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16Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
17Promega Corporation, Madison, WI 53703, USA
18Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
19Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin,
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SUMMARY

Somatic mutations in IDH1/IDH2 and TET2 result in
impaired TET2-mediated conversion of 5-methylcy-
tosine (5mC) to 5-hydroxymethylcytosine (5hmC).
The observation that WT1 inactivating mutations
anticorrelate with TET2/IDH1/IDH2 mutations in
acute myeloid leukemia (AML) led us to hypothesize
that WT1 mutations may impact TET2 function. WT1
mutant AML patients have reduced 5hmC levels
similar to TET2/IDH1/IDH2mutant AML. Thesemuta-
tions are characterized by convergent, site-specific
alterations in DNA hydroxymethylation, which drive
differential gene expression more than alterations
in DNA promoter methylation. WT1 overexpression
increases global levels of 5hmC, and WT1 silencing
Cell Re
reduced 5hmC levels. WT1 physically interacts with
TET2 and TET3, and WT1 loss of function results in
a similar hematopoietic differentiation phenotype as
observed with TET2 deficiency. These data provide
a role for WT1 in regulating DNA hydroxymethylation
and suggest that TET2 IDH1/IDH2 and WT1 muta-
tions define an AML subtype defined by dysregu-
lated DNA hydroxymethylation.
INTRODUCTION

Gene discovery studies in human cancers have identified novel

mutations that inform newmechanisms ofmalignant transforma-

tion. Recurrent somatic mutations in epigenetic regulators com-

pose an emerging class of disease alleles. Mutations in epige-

netic modifiers have been observed in the majority of patients
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with acute myeloid leukemia (AML), including mutations in DNA

methyltransferases (Ley et al., 2010; Yan et al., 2011), chromatin

modifying enzymes (Ernst et al., 2010), and histone methyltrans-

ferase readers (Wang et al., 2009). Notably, mutations in epige-

netic modifiers and epigenetic signatures have been found to

have prognostic and biologic relevance in AML (Bullinger et al.,

2010; Figueroa et al., 2010b; Patel et al., 2012) and have led to

the development of epigenetic therapies, in the context of clinical

trials, for molecularly defined AML subsets (Bernt et al., 2011;

Daigle et al., 2011; Dawson et al., 2011; Filippakopoulos et al.,

2010; Zuber et al., 2011).

One class of mutations found in AML and in other malig-

nancies affects the conversion of 5-methylcytosine (5mC) to

5hydroxymethylcytosine (5hmC), mediated by the TET family of

enzymes. These include mutations in TET2 and IDH1/IDH2.

Mutational profiling of 398 patients with de novo AML demon-

strated that TET2 and IDH1/IDH2 mutations were mutually ex-

clusive and featured extensive promoter hypermethylation

(Figueroa et al., 2010a; Patel et al., 2012). TET2 has been impli-

cated in mediating demethylation of DNA with hydroxymethyla-

tion as an intermediate step in this process. TET2 loss of function

results in reduction of genomic 5hmC and a reciprocal increase

in 5mC (Ko et al., 2010). A similar effect is caused by aberrant

production of the oncometabolite 2-hydroxyglutarate (2-HG) by

gain-of-function IDH1/IDH2 mutations, which result in inhibition

of TET enzyme catalytic functions (Figueroa et al., 2010a).

Hence, these mutations define a class of AMLs with reduced

genome-wide 5hmC. Notably, mutations or altered expression

of IDH1/IDH2 and TET genes likewise result in altered 5hmCcon-

tent in glioblastomas and melanomas (Lian et al., 2012). Yet, it

has been shown that not all AML cases with low levels of

5hmC harbor somatic mutations in TET2 and IDH1/IDH2 (Kon-

standin et al., 2011). Hence, there are likely additional somatic

mutations that can lead to direct or indirect alterations in TET

enzyme function.

Recent technologic developments have enabled 5hmC map-

ping to be performed in normal tissues and in embryonic stem

cells. These studies showed that 5hmC is commonly localized

to gene regulatory elements, including promoters, gene bodies,

and enhancers (Stroud et al., 2011). However, to date, genome-

wide localization of 5hmC has not been reported in human ma-

lignancies, and the impact of TET2 and IDH1/IDH2 mutations

and/or other mutations on 5hmC distribution has not been inves-

tigated. Cytosine methylation studies have often showed a weak

inverse correlation between alterations in promoter DNAmethyl-

ation and differential gene expression (Bell et al., 2011; Kulis

et al., 2012), raising the possibility that other epigenetic modifi-

cations, such as 5hmC, may be more tightly linked with tran-

scriptional changes.

In this study, we examined themutational status, gene expres-

sion profiles, and cytosine methylation profiles of a cohort of 398

AML patients for novel mutations that might functionally overlap

with IDH1/IDH2 and TET2. Here, we show that WT1 mutations

are significantly reduced in frequency in patients with TET2/

IDH1/IDH2 mutant AML, and that WT1 mutant AML is char-

acterized by altered DNA methylation and global reductions in

5hmC similar to that observed in TET2/IDH1/IDH2 mutant

AML. Furthermore, we demonstrate that alterations in WT1
1842 Cell Reports 9, 1841–1855, December 11, 2014 ª2014 The Aut
levels directly regulate 5hmC levels, which is due to an interac-

tion between TET2/TET3 and WT1.

RESULTS

WT1 Mutations Are Inversely Correlated with IDH/TET2

Mutations in AML and Display Overlapping Promoter
Hypermethylation Signatures
We recently performed mutational profiling of 398 AML patients

and noted that TET2 and IDH1/IDH2 mutations were mutually

exclusive (Figueroa et al., 2010a; Patel et al., 2012). We next

investigated the same patient cohort for other mutations

inversely correlated with TET2 and IDH1/IDH2 mutations. Muta-

tions in theWT1 gene were mutually exclusive of IDH1/IDH2mu-

tations (Patel et al., 2012) and negatively correlated with TET2

mutations (Figure 1A; Figure S1A). Twenty-eight of 313 (9%) of

TET2/IDH-wild-type patients had somatic WT1 mutations,

whereas two of 85 (2%) TET2/IDH1/IDH2 mutant patients had

co-occurring WT1 mutations (p = 0.026, Fisher’s exact test,

Table S1). We observed a similar inverse relationship between

WT1 mutations and TET/IDH1/IDH2 mutations in the AML

samples analyzed by TCGA (Table S2). Analysis of combined

data from the ECOG1900 study and the AML TCGA data set

confirmed a significant anticorrelation between WT1 mutations

and TET2/IDH1/IDH2 mutations (p = 0.0164, Fisher’s exact

test, Table S3; Figure S1B). These data suggested a shared func-

tional role for WT1, TET2, and IDH1/IDH2 mutations in AML.

