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Abstract

Non-coding DNA conservation across species has been often used as a predictor for transcriptional enhancer activity.
However, only a few systematic analyses of the function of these highly conserved non-coding regions (HCNRs) have been
performed. Here we use zebrafish transgenic assays to perform a systematic study of 113 HCNRs from human chromosome
16. By comparing transient and stable transgenesis, we show that the first method is highly inefficient, leading to 40% of
false positives and 20% of false negatives. When analyzed in stable transgenic lines, a great majority of HCNRs were active in
the central nervous system, although some of them drove expression in other organs such as the eye and the excretory
system. Finally, by testing a fraction of the HCNRs lacking enhancer activity for in vivo insulator activity, we find that 20% of
them may contain enhancer-blocking function. Altogether our data indicate that HCNRs may contain different types of cis-
regulatory activity, including enhancer, insulators as well as other not yet discovered functions.
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Introduction

A decade after the release of the first human genome’s draft, we

do not understand most of the information encoded in these 3

Gigabases of DNA. The degenerated triplets that encode the

composition of the proteins impose a constraint in the random

potential of DNA sequences which facilitates the prediction of

most protein-coding genes. In addition, transcription expression

analysis have led the scientific community to extensive knowledge

on RNA levels and alternative splicing in different tissues and

developmental stages on a variety of animal models. Thus, we can

probably assume a successful annotation of most of the protein-

coding genes of the higher organisms sequenced so far. However,

this knowledge is in striking contrast to our capacity in predicting

the existence of cis-regulatory elements, which are embedded in

the remaining 98% of the genome. Thus, number, behavior and

nature of most regulatory elements governing gene transcription

remains poorly determined.

The comparison of all the sequenced vertebrate model organisms

revealed the presence of many highly conserved non-coding regions

(HCNRs) present in vertebrate genomes [1,2,3]. Most of these

regions are associated with genes with roles in body patterning and

organ morphogenesis [1,3]. Functional studies using transgenic

assays in mouse, Xenopus and zebrafish carried out by various

groups, indicate that a significant fraction of the HCNRs so far

analyzed behave as enhancers in functional assays. These enhancers

likely activate the expression of genes essential for embryonic

development in specific embryonic domains (see for example

[1,4,5,6,7]. Based on these observations, it has been speculated that

the approximately 3000 HCNRs present in all vertebrates likely

contain regulatory elements essential for the basic vertebrate body

plan [8,9]. Other initiatives to identify potential cis-regulatory

elements are based in chromatin immunoprecipitation experiments

coupled to massive sequencing using both transcription factors

and epigenetic marks [10,11,12,13,14,15,16,17,18,19]. These

studies have enormously expanded the collection of candidate

cis-regulatory elements present in the vertebrate and invertebrate

genomes. These huge amount of potential cis-regulatory already

available, and continuously growing, need to be validated in animal

model systems in order to explore their precise in vivo temporal and

spatial activity. Efforts in this direction are been done using the

mouse as a model system [5,20,21]. In these studies more than 1000

potential cis-regulatory elements have been assayed by transient

transgenic assays in mouse embryos at a single developmental stage.

These have lead to the identification of multiple tissue-specific

enhancers, many of them evolutionary conserved at the sequence

level. These enhancer assays in transient murine transgenics are

laborious and expensive and usually limited to a single develop-

mental time point, and therefore not particularly suited for large

scale screens. Xenopus and zebrafish have been used as alternative

models to systematically evaluate in vivo de enhancer activity of

potential cis-regulatory elements [1,6,7,22,23,24]. The develop-

ment of Tol2 mediated transgenesis in zebrafish [25] the trans-

parency of its embryo and larvae, which is perfect for imaging, and
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its accessibility to genetic manipulations, makes this animal an ideal

model for the in vivo analysis of cis-regulatory element activity

[26,27]. Nevertheless, since the generation of stable transgenic lines

in zebrafish is time consuming, most middle to large-scale enhancer

screenings in zebrafish are based on transient F0 studies [6,7,24,

28,29,30,31]. Assays in F0 (i.e. injected) zebrafish have the strong

advantage of being a medium throughput approach, but since the

integration of the reporter construct occurs only in some cells of the

injected embryo, the activity of the potential enhancer is mosaic

therefore revealing a fraction of the territory where the regulatory

element under evaluation is potentially active. Moreover, enhancer

activity can be affected by the regulatory elements in the vicinity of

the insertion point (what is commonly known as ‘‘position effect’’).

Recently, the ZED vector was developed [32]. The two major

characteristics of this vector is that the reporter cassette is flanked by

insulators that reduce the position effect, and that the vector

contains a positive control of transgenesis that allows to monitor the

efficiently of integration of the transgenic construct both in transient

injected and stable transgenic embryos [32].

