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Introduction 

“I often say that when you can measure what you are speaking about, and express it in 

numbers, you know something about it; but when you cannot measure it, when you cannot 

express it in numbers, your knowledge is of a meager and unsatisfactory kind […]” (Lord Kelvin, 

Lecture on “Electrical Units of Measurement”, 1883, published in Popular Lectures and 

Addresses, Vol. I, p. 73, Macmillan and Co, London/New York 1889).  

Quantification is a particularly important aspect of biomarker discovery: Protein biomarkers 

such as prostate specific antigen (PSA) and C-reactive protein (CRP) are typically present in 

samples from both healthy and diseased donors[1]. Thus, biomarker discovery not only requires 
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reliable protein identification but also quantification. The current trend of using collections or 

panels of several proteins as biomarkers further increases the need for accurate quantification.  

Unfortunately, the intensity of a peak in a mass spectrum alone cannot be used to measure the 

absolute level of the corresponding peptide or protein. This is due to the fact that peak 

intensity depends on peptide-specific factors such as ionization efficiency. Thus, mass 

spectrometry-based proteomics is intrinsically not quantitative. However, over the last decade 

several strategies have been developed that enable quantification on a global proteomic 

scale[2-5]. The general principle of these strategies is that relative changes in the intensity of a 

peak rather than its absolute intensity are used for quantification. This can be done by 

comparing the intensities of the same peptide across different runs (“label free” quantification). 

Alternatively, peptides can be labeled with heavy stable isotopes (“stable isotope labeling” or 

SIL). Mass spectrometry can distinguish such heavy-labeled peptides from their normal (i.e. 

light) counterparts due to their mass difference, meaning that differentially-labeled samples 

can be mixed and analyzed together in a single run. This gives rise to pairs of physicochemically 

identical peptides of different isotope composition. The ratio of peak intensities of such peptide 

pairs accurately reflects relative changes in the abundance of the corresponding peptides. Due 

to the fact that samples are mixed before digestion, SIL-based approaches are more robust and 

generally considered more precise than label-free methods where samples are processed in 

parallel.  

A particularly powerful approach for SIL-based quantification is stable isotope labeling with 

amino acids in cell culture (SILAC)[6]. Reviewing the huge field of SILAC-based proteomics is 
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beyond the scope of this manuscript;  we refer the interested reader to a number of excellent 

reviews[7-10]. Here, we will present selected examples on how SILAC-based strategies are 

currently used for biomarker discovery which we considered particularly informative.  Since 

dozens of papers with this topic have been published our selection will inevitably be 

incomplete, and we apologize to the colleagues whose work could not be included. We will also 

discuss how SILAC can be used to obtain information about the absolute abundance of proteins 

– an aspect that is particularly relevant for mathematical modeling of diseases. Let us begin 

with a brief introduction to SILAC. 

A brief history of SILAC 

As a metabolic labeling technique, SILAC has its roots in the pioneering work of Rudolf 

Schoenheimer. He realized in 1935 that isotopes can be employed to label a physiological 

substance in such a way that the “the animal organism will not be able to differentiate between 

them” while the chemist is able to “distinguish and to estimate them in small quantities”[11] . 

Since then, growth media in which all atoms of a specific element are replaced by their heavy 

isotopes have been employed in many studies. For example, the Chait lab used 15N substituted 

medium to quantify phosphorylation in yeast [12] and the Heck lab established 15N labeling in 

two additional model organisms,  C. elegans and D. melanogaster[13]. Although these labeling 

approaches allowed for global protein quantification in various model organisms, they also 

have several disadvantages. First, 15N-substituted media is difficult to make for mammalian cells 

that require more complex components. Second, since the mass shift introduced by SIL 

depends on the number of isotopically-altered elements in the analyte, it is typically different 



5 

for different peptides, greatly complicating data analysis. Finally, due to the incorporation of 

multiple labels per analyte, even very highly enriched isotopes result in partial labeling. For 

example, consider a typical peptide with 20 nitrogen atoms: even 99% pure 15N will result in a 

labeling efficiency of only 82% (0.99 20), and this efficiency is further reduced for peptides with 

greater nitrogen content. These disadvantages pose a significant technical hindrance to 

biomarker discovery. 