Using promoter DNA methylation microarrays (Figueroa et al.,

2010a), we analyzed the DNA methylation profiles of 30 WT1

mutant AML samples compared to 11 normal CD34+ bone

marrow cells and identified 653 differentially methylated regions

(DMRs, see Experimental Procedures) in WT1 mutant AML

patients. The vast majority of the DMRs were aberrantly hyper-

methylated (Figure 1B). Next, we compared WT1 mutant AML

samples to a cohort of 29 AML1-ETO AMLs wild-type for WT1/

TET2/IDH1/IDH2 mutations and identified 124 DMRs, 68% (n =

84) of which were hypermethylated inWT1mutant AML patients

(Figure 1C). TET2 mutant and IDH1/IDH2 mutant AML patients

were also characterized by hypermethylation compared to

AML1-ETO-positive AML (Figures S1C and S1D). Comparative

analysis of the three hypermethylation profiles revealed a near-

complete overlap of TET2 and WT1 hypermethylated loci within

the IDH1/IDH2 hypermethylation signature, and a highly signifi-

cant overlap between the TET2 and WT1 mutant signatures

(Fisher’s exact test, p value < 0.001 for all comparisons) (Fig-

ure 1D), consistent with convergent, site-specific effects on

DNA methylation.

WT1, TET2, and IDH1/IDH2Mutations AreCharacterized
by Global Reductions in 5hmC in Primary AML Samples
Given that IDH1/IDH2 mutations or silencing of TET2 leads to

reduced 5hmC levels in hematopoietic cells (Figueroa et al.,

2010a; Ko et al., 2010), we hypothesized that AML patients

with WT1 mutations would also be characterized by reduced

5hmC due to reduced TET enzymatic function. Liquid chroma-

tography-electron spray ionization-tandem mass spectrometry

(LC-ESI-MS/MS) revealed that WT1 mutant AML patients had

significantly reduced 5hmC when compared to AML patients
hors



Figure 1. WT1 Mutations Are Inversely Correlated with TET2/IDH1/IDH2 Mutations and Display Similar Global Methylation Profile

(A) Circos representation of targeted mutational data from 398 AML patients. Co-occurrence of mutations is represented by lines connecting genes. The width of

connecting lines represents frequency of mutations. TET2 and IDH mutations are combined in this analysis. IDH mutations are designated by orange ribbons,

TET2 mutations by yellow ribbons, and WT1 mutations by blue ribbons.

(B) Promoter methylation signatures in WT1 mutant AML versus normal bone marrow (NBM).

(C) Comparison of promoter methylation signatures in WT1 mutant AML and AML1-ETO AML.

(D) Overlap of hypermethylated loci in WT1 mutant AML compared with those previously identified in TET2 and IDH1/IDH2 mutant AMLs.

(E) 5-methylcytosine (5mC, left) and 5-hydroxymethylcytosine (5hmC, right) levels in AML samples from patients with or without WT1, TET2, or IDH1/IDH2

mutations. 5mC and 5hmC levels were determined by liquid chromatography-electron spray ionization-tandemmass spectrometry (LC-ESI-MS/MS). Error bars

represent SEM.
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Figure 2. Convergent, Site-Specific Alterations in DNA Hydroxymethylation in AML Patients with TET2, IDH1/IDH2, and WT1 Mutations

(A) KIRREL locus demonstrating depletion of 5hmC marks in AML patients with TET2, WT1, and IDH1/IDH2 mutations.

(B) Percentages of differential 5hmC regions and 5mC bases. Bar plot on the left demonstrates percentages of hypo- or hyper-5hmC regions out of all canonical

peaks in WT1, TET2, and IDH1/IDH2 mutants compared to AML1-ETO patients. Bar plot on the right demonstrates the percentages of hypo- and hyper-

methylated CpGs out of all covered CpGs inWT1, TET2, and IDH1/IDH2mutants compared to AML1-ETO patients. Differentially methylated CpGs that overlap

with differential 5hmC regions are removed from the analysis.

(legend continued on next page)
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wild-type for WT1, TET2, or IDH1/IDH2 (p = 0.016 t test, Fig-

ure 1E). Similarly, the reduction in 5hmC levels was comparable

in extent in WT1 mutant AML patients compared to IDH1/IDH2

mutant and TET2 mutant AML patient samples. This finding

was confirmed by dot-blot analysis (Song et al., 2011) (Fig-

ure S1E). Although global cytosine methylation abundance was

significantly increased in IDH1, IDH2, and TET2mutant patients,

there was no significant increase of 5mC in WT1 mutant AML,

suggesting that WT1 mutant AML is primarily characterized by

alterations in 5hmC leading to site-specific effects on DNA

methylation rather than a global increase in 5mC.

5hmC Mapping Reveals Similar Alterations in 5hmC
Localization in WT1, TET2, and IDH1/IDH2 Mutant AML
In order to determine the impact of IDH1/IDH2, WT1, and TET2

mutations on the distribution of epigenetic marks throughout

the genome more precisely, we examined 5mC and 5hmC

localization in primary AML specimens with next-generation

sequencing. Once again, specimens with AML1-ETO transloca-

tion, which are all wild-type for IDH1/IDH2, TET2, andWT1, were

profiled as a control AML cohort. We used a selective chemical

labeling approach followed by streptavidin capture and se-

quencing to map the abundance and distribution of 5hmC

(hMe-Seal, see Experimental Procedures) (Song et al., 2011).

