 

three germ layers (Figure 3E-J). The data support the conclusions of the previous teratoma test 

results − namely, that alphoidtetO-HAC is highly mitotically stable and effectively maintains 

transcriptionally active genes through differentiation from the pluripotent epiblast to terminally 

differentiated cells of adult mice. The data further suggest that the alphoidtetO-HAC is well 

tolerated by these somatic cell types. 

 

DISCUSSION 

HACs provide powerful systems with great potential to study kinetochore and centromere 

functioning, chromosome instability and chromosome mis-segregation in cancer cells, 

screening of anticancer drugs and environmental mutagens, production of biopharmaceutical 

proteins and human antibodies, etc. (reviewed in ref. 2 and references therein). Certain 

functional features, such as virtually unlimited cloning capacity, lack of host genome 

perturbations, high mitotic and transcriptional stability, and, as incorporated uniquely into 
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alphoidtetO HACs, the option of conditional removal, make HACs highly versatile gene 

delivery tool, overcoming most of the problems of viral and non-viral vector systems. A major 

caveat of this vector system, however, has been that HACs cannot be efficiently delivered to 

target cells or tissues of the body but require carrier cells that can be manipulated ex vivo and 

re-introduced into embryo or adult organism. The carrier cells must meet key criteria: 

clonogenicity, substantial self-renewal capacity, genetic and epigenetic stability, and 

differentiation capacity. Obviously, pluripotent stem cells, such as embryo-derived ES cells 23 

and soma-derived iPS cells 24 are ideal HAC carriers that fulfill all above criteria. Some adult 

stem cell types such as endodermal Lgr5+ stem cells and mesoangioblasts have comparable 

advantages, but their differentiation potential is limited only to respective adult cell types. 7, 25-

27 This study shows, for the first time, successful delivery of the alphoidtetO-HAC into mouse 

ES cells and its stable maintenance throughout differentiation of these cells into somatic cell 

types of adult mice. 

AlphoidtetO-HACs could be valuable tools to investigate rodent models of human 

diseases. Introducing human full-size genes into mice offers the opportunity to analyze in vivo 

function or screen for therapeutic molecules. This paper shows that this can be done via ES 

cells, which opens an opportunity to develop specific human disease models and is a first step 

towards future application of HACs in tackling recessive hereditary human diseases (Figure 

S5). Clearly, there are many critical issues that must be further addressed: whether and how 

alphoidtetO-HACs are transmitted into the mouse germline; whether these HACs can be 

delivered into human ES, iPS and adult stem cells and how they are maintained in these cells 

and differentiated cells derived thereof; and whether alphoidtetO-HAC carrying reprogramming 

factors can be used for iPS cell derivation. Novel HAC transfer methods could also overcome 

the limitations of MMCT. Nevertheless, based on the data thus far, ES cells containing HACs 

provide a route to develop specific disease models in mice as a first step to conceivable 

applications in alleviating recessive hereditary human diseases. 
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FIGURE LEGENDS

Figure 1. Derivation and characterization of EGFP-HAC. (A) Schematic representation of the 

1.1- Mb alphoidtetO-HAC (top) assembled de novo from synthesized human chromosome 17 

alphoid repeat (white block arrow) containing either a CENP-B box (yellow) or, in place of the 

CENP-B box, the tetO motif. The HAC additionally features multiple copies of vector 

sequence (gray block arrows) containing Bsd-resistance cassette (blue), the 5’ portion of the 

HPRT gene, and a loxP site which is used for Cre recombinase-mediated loading of desired 

DNA sequences, such as a loxP-containing plasmid with CAG-EGFP cassette flanked by the 

cHS4 insulators. Successful Cre/loxP recombination events restored HPRT gene function and 

thus, could be selected in HPRT-/- CHO cells in the HAT medium, resulting in the EGFP-HAC. 

(B) Fluorescent bioimaging of EGFP in living donor CHO cells carrying the assembled EGFP-

HAC. (C) Live EGFP imaging in mouse ES cells harboring the EGFP-HAC transferred therein 

from the CHO cells via the MMCT procedure. Shown are combined transmission light and 

fluorescent images (В, С). (D) FISH analysis of a metaphase plate of the EGFP-HAC ES cells 

(clone C1), using a Cy3-labeled DNA probe specific to the alphoid repeat. The DNA was 

stained with DAPI (blue). The EGFP-HAC is visible as a pink dot (white arrow). (E) 
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Fluorescent immunostaining of the EGFP-HAC ES cells (clone C1) with indicated primary 

antibodies. 
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Figure 2. Multilineage differentiation capacity of the EGFP-HAC ES cells within teratomas, 

exemplified by the formation of ciliated epithelium (ectoderm germ layer), skeletal muscles 

(mesoderm germ layer), and gut epithelium (endoderm germ layer), all showing EGFP 

expression following immunofluorescent staining (lower row). H&E – hematoxylin-eosin 

staining (upper row). 
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Figure 3. Contribution of EGFP-HAC ES cells to mouse development following blastocyst 

injection. (A) A representative 10.5 dpc chimeric embryo. (B) A representative 4-week old 

chimeric mouse. (C) Tail tip of a chimera, which was used to establish primary culture of 

fibroblasts. (D) FISH analysis of the established fibroblasts, using a Cy3-labeled DNA probe 

specific to the alphoid repeat. (E-J) EGFP visualization in paraffin sections of representative 

organs of the chimeric adult mice. Shown are sections of brain (E) and retina (F), both of 

ectoderm germ layer, heart (G) and skeletal muscles (H) of mesoderm origin, and bronchial 

epithelial cells (I) and liver hepatocytes (J), both belonging to the endoderm germ layer.  
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