In 2002, Ong and colleagues developed SILAC as a simple and accurate approach to quantitative 

proteomics in cultured cells[6] which was later extended to complete organisms. In SILAC, 

tissue culture cells are labeled by cultivating them in growth medium containing heavy stable-

isotope encoded essential amino acids. Since cells lack the ability to synthesize these essential 

amino acids on their own, they are compelled to take them up from the growth medium and 

incorporate them into newly synthesized proteins. After about 8 cell divisions, virtually all 

cellular proteins are fully labeled. Differentially labeled samples are then combined, digested 

and analyzed by mass spectrometry. Lysine and arginine are the most popular amino acids for 

SILAC, since trypsin, the workhorse enzyme of proteomics, cleaves C-terminal of these residues, 

meaning most tryptic peptides will contain a single C-terminal label. The ratio of peak 

intensities between labeled peptide pairs forms the basis to accurately quantify relative 

changes in the abundance of the corresponding proteins (Figure 1 A). Despite the enormous 

advantages of using the SILAC labeling technique, SILAC comes at a price. The use of two or 

three labels (light, medium, heavy) adds to the complexity of the sample; in the worst case 

triplicating the peaks detected from a proteome. This typically results in less identifications per 
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run, although newest mass spectrometers are fast and sensitive enough to counteract this 

effect. 

With more than 2,000 citations of the landmark SILAC paper, the method is one of the most 

popular approaches for expression proteomics, and has been employed to answer a wide range 

of questions in diverse areas of biomedical research[7]. The most significant advantage is that 

SILAC is more accurate than either label-free quantification or chemical labeling approaches[14-

16], due to the fact that differentially labeled samples can be combined very early in the 

workflow, minimizing errors introduced during sample handling. SILAC is particularly 

advantageous in situations where samples are extensively processed, such as fractionation and 

affinity-based enrichment of peptides with post-translational modifications. Furthermore, due 

to the high accuracy of SILAC, the method yields high quality data even for single peptides. This 

is particularly beneficial for analysis of posttranslational modifications which have to be 

quantified at the peptide level. For this reason, SILAC is particularly popular for 

phosphoproteomics[17-19]. Moreover, since SILAC is a metabolic labeling method, it can also 

be employed to quantify protein dynamics by measuring the rate of isotope incorporation. For 

example, dynamic SILAC can quantify protein turnover and pulsed SILAC can measure changes 

in protein synthesis on a proteome-wide scale[20-22]. 

SILAC for patient-derived samples: the spike-in approach 

As the name indicates, SILAC was designed specifically to label cells in culture. However, metabolic 

labeling with amino acids can also be used to label entire organisms (for an overview see Kirchner and 

Selbach[23]). The approach has been used to create an entire SILAC zoo, ranging from lower eukaryotes 
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like baker’s yeast[24] via worms[25] and flies[14] up to mice [26]. Here, the naturally-occurring 

auxotrophies are used and the light lysine amino acid is replaced with its heavy counterpart. Long 

labeling times and special diet requirements preclude this technique from use on human beings, so 

alternate techniques must be used for the introduction of isotopic labels into human-derived samples. A 

number of post-lysis labeling methods have been well-established (e.g. dimethylation of lysines[27] or 

iTRAQ labeling of peptide amino groups[28]), although such approaches introduce significantly more 

variation into the system relative to metabolic labeling techniques, which allows mixing of the samples 

early in the biochemical preparation process. All variations in lysis efficiency, biochemical preparations 

etc. can thus be neglected[2,16]. 

Although SILAC cannot be used to directly label humans, the development of SILAC spike-in methods 

extend the use of the SILAC methods to non-cell culture samples of human origin, including clinical 

samples. For the spike-in approach, a human cell line is labeled with the SILAC amino acids in culture, 

then protein extracts of the labeled cells are subsequently spiked into the clinical human sample. The 

heavy labeled material is used as a reference standard (Figure 1B), whereby every identified protein is 

quantified in comparison to the standard, thus enabling relative quantification between the different 

samples. The idea of using cell culture-derived reference standards for quantification was first applied 

for quantitative proteomics in mouse brain[29] and has since become a popular experimental design for 

SILAC experiments.  