We identified areas of 5hmC enrichment for each sample with

ChIPseeqer (Giannopoulou and Elemento, 2011). The average

number of peaks identified in AML1-ETO specimens was

192,066, for TET2-mut 114,865, for IDH1/IDH2 70,622, and for

WT1-mut 60,258. The average number of 5hmC peaks called

per sample was significantly lower in AML patients with TET2,

WT1, IDH1, or IDH2 mutations compared to control AMLs

(t test p values between 0.0005 and 0.003 for all comparisons;

see Figure 2A as an example for regions of loss of 5hmC and Fig-

ure S2A for overall changes in 5hmC loss). These data are

consistent with the global reduction in 5hmC observed by

mass spectrometry (Figure 1E). We calculated pairwise compar-

isons of peaks of 5hmC enrichment in IDH1/IDH2, WT1, and

TET2 mutant AML against 5hmC sites identified in control AML

patients. All three AML subtypes (IDH1/IDH2, WT1, and TET2)

displayed a significant reduction in 5hmC peaks across the

entire genome versus controls, with a smaller proportion (be-

tween 1% and 5%) of regions presenting with gains in 5hmC

(Figure 2B). We then performed DNA methylation bisulfite se-

quencing by enhanced reduced representation bisulfite se-

quencing (ERRBS) on the same patients to map the distribution

of 5mC. ERRBS assayed 1,433,193 CpGs across all AML sub-

types. Pairwise differential methylation comparisons performed

on these ERRBS profiles revealed that 5mC levels increased

genome-wide in IDH1/IDH2, WT1, and TET2 compared to con-

trol AML patients; specifically, 4%–6.5% of CpGs were methyl-

ated, in IDH1/IDH2, TET2, and WT1 mutations (see Figure 2B).

This contrasts with the reduced levels of 5hmC in these samples.
(C) Genomic locations of differentially hydroxymethylated regions (DHMRs) and d

DHMRs overlapping with gene annotation, CpG island annotation, and enhancer

the aforementioned annotation categories.

(D) Distances to nearest TSS for DHMRs and DMCs for IDH1/IDH2, TET2, and W

Cell Re
These observations, specifically the loss of 5hmC and gain of

5mC in WT1 mutant, TET2 mutant, and IDH1/IDH2 mutant

AML patients, also hold when we compared 5hmC and 5mC

levels against normal bone marrows (NBMs; see Figure S2).

Moreover, AML1-ETO AMLs showed no significant difference

in the average total number of 5hmC peaks when compared to

NBMs, indicating that the reduction of 5hmC peaks is specific

to those AMLs with disruption of TET2, IDH1/IDH2, or WT1

(Figure S2B).

Aberrant 5hmC Distribution in WT1, TET2, and IDH1/

IDH2 Mutant AML Occurs Predominantly at Enhancers
and Distal Regulatory Elements
Next, we sought to determine whether IDH1/IDH2, WT1, and

TET2 somatic mutations affect not only the abundance but

also the genomic distribution pattern of 5hmC.We first examined

5hmC peak profiles in patient specimens through unsupervised

analyses using hierarchical clustering and multidimensional

scaling (MDS), which can be thought of as 2D representations

of pairwise distance between samples. Hierarchical clustering

and MDS results show the relationship between different sam-

ples based on their 5hmC and 5mC profile similarities. IDH1

and IDH2mutant AMLs exhibited the most significant difference

in 5hmC and clustered furthest away from the control AMLs (Fig-

ures S2C and S2D). WT1 and TET2 mutant AML patients clus-

tered closer to each other and localized in between IDH1/IDH2

and control AML patients in the first dimension of the multidi-

mensional scaling. These findings suggest the underlying alter-

ations in 5hmC patterning in TET2 and WT1 mutant AMLs are

less widespread across the genome than in AML specimens car-

rying IDH1/IDH2 mutations. Given that 2-HG is predicted to

inhibit the function of all three TET enzymes (Xu et al., 2011),

these data are consistent with more profound pan-TET enzyme

inhibition in IDH1/IDH2 mutant AML. Regardless of AML sub-

type, 5hmC peaks were most commonly (52%–59%) located

within gene bodies and somewhat less commonly in intergenic

regions (37%–44.2% across subtypes). Less than 5% of 5hmC

peaks were found at promoter regions (Figure 2C). Most regions

with differential 5hmC enrichment in IDH1/IDH2,WT1, and TET2

AMLs were located at a significant distance from transcription

start sites (median distance between 31 and 44 kb). By contrast,

differentially methylated loci were closer to the TSS of known

genes, suggesting that the perturbation of 5hmC and 5mC pat-

terns in IDH1/IDH2, WT1, and TET2 AMLs can occur at distinct

genomic regions (Figure 2D). Most regions with differential

5hmC enrichment were located outside of CpG islands and

CpG island shores (87%–89%). Yet, about half of the differential

5hmC peaks were located at enhancer regions as defined by the

ENCODE project (see the Experimental Procedures) (43%–53%)

(Figures 2C and 2D), suggesting differential 5hmC localization

at enhancers may contribute to aberrant gene expression in

leukemia.
ifferentially methylated cytosines (DMCs). The first row shows percentages of

annotation. The second row shows the percentage of DMCs overlapping with

T1 mutants. All comparisons are against AML1-ETO patients.
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Differential 5hmC More Strongly Correlates with
Differential Gene Expression than Differential 5mC in
AML with WT1, TET2, and IDH1/IDH2 Mutations
The distinct localization patterns of 5mC and 5hmC raised the

question of whether these marks can function independently to

coordinate gene expression. We used gene expression profiling

to compare TET2-mut, IDH1/IDH2-mut, and WT1-mut against

AML-1ETO and identify the top 500 upregulated and the top

500 downregulated genes in the same AML samples (see the

Experimental Procedures for details). We then examined the

relationship between changes in gene expression with changes

in 5mC and 5hmC abundance in each leukemia subtype (IDH1,

IDH2, TET2, andWT1). As expected, differential cytosinemethyl-

ation at promoters was negatively correlated with gene expres-

sion (Figure 3A, top) but with a relatively low correlation coeffi-

cient (r = �0.348 to �0.4, Pearson’s R test p values between

0.02 and 0001 in the different AML subsets). By contrast,

5hmC changes in gene body and distal regulatory regions had

a positive correlation with gene expression and showed a

much stronger and more significant correlation (r = 0.52-0.75,

Pearson’s R test p value between 10�9 and 10�14) in the different

AML subsets (Figure 3A, bottom) than the correlation observed

with 5mC levels. 5hmC changes were strongly correlated with

differential expression regardless of genomic location, including

first introns (r = 0.75, Pearson’s R test p values < 0.0001), distal

regions (r = 0.69, Pearson’s R test p value < 0.0001), gene bodies

(r = 0.67, Pearson’s R test p values < 0.0001), and promoter re-

gion (r = 0.61, Pearson’s R test p values < 0.0001) (Figure S3A).

By contrast, 5mC changes were most strongly correlated with

gene expression when present near TSS and on first intron but

less strongly correlated with gene expression when present at

other genomic locations investigated (CpG island shores and

gene body; Figure S3B).

Next, we sought to determine which of these two epigenetic

marks could more accurately predict changes in gene expres-

sion. We used a machine-learning model for predicting dif-

ferentially expressed genes using differential methylation and

hydroxymethylation. In IDH1/IDH2 mutant and TET2 mutant

AML, 5hmC levels at enhancers performed better than 5mC pre-

sent at promoters at predicting gene expression, judging from

AUC (area under receiver operator curves). The AUC shows

the performance of the classifier where AUC of 1 will indicate a

perfect model, whereas a random model will have an AUC of

0.5 (Figure 3B). For each model, we measured the AUC using

10-fold cross-validation, which gives a distribution of AUC

values for each model that is generated by training and testing

models with randomized subsets of the whole data set. In WT1

mutant AML, differential 5mC and differential 5hmC occupancy

independently predicted gene expression equally well (similar

AUC values), but a model with combined 5hmC and 5mC attri-

butes increased classification performance judging by mean

AUC values from cross-validation models (Figure 3B). When

comparing the AUC from the different models, the performance

of 5hmC + 5mC and 5hmC models were significantly better at

predicting gene expression (pairwise t test p values between

10�9 and 10�8). Our findings are consistent with 5hmC func-

tioning as an independent epigenetic mark that is linked to po-

tential distal regulation, and suggests that 5hmC has additional
1846 Cell Reports 9, 1841–1855, December 11, 2014 ª2014 The Aut
functions independent of its role of an intermediate step to

DNA demethylation at gene promoters (Yu et al., 2012).

Site-Specific 5hmC Alterations in TET2/WT1 Mutant
AMLs Compose a Subset of the Alterations Seen in
IDH1/IDH2 Mutant AML
The data presented above suggest a potential unifying link

between IDH1/IDH2, TET2, and WT1 mutant AMLs. We there-

fore assessed site-specific alterations in 5hmC in IDH1/IDH2,

TET2, and WT1 mutant AMLs. IDH1/IDH2 mutant AMLs dis-

played the greatest number of hydroxymethylation peaks lost

(n = 20,286) compared to control AML specimens (AML1-ETO

AMLs). By contrast, TET2 mutant and WT1 mutant AML

samples had fewer 5hmC peaks lost (n = 5,030 and 5,484, res-

pectively). However, 68% of the peaks lost inWT1mutant spec-

imens and 81% of those lost in TET2 mutant AML overlapped

with those lost in IDH1/IDH2 mutant AML (Figures 4A and 4B;

Figure S3C). We observed highly significant overlap of differen-

tial 5hmC peaks lost in WT1 mutant AML and TET2 mutant AML

(Figure 4B) (hypergeometric test p value <10�133). In a manner

analogous to the findings for 5hmC, the hypermethylated sites

identified in WT1/TET2 mutant AML were a subset of those

found in IDH1/IDH2 mutant cases (Figures 4C and 4D). 44%

of peaks of promoter hypermethylation identified in TET2

mutant AML and 65% of those of WT1 mutant specimens over-

lap with peaks of 5mC in IDH1/IDH2mutant AML (hypergeomet-

ric test p value <10�133). Collectively these data suggest that a

core set of deregulated and presumably silenced genes might

represent a unifying pathway in IDH1/IDH2, TET2, and WT1

mutant AML.

Although WT1 is a sequence-specific transcription factor, the

mechanisms by which TET2 is recruited to specific loci to

convert 5mC to 5hmC have not been delineated. To define

candidate transcription factors (TFs) that might be important

for TET2 action, we examined regions of differential 5hmCmodi-

fication for the presence of specific DNA motifs characteristic of

known TFs. Thismotif analysis revealed an overrepresentation of

ETS motifs with GGAA core sequence (Figures S4A and S4B) in

regions with 5hmC enrichment. Notably, we observed that re-

gions with loss of 5hmC peaks in WT1 mutant AML cases were

enriched for a AGG[AC]AGG (CCT[TG]CCT) motif that is analo-

gous to a WT1 binding motif reported by Wang et al. (1993).

Consistent with these data, we observed colocalization of WT1

and TET2 at specific loci with 5hmC enrichment, including

SHANK1 (Figure S4C). We also observed WT1 occupancy at

regions with differential 5hmC, which are not bound by TET2,

suggesting that other factors including other TET proteins might

colocalize with WT1 at other gene regulatory elements (Fig-

ure S4D). We also curated chromatin immunoprecipitation

sequencing experiments to identify myeloid lineage specific

transcription factors that were enriched at regions with dif-

ferential 5hmC in AML cells. This showed that ETS factors like

FLI1, ERG, and their binding partners RUNX1 and CEBPA/B

(Figure S4E) were enriched in regions of increased 5hmC, but

not in hypo-5hmC regions, suggesting these transcription fac-

tors bind to regions with increased 5hmC, but are not enriched

at sites with reduced 5hmC in IDH1/IDH2, TET2, and WT1

mutant AML.
hors



Figure 3. Correlation of Gene Expression with DNA Methylation and Hydroxymethylation
(A) Scatterplots and correlations of differential gene expression and average methylation difference on CpG islands near TSS for IDH-mut versus AML1-ETO,

TET2-mut versus AML1-ETO, and WT1-mut versus AML1-ETO (top row). Scatterplots and correlations of differential gene expression and average adjusted fold

changes of 5hmC canonical peaks for IDH-mut versus AML1-ETO, TET2-mut versus AML1-ETO, and WT1-mut versus AML1-ETO (bottom row).