The spike-in method, while allowing the quantification of patient samples, introduces more variability to 

the analysis in comparison to labeling in cell culture. Mixing the standard and the sample late in the 

preparation does not compensate for differences in lysis and extraction efficiency. In addition, the 

protein composition of the standard is itself problematic; in order to quantify the proteins present in the 

sample the protein has to be present in the labeled standard. If the protein is not detectable in the 
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standard, SILAC-based quantification is impossible. Furthermore, SILAC is most accurate when the 

abundance of differentially labeled peptide pairs is similar i.e. same order of magnitude. The ideal 

reference standard, therefore, contains all proteins that are present in the clinical sample at an 

abundance similar to their physiological levels. These considerations led to the development of the 

Super-SILAC method[30]. Here the concept is that different cell lines are curated and combined in a way 

to best represent the sample of interest. In order to prepare the best possible reference standard 

several cell lines originating from different tissues are labeled and compared in an initial experiment 

with the complexity of the patient sample. The tailored combination of cell lines representing most of 

the proteins is used for the subsequent quantification steps. It is probably impossible or impractical to 

design a cell line reference standard that would be a perfect match to the tissue. However, the Super-

SILAC approach has been shown to reduce the dynamic range of log2 fold changes between the 

reference standard and the tissue[30]. This increases the accuracy and precision of quantification, even 

though combining several cell lines increases the complexity of the heavy standard. 

SILAC and biomarkers: current applications 

Although the applications of SILAC-based proteomics for biomarker discovery are quite diverse, more 

than half of the studies focused on cancer. This is not surprising because early diagnosis is critical for the 

success of therapeutic intervention[31]. The human plasma proteome holds the promise of 

revolutionizing early diagnosis once the characteristic proteins indicative of a specific disease are known. 

However, protein concentrations in plasma span a dynamic range of more than ten orders of magnitude, 

posing a major challenge to proteomic discoveries[1]. This is probably reflected in the fact that no single 

biomarker identified and validated by proteomics has found its way into clinical practice[32]. A current 

trend is to focus on subproteomes such as secreted proteins (secretome), or on specific proteins of 

interest with targeted (as opposed to global) MS approaches. Rather than reviewing all of the different 
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SILAC-based studies for biomarker discovery we will focus on the analysis of secretomes as well as 

targeted approaches. 

Secreted proteins are particularly attractive for biomarker discovery. As their name indicates, these 

proteins are released from cells into the surrounding matrix and are thus detectable in biological fluids 

such as plasma. Additionally the secretion pattern is changed when a cell is transformed to a cancer 

cell[33]. So a number of studies used SILAC-based quantitative proteomics to identify proteins secreted 

from different kinds of cancer cells. For example, proteomic comparisons of neoplastic and non-

neoplastic pancreatic cells led to the identification of more than 100 proteins that are preferentially 

secreted by neoplastic cells, with similar results obtained recently for gastric cancer[34,35]. SILAC-based 

proteomics was also used to characterize proteins secreted from metastatic and non-metastatic colon 

cancer cells[36]. In such studies, secreted proteins are identified from cell culture experiments and not 

directly in plasma. Instead, Yu and co-workers used secreted proteins derived from heavy-labeled 

pancreatic cancer cells to generate a reference standard[37]. Spiking this reference standard into sera 

from pancreatic cancer patients and into control sera allowed them to identify proteins upregulated in 

cancer. A study from the Mann lab combined the super-SILAC approach with biochemical enrichment of 

N-glycosylated peptides from breast cancer cell lines[38]. Since the secretome profiles correctly 

clustered different cancer stages and corresponding glycopeptides were also detectable in human 

serum, this appears to be a promising strategy for finding the hallmarks of an underlying pathology. In a 

study using labeled cells as a spike-in standard, Montaldo et al. identified vimentin as a new biomarker 

for the diagnosis of liver fibrosis after HCV infection[39].  

All techniques described so far are true shotgun proteomic techniques, capable of quantifying 

thousands of different proteins in one experiment. For many studies this is not really necessary, since 

the main targets are already well-characterized and the pathways involved have been identified. Here 
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the combination of the SILAC labeling and immunoprecipitation techniques provides a unique approach 

to identify new biomarkers. Cell lines are labeled with the SILAC technique and the protein target of the 

analysis is precipitated using a specific antibody, with co-precipitated material then subjected to a 

shotgun mass spectrometric analysis. The aim is to identify the complete interactome of the target and 

the ratio of the heavy signal to the light one can be used to identify specific interactors vs. nonspecific 

binders. This allowed Paweletz and coworkers to identify new phosphorylations sites that are responsive 

to different PDK1 inhibitors[40]. In a related study, Andersen and colleagues identified 71 regulated 

Phospho-sites of the PI3K pathway using a similar approach[41].  