(B) Mean AUC (area under receiver operator curve) for gene expression classification models based on differential 5mC and 5hmC attributes for IDH-mut versus

AML1-ETO, TET2-mut versus AML1-ETO, and WT1-mut versus AML1-ETO. Classification models are based on differential 5hmC attributes and/or differential

5mC attributes aiming to predict upregulated and downregulated genes. Error bars represent SD of AUC of the cross-validation models.
WT1 Directly Regulates 5hmC Levels in Hematopoietic
Cells
The overlap in regions of 5hmC lost when TET2 and WT1 were

mutated in AML and the inverse association between WT1 and

TET2 mutations in AML suggested a potential functional inter-

action between these two proteins, and that WT1 might play a

direct role in regulating TET-mediated hydroxymethylation. Pre-

vious studies have shown that AML-associated WT1 mutations

result in premature stop codons or are targeted by nonsense-

mediated decay (Abbas et al., 2010), which results in loss of
Cell Re
WT1 protein expression. We therefore investigated the effects

of WT1 loss of function on 5hmC levels in M15 murine meso-

nephron cells, which express high levels of Wt1 (Larsson et al.,

1995). Knockdown of Wt1 in M15 cells significantly decreased

5hmC levels in M15 cells (p < 0.01, t test) (Figures 5A and 5B).

Similarly, in primary murine bone marrow (BM) cells, silencing

ofWt1 by small hairpin RNA (shRNA) (Vicent et al., 2010) (Figures

S5A and S5B) significantly reduced 5hmC compared to cells ex-

pressing an empty vector (Figure 5C) (p < 0.01, t test). Similar ef-

fects were observed in primary murine BM cells transduced with
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Figure 4. Site-Specific 5-Hydroxymethylcy-

tosine Alterations in WT1 and TET2 Mutant

AML Compose a Subset of the Alterations

in IDH1/IDH2 Mutant AML

(A) Bar plots showing number of hypo-DHMRs per

subtype compared to AML1-ETO. For each sub-

type, the number of hypo-DHMRs that do not

overlap with hypo-DHMRs of IDH-mut is color

coded.

(B) Venn diagram showing the number hypo-

DHMRs for each subtype and their overlap.

(C) Bar plots showing number of hyper-DMCs per

subtype compared to AML1-ETO. For each sub-

type, the number of hyper-DMCs that do not

overlap with hyper-DMCs of IDH-mut is color

coded.

(D) Venn diagram showing the number hyper-

DMCs for each subtype and their overlap.
Tet2 shRNA (Figure S5C). Perturbations in WT1 did not signifi-

cantly alter proliferation (Figure S5D). These convergent data

suggest that reductions of 5hmC levels in AML could be a direct

result of loss of WT1 function in AML.

Previous studies have shown that overexpression of wild-type

WT1 can contribute to malignant transformation in AML (Nishida

et al., 2006), lung cancer (Oji et al., 2002; Vicent et al., 2010), and

in Wilms tumor cases without WT1 mutations (Kim et al., 2008).

We therefore evaluated whether WT1 overexpression could

lead to increases in 5hmC, and if AML-associated WT1 muta-

tions abrogated the ability of WT1 to impact 5hmC. The most

commonly expressed WT1 isoform (isoform D) contains exon 5

(17AA+) and a KTS site between exons 3 and 4 (Haber et al.,

1991), hereafter referred to as WT1+/+. We first expressed wild-

type WT1+/+ and a WT1+/+ construct with a known AML trunca-

tion mutant in exon 7 (WT1mutant) in 32D myeloid cells. WT1+/+

expression significantly increased 5hmC levels compared to

cells expressing a control vector or WT1 mutant (p < 0.05 for

either comparison) (Figure 5D).WT1 overexpression did not alter

the expression of TET1, TET2, or TET3 (Figure S5E). In addition,

shRNA-mediated knockdown of WT1 in primary human CD34+

cells did not result in changes in TET1, TET2, or TET3 expression

levels, andWT1 silencing or WT1 overexpression in K562 did not
1848 Cell Reports 9, 1841–1855, December 11, 2014 ª2014 The Authors
alter TET2 protein expression (Figures

S5F–S5H). Expression analysis of the

ECOG1900 cohort data demonstrated

TET1, TET2, and TET3 mRNA were ex-

pressed at similar levels in WT1 mutant

AML patient samples compared to WT1

wild-type AML cases, and WT1 expres-

sion was not altered in TET2 mutant

versus TET2 wild-type cases, nor in

IDH1/IDH2 mutant versus IDH1/IDH2

wild-type cases (Figures S6A–S6C). We

observed no changes in WT1 expression

in TET2 mutant AML patients in the

TCGA data set (data not shown). In con-

trast to mutant IDH1/IDH2 alleles, expres-

sion ofWT1+/+ orWT1mutant proteins did
not impact 2-HG levels in hematopoietic cells (Figure S6D).

Taken together, these data suggest alterations in WT1 expres-

sion do not regulate DNA hydroxymethylation by altering TET

enzyme expression or by altering IDH1/IDH2 enzymatic function.

WT1 Forms a Complex with TET2 in Hematopoietic Cells
Given the effects of WT1 on 5hmC levels and the inverse corre-

lation between WT1 and TET2 mutations in AML, we hypothe-

sized that WT1 might modulate TET2 function through direct

interaction. Coimmunoprecipitation experiments in 293T cells

revealed that WT1 interacts with TET2 (Figure 5E; Figure S6E).

This interaction was not abrogated by ethidium bromide expo-

sure (Figure S6F), consistent with a DNA-binding-independent

interaction. We next did coimmunoprecipitation studies to deter-

mine the domain(s) of WT1 that are required for interaction with

TET2. The different isoforms ofWT1 also interact with TET2, sug-

gesting the KTS domain is dispensable for TET2 interaction (Fig-

ure S6F). Deletion of the zinc-finger domain abrogated binding of

WT1 to TET2, whereas truncation of theN-terminal region did not

alter TET2 binding (Figure 5F). We did not observe interaction of

WT1 or TET2 with HDAC6, suggesting the interaction between

WT1 and TET2 is not due to nonspecific association of highly ex-

pressed nuclear proteins (Figure S6G). Coimmunoprecipitation



studies revealed interaction of endogenous TET2 and WT1, in

HEL and Nomo-1 cells, confirming endogenous WT1 and TET2

can directly interact in hematopoietic cells (Figure 6G). As a con-

trol, we did not observe any association between TET2 and WT1

in AML14 cells, which do not express detectable levels of TET2

protein (Figure 6G). Coimmunoprecipitation was also performed

using buffer with increasing NaCl concentrations, which did not

result in abrogation of the interaction between WT1 and TET2

(Figure S6H).

WT1 Loss Leads to Impaired Hematopoietic
Differentiation Similar to that Observed with TET2 Loss
We and others have showed that loss of Tet2 expression leads

to expansion of c-Kit positive cells in vitro and in vivo (Li et al.,

2011; Moran-Crusio et al., 2011; Quivoron et al., 2011). Wt1

silencing in primary hematopoietic cells using two independent

hairpins led to a similar increase in c-kit expression (Figure 6A;

Figure S7A) (p < 0.05 t test). Furthermore, Wt1 silencing in pri-

mary murine BM cells led to expansion of the lineage-negative,

Sca-positive, Kit-positive stem/progenitor population to a si-

milar extent as observed with Tet2 downregulation (Figure S7B).

Previous studies have revealed a role for TET2 in myelomono-

cytic fate commitment (Ko et al., 2010). Wt1 silencing led to an

increase in the population of CFU-GEMM (colony forming unit-

granulocyte, erythrocyte, macrophage, megakaryocyte) similar

to that observed with Tet2 silencing (Figure 6B). Given the ob-

servations that WT1 expression can modulate 5hmC levels,

and thatWt1 downregulation in hematopoietic cells can recapit-

ulate phenotypes associated with Tet2 downregulation, we

examined the transcriptional profile of primary murine BM cells

transduced with vector or hairpins targeting Tet2 or Wt1. We

found a significant overlap between differentially expressed

genes in primary murine BM cells transduced with shRNA tar-

geting Tet2 or Wt1, when compared with vector-transduced

cells (hypergeometric test p < 10�50, Figure S7C; Table S4).

Collectively, these data indicate that reduced Wt1 expression

has similar effects on hematopoietic differentiation as observed

with Tet2 attenuation.

WT1 Expression Rescues the Effects of TET2 Loss
through Interactions with TET3 In Vivo
We next determined whether overexpression of WT1 could

attenuate the effects of Tet2 loss. Expression of WT1+/+, but

not a WT1 mutation observed in AML patients, significantly

reduced colony growth in Tet2-deficient cells at primary and

secondary plating (p < 0.01, t test) (Figure 6C; Figure S7D).

Mass spectrometric analysis revealed that expression ofWT1+/+,

but notWT1mutant increased 5hmC levels in Tet2 KO cells (Fig-

ure 6D). Accordingly, overexpression of wild-type, but not

mutant, WT1 reduced c-Kit expression, consistent with restored

hematopoietic differentiation (Figure 6E). In order to assess

whether loss ofWt1 produced an additive phenotype in conjunc-

tion with Tet2 loss, shRNA targeting Wt1 was transduced into

Tet2 KO cells and plated in methylcellulose. No increase in col-

ony formation was noted with concomitant Tet2/Wt1 loss (Fig-

ure S7E). By contrast, expression of wild-type WT1, but not

mutant WT1, abrogated the ability of Tet2 knockout cells to

reconstitute hematopoiesis in vivo (Figure 6F).
Cell Re
The observation that wild-type WT1, rescued 5hmC levels,

and abrogated the phenotype of TET2-deficient cells suggested

the possibility that WT1 might also regulate the activity of the

other TET enzymes. Expression of WT1+/+ in the presence of

1-octyl-D-2-hydroxyglutarate (octyl-2HG, a cell permeable

form of 2-HG) (Lu et al., 2012), which inhibits the activity of all

alpha-ketoglutarate-dependent TET enzymes, inhibited the abil-

ity of WT1 to alter 5hmC levels consistent with a TET-family-

dependent effect of WT1 (Figure 7A). Consistent with these

data, coimmunoprecipitation studies demonstratedWT1directly

interacts with TET3, but not TET1 (Figure 7B). We next sought to

determine if TET3 could modulate WT1-mediated effects on he-

matopoiesis in the absence of TET2. We coexpressed WT1 with

two different validated shRNA constructs against Tet3 in Tet2-

deficient BM cells. When Tet3 was silenced in Tet2�/� marrow,

WT1 could no longer suppress hematopoietic colony formation,

demonstrating that Tet3 can act as aWT1 effector in the absence

of Tet2 (Figures 7C and S7F). These data indicate WT1 is able to

interact with TET2 and TET3, and that WT1 overexpression can

rescue the effects of TET2 loss in a TET3-dependent manner.

DISCUSSION

Here, we report thatWT1mutations are inversely correlated with

TET2 and IDH1/IDH2 mutations in AML, and that WT1 mutant

AML samples are characterized by significantly marked reduc-

tions in global and site-specific DNA hydroxymethylation. We

show that WT1 interacts with TET2 and TET3, and that al-

terations in WT1 expression regulate 5hmC abundance. Our

genetic, epigenetic, and biochemical data indicate that TET2,

IDH1/IDH2, and WT1 mutant AMLs are characterized by disor-

dered DNA hydroxymethylation potentially representing a con-

vergent mechanism of leukemic transformation involving disor-

dered DNA hydroxymethylation. These data also suggest that,

in addition to its role as a sequence-specific transcription factor,

WT1 may act as a cofactor for TET enzymes recruiting or stimu-

lating their activity at specific sites in the genome.