Selected reaction monitoring (SRM) has been used as a method for absolute quantification of 

proteins[42], usually on a small scale due to the relative laborious setup of the technique in comparison 

to shot-gun based quantifications[43,44]. Here the known mass of a peptide is selected from the 

complex proteomic sample, fragmented followed by the selection of specific fragment ions. For the 

quantification of the target heavy labeled peptides are added to the proteomic preparation, serving as a 

reference of know concentration. A variation of this approach and an alternative to biochemical 

enrichment, SILAC-based quantification can also be used in SRM-type analysis, with a heavy SILAC spike-

in standard used as the reference in a classical SRM experiment. While the full potential of this approach 

remains to be explored, data from Liu and co-workers indicated that the method can be employed to 

reproducibly quantify 17 breast cancer-related focal adhesion proteins[15]. On the one hand, the 

advantage of this set-up is that SILAC can generate tens of thousands of isotopically labeled peptides at 

minimal costs. On the other, the method only allows for relative quantification, since the absolute 

amounts of the reference proteins spiked-in are unknown. A current development from the Uhlen and 

Mann lab uses a quantifiable library of tagged human protein fragments (termed Protein Epitope 

Signature Tags, PrEST) that were developed in the course of the Human Protein Atlas Project (Figure 1 C) 

[45,46]. The intelligent use of SILAC labeling and recombinant proteins, which are spiced into the 
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proteomic mixture at known concentrations, allows the quantification of proteins in the proteomic 

sample. This enabled absolute quantification of 40 proteins in cancer cells. Applied to biomarker 

identification, this holds the promise of quantifying candidate proteins across a large number of samples 

with unprecedented accuracy. As Lord Kelvin suggested, expressing our knowledge of something in 

numbers is an overarching goal in our pursuit of understanding.    

In conclusion, SILAC-based approaches have been successfully used in a number of biomarker studies. 

Compared to other methods, SILAC-based quantification has the unique advantage of low experimental 

variability. In the future, the widespread availability of high-resolution mass spectrometers and 

automated data processing pipelines will further advance biomarker discovery. Eventually, this may 

bring mass spectrometers to the doctor's office - the dream of early pioneers like John Fenn.  
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Figure 1 legend 

A. SILAC labeling and analysis of cells. Starting from an unlabeled culture, cells are labeled by 

cultivating them in media containing SILAC amino acids. The cells are harvested and combined prior 

to lysis and protein extraction. After digesting the proteins with a suitable protease, the resulting 

peptides are subjected to chromatographic separation and analyzed on a high-resolution mass 
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spectrometry. The signal in the MS spectra is then used to quantify the amount of peptides present 

in the sample. B. Spike-in SILAC analysis. In a separate preparation a cell line is labeled with heavy 

amino acids,and the extracted proteins destined for use as a reference standard. The same amount of 

the heavy protein standard is spiked into protein extracts prepared from the sample of interest. After 

digestion with a suitable protease the peptides are purified and analyzed on a high-resolution mass 

spectrometer. The isotopically-heavier peak of the spiked-in material (red) is used as an internal 

standard, and the corresponding isotopically-light peptide is quantified in relation to this standard, 

allowing the comparison between the different samples. C. Absolute quantification using PrEST 

standard proteins has several steps. The first is the recombinant expression and quantification of the 

PrEST standard protein in E.coli. The PrEST epitope tag contains several domains, among them an 

albumin binding domain (ABP or ProA). A heavy-labeled recombinant version of the ABP proteins is 

then used for the quantification of the PrEST-tagged recombinant protein. The absolute amount of 

the ABP is determined by amino acid analysis. By determining the relative ratio of the PrEST tag in 

relation to the ABP, the absolute amount of the PrEST-tagged protein is determined. In a second step 

a known amount of the PrEST-tagged protein is spiked into the sample of interest. By measuring the 

relative ratio of the peptides derived from the PrEST protein to the cellular protein, the absolute 

abundance of the proteins can be calculated. 
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