We also employed next-generation sequencing methodolo-

gies to map 5hmC localization in AML patients with and without

WT1, TET2, and IDH1/IDH2 mutations. We observed differential

5hmC localization at enhancers, gene bodies, and distal regula-

tory elements and differential 5mC localization at intronic regions

near transcription start sites in IDH1/IDH2, TET2, and WT1

mutant AMLs. Moreover, we observed a strong, positive correla-

tion between 5hmC changes and gene expression as compared

to a weaker inverse correlation with 5mC. These data suggest

that 5hmC has distinct effects on gene regulation independent

of its role as an intermediate step to DNA demethylation, and

also indicate that 5hmC may regulate enhancers/chromatin

conformation, histone state, and/or transcription factor binding.

Subsequent studies using base-pair resolution mapping of

5hmC and other recently described DNA modifications, com-

bined with mapping other cis/trans-acting elements will help

elucidate the complex roles of 5hmC and other DNA modifica-

tions on gene regulation in different cellular contexts.

Our 5hmC profiling data in AML samples with IDH1/IDH2,

WT1, and TET2 mutations reveal site-specific loss of 5hmC in

AMLs with impaired TET function, which is most widespread in
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Figure 5. WT1 Complexes with TET2 and Alterations in Wt1 Levels Result in Changes in 5hmC Levels

(A) Western blot analysis of Wt1 silencing in mouse mesonephron cells (M15 cells) using vector or shRNA targeting Wt1 (all constructs contained a puromycin

resistance marker). Analysis was carried out after puromycin selection.

(B) 5hmC levels were measured by LC-MS from samples of Mouse mesonephron cells (M15) transfected with vector or Wt1-targeted shRNA (both with a

puromycin resistance marker) following puromycin selection and confirmation of knockdown.

(C) 5hmC levels were measured by LC-MS from samples of murine whole bone marrow transduced with either vector or Wt1-targeted shRNA.

(legend continued on next page)
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IDH1/IDH2mutant AML. Given that IDHmutations lead to chem-

ical inhibition of all three TET enzymes, it is not surprising that the

impact of IDHmutations on global and site specific 5hmC modi-

fication are more substantial than in cases with mutations that

affect a single TET enzyme (i.e., in TET2 mutant AML) or which

impact TET2/TET3 but not TET1 (WT1). Consistent with the

convergent mechanism of 5hmC loss, the majority of the loci

with altered 5hmC in AMLs withWT1 and TET2mutations repre-

sent a subset of the loci with differential 5hmC seen in patients

with IDH1/IDH2 mutations. Subsequent functional studies are

needed to determine if the ‘‘core’’ set of loci with altered 5hmC

are universally altered in all AML patients with IDH1/IDH2,

WT1, and TET2 mutations and how they precisely contribute to

leukemic transformation.

In the majority of AML patients, WT1 is not mutated and in fact

is overexpressed. WT1 overexpression has been shown to

contribute to leukemogenesis (Hosen et al., 2007). As such,

WT1 can function as an oncogene and tumor suppressor in

AML. WT1 has previously been demonstrated to interact with

several different proteins, including p53 (Zhan et al., 1998).

Furthermore, through protein-protein interactions, WT1 can sup-

press the activity of the TCF transcription factor and Wnt

pathway targets (Kim et al., 2009). However, the role of these

specific functionalities inWT1-mediated hematopoietic transfor-

mation is not known. Here, we demonstrate a direct role for WT1

in regulating 5hmC placement in hematopoietic cells through

interaction with TET2 and TET3. WT1 loss led to marked reduc-

tions in 5hmC levels and a defect in hematopoietic differentia-

tion, a phenotype similar to that observed with loss of TET2.

Taken together, these results suggest that the hydroxymethyla-

tion pathway may be affected by mutations not previously im-

plicated in epigenetic regulation. We hypothesize there are

additional disease alleles that induce transformation through

perturbations in TET enzyme function in different malignant

contexts.

EXPERIMENTAL PROCEDURES

Patient Samples

Three hundred ninety-eight AML samples were obtained at diagnosis from

patients enrolled in the E1900 clinical trial (Fernandez et al., 2009). DNA

methylation microarrays using the HELP assay was available for 383/398

cases studied for mutational profiling, and gene expression data were avail-

able for 325/398 cases. Institutional review board approval was obtained at

Weill Cornell Medical College and at Memorial Sloan-Kettering Cancer Center.

Eleven human CD34+ bone marrow samples were provided by the Stem Cell

and Xenograft Core Facility of the University of Pennsylvania or purchased

from AllCells. These studies were performed in accordance with the Helsinki

protocols, and all patients provided informed consent.

Statistical Analysis

Statistical analysis of mutational frequencies was performed using Fisher’s

exact test. Statistical analysis of colony-forming assays, gene expression
(D) 5hmC levels weremeasured by LC-MS from samples of 32D cells transducedw

significant difference was observed between 32D cells transduced with migR1 a

(E) IP was carried out with anti-FLAG antibody on lysate fromGP2/293T-overexpr

also carried out with an equal amount of rat immunoglobulin G (IgG) on lysate fro

(F) IP performed on lysate from GP2/293T cells overexpressing both full-length or

(G) IP performed on lysate of Human leukemia cell lines using an anti-TET2 antib

Cell Re
levels, c-Kit expression, and 5hmC levels assessed by LC/MS was performed

using two-sided t test.

Constructs

Human WT1 isoform (both containing and not containing a 17 amino acid re-

gion within exon 5 as well as the KTS region of the c-terminal) cDNA was

cloned into Migr1 (Addgene). WT1 mutant (containing a 17 amino acid region

within exon 5) cDNA was cloned into Migr1. TET2 cDNA was subcloned into

pCMV6-ENTRY (Origene) with a C-terminal FLAG tag and myc tag. TET1

and TET3 cDNA was synthesized and subcloned into HaloTag vector

pFN21A (Promega).

Cell Culture and Transfection

GP2-293T cells were cultured as previously described (Marubayashi et al.,

2010). Transfection was performed with X-treme 9 transfection reagent

(Roche). 32D cells were cultured in RPMI-1640 medium (Invitrogen) supple-

mented with 10% fetal bovine serum and 1 ng/ml recombinant IL-3 (BD Biosci-

ences, 554579).

Liquid Chromatography-Electron Spray Ionization-Tandem Mass

Spectrometry

DNA hydrolysis and LC-MS analysis of 5-methylcytosine and 5-hydroxyme-

thylcytosine was performed as described previously (Vasanthakumar et al.,

2013). Please see the Supplemental Experimental Procedures for description

of protocol used.

shRNA Knockdown

TET2 shRNA was produced as previously described (Figueroa et al., 2010a).

WT1 shRNA was produced using previously described and validated target

sequence (Vicent et al., 2010) and inserted into a pSIREN vector (Clontech).

Wt1 ShRNA in a pLKO-Puromycin vector was generated by the Broad Institute

RNAi Consortium. shRNAs (21 nt) targeting mouse Tet3 were designed and

cloned into the LMP retroviral vector (Dow et al., 2012). ShRNA sequences

are provided in the Supplemental Experimental Procedures. All shRNA exper-

iments were carried out using three biologic replicates and three technical rep-

licates for each condition.

Western Blot and Coimmunoprecipitation

Cell lysis, immunoprecipitation, and western blot analysis was performed as

previously described (Marubayashi et al., 2010). Cell lysis and immunoprecip-

itation was carried out in buffer containing 150 mM NaCl, 20 mM Tris, 5 mM

EDTA, 1% Triton X-100, and 10% glycerol (with addition of protease arrest,

phosphatase inhibitor cocktail II, 1 mM phenylmethylsulfonyl fluoride, and

0.02 mM phenylarsine oxide in PBS). Washes were carried out in either PBS

or lysis buffer. Anti-FLAG antibodies were purchased from Sigma-Aldrich

(F1804) and Novus Biologicals (NBP1-06712). Anti-TET2 antibody was gener-

ated as described below. Anti-actin antibody utilized was purchased from Cal-

biochem (CP01). Anti-WT1 antibodies used for western blot were purchased

from Upstate (05-753) and Abcam (ab28428). Anti-TET1 (GTX124207) and

anti-TET3 (GTX121453) antibodies were purchased from GeneTex.

Flow Cytometry

Flow cytometry studies were performed as previously described (Figueroa

et al., 2010a). c-Kit coupled to APC (BD Pharmingen) was utilized for c-KIT

staining. 5hmC staining, reagents utilized, and analysis were performed as

described (Figueroa et al., 2010a). Staining with cleaved caspase-3 was

used for apoptosis studies. Staining with DAPI was used for cell-cycle

analysis.
ithWT1 isoformDor aWT1 truncationmutant (**p < 0.01, t test). No statistically

nd 32D cells transduced with WT1 mutant. Error bars represent SEM

essing vector, TET2-Halo, or both WT1-FLAG isoform D and TET2-Halo. IP was

m GP2/293T cells overexpressing both WT1-FLAG and TET2-Halo.

truncated forms of WT1-HA and TET2-Halo. Control IP performed with rat IgG.

ody. IP, immunoprecipitation; IB, immunoblot.
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Figure 6. Wt1 Silencing Phenocopies Tet2 Silencing

(A) Murine bonemarrowwas transducedwith a vector or with shRNA (all constructs containing IRES-GFP) targeting Tet2 orWt1. GFP-positive cells were selected

by flow cytometry. GFP-positive cells were maintained in liquid culture and analyzed by flow for c-KIT expression.

(B) GFP-positive cells were plated in methylcellulose and assessed for colony morphology.

(C) Whole bone marrow extracted from a Tet2 knockout mouse was transduced with vector, WT1 isoform D, or a WT1 truncation mutant GFP-positive cells were

selected by flow cytometry. Cells were plated in methylcellulose and colony formation was assessed (**p < 0.01 t test).

(D) Cells derived from first methylcellouse plating were analyzed for 5hmC levels by LC-MS (**p < 0.05 t test).

(E) GFP-positive cells from initial transduction were also maintained in liquid culture for 3 days and analyzed for c-KIT expression.

(F) Whole bone marrow from Tet2KO mice was transduced with vector, WT1 isoform D, or WT1 mutant. Cells were then injected into lethally irradiated wild-type

recipient mice. GFP percentage was assessed from peripheral blood of mice at time points indicated. Error bars represent SEM.
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Figure 7. WT1 Binds to TET3

(A) GP2/293T cells were transfected with vector or WT1 isoform D. Cells were

grown in the presence of DMSO or 2HG. 5hmC levels were subsequently

analyzed by LC-MS.

(B) GP2/293T cells were transfected with a WT1-FLAG construct along with

TET3 or TET1 construct. IP was carried out with either an anti-FLAG antibody

or an equivalent amount of rat IgG.

(C) Tet2-deficient BM cells were transduced with empty vector or two different

shRNAs targeting Tet3 (all with IRES GFP). GFP positive cells were sorted for

and then transduced with a WT1 construct (with puromycin resistance

marker), followed by puromycin selection. Cells were plated in methycellulose,

and colonies were counted. Comparison of post-WT1 selection samples

demonstrated statistically significant increase in colonies in cells transduced

with Tet3 shRNA (**p < 0.01). Error bars represent SEM.
Murine In Vitro Assays

Methylcellulose assays were carried out as previously described (Figueroa

et al., 2010a). Animal care was in strict compliance with Memorial Sloan-Ket-

tering Cancer Center, the National Academy of Sciences Guide for the Care
Cell Re
and Use of Laboratory Animals, and the Association for Assessment and

Accreditation of Laboratory Animal Care guidelines. All methylcellulose assays

were carried out with three biologic replicates and four technical replicates per

condition.

Gas Chromatography-Mass Spectrometry

Intracellular 2HG metabolite levels were assayed by GC-MS as previously

described (Lu et al., 2012).
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All ERRBS and hme-Seal data have been deposited to the NCBI Gene Expres-

sion Omnibusb under the accession numbers GSE52945 and GSE37454.
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