Here we use the ZED vector to evaluate the activity of more than a

hundred HCNR from the human genome, first in transient assays

and later in stable transgenic assays in zebrafish. Then, animals

showing reporter activity in F0 were grown to adulthood to establish

stable transgenic lines in which the enhancer activity was charac-

terized in detail and at different developmental stages. In addition, a

collection of injected embryos showing no enhancer activity was

grown further to derive stable transgenic lines. Combining the results

from these two experiments allowed us to determine the fraction false

positive and false negative enhancers. Analysis of the stable transgenic

lines allowed us to identify two different categories of enhancers. A

first category is that of enhancers that drive consistent, tissue-specific

patterns in all the founder lines; a second category is contains

elements that stimulate promoter activity, but the precise patterns

driven differ among founder lines –likely due to extreme sensitivity to

the regulatory information surrounding the insertion point in each

founder line. These two types of enhancers have been already

described when enhancer activity has been monitored in stable

transgenic zebrafish assays [33,34,35]. Finally, we show that a

fraction of the HCNR for which we did not detect enhancer activity

in F0 assays behave as enhancer blockers in vivo.

Materials and Methods

Ethic statement
Zebrafish transgenic fishes have been maintained at the CABD

Animal Facility. Our Animal Facility in accordance with nacional

and European regulations is registered as animal research center with

the number SE/4/U. Veterinary welfare supervision and daily water

check-ups are conducted (dissolved oxygen, conductivity, pH, ammo-

nia, nitrites, nitrates, alkalinity and hardness –Kh and Gh-, among

other parameters) to ensure the animals good health status.

Temperature, humidity and light intensity control in the room are

strictly monitorized to guarantee animal welfare. Zebrafish embryos

have been sacrificed after being anesthetized with 0.016% tricaine

when necessary. The experimental zebrafish procedures have been

performed following the protocols approved by the Ethical Commi-

ttee for Animal Research from Consejo Superior de Investigaciones

(CSIC) according to the European Union regulations.

Animal care
Zebrafish (Danio rerio) were maintained and obtained from our

breeding colony under standard conditions according to previously

stated procedures (http://zfin.org). Embryos for Tol2 transgenesis

were obtained from crosses of wild-type AB/Tuebingen (AB/TU)

zebrafish. Potential transgenic founders were out-crossed to a TAP

strain. Fertilized eggs were kept at 28uC in E3 medium with

0.003% 1-phenyl-2-thiourea to prevent pigmentation and were

staged according to Kimmel et al. [36].

ZED-HCNR Collection
Human HCNR fragments where amplified using HiFi Taq

polymerase (Roche, Manheim, Germany) using standard PCR

procedures. Products where cloned into pCR8/GW/TOPO vector

(Invitrogen, Pasadena, USA). HCNR-containing clones where

recombined into the Zebrafish Enhancer Detection (ZED) shuttle

transgenesis vector previously described [32]. Briefly, ZED-Vector

contains two modules flanked by the Medaka (Oryza latipes) Tol2

transposase target sites, that enables an efficient transgenesis [37].

The first module contains the minimal GATA promoter driving the

expression of the enhanced green fluorescent protein (EGFP). All

HCNRs were cloned upstream of this module using the Gateway

system (Invitrogen, Pasadena, USA). Two strong insulators, which

reduce the potential influence of the regulatory elements that may

be present in the vicinity of the integration sites, flank this reporter

cassette. The second module contains the cardiac actin promoter

driving the expression of the red fluorescent protein (RFP), which

serves as a positive control for transgenesis in F0 and F1 embryos

[32]. The tested HCNRs are listed in Table S1.

Selection of enhancer-containing HCNRs candidates
A minimum of 300 embryos where injected with 3–5 nl of a

solution containing 25 nM of each construct and 25 nM of Tol2

mRNA. Embryos where then incubated at 28uC as previously

described. EGFP expression was evaluated 24, 48 and 72 hours

post-fertilization (hpf). Whenever EGFP was observed, the HCNR

tested was considered as a potential candidate and embryos were

selected and raised to sexual maturity to be analyzed in F1. The

efficiency of the integration of the ZED-HCNR construct in the

injected embryos was determined by the expression of RFP in the

somites and the heart. We only evaluated the enhancer potential of

the HCNRs when RFP was broadly observed in the somites and

the heart of the injected embryos, as an indication of efficient

ZED-HCNR integration. For high-resolution pictures a F-View

black/white digital camera coupled to a WD70 Nikon camera was

used. Adobe Photoshop was used to adjust bright and contrast.

Enhancer-blocking assays
To evaluate in vivo a potential insulator activity of HCNRs,

we used a Tol2 vector previously described [32]. This construct

contains a strong midbrain enhancer, a Gateway entry site and

the cardiac actin promoter controlling the expression of EGFP.

Each candidate HCNR was recombined between the midbrain

enhancer and the cardiac actin promoter (INS-HCNR). As a

reference, the empty backbone was used (INS-zero). One cell-stage

embryos where injected with 3–5 nl of a solution containing

25 nM of each construct plus 25 nM of Tol2 mRNA. Embryos

where then incubated at 28uC and EGFP expression was

evaluated 24 hpf. The midbrain/somites EGFP intensity ratio

was quantified using ImageJ freeware and was directly propor-

tional to the enhancer-blocking capacity. As a positive control, the

chicken beta-globin insulator 5HS4 was used. Each experiment

was repeated independently and double-blinded to the operators.

Results

Enhancer activity of human HCNRs in zebrafish embryos
A total of 113 HCNRs from the human chromosome 16 were

PCR-amplified, transferred to the ZED vector to generate the

Enhancer Screen of Chromosome 16 HCNR
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Table 1. Enhancer activity displayed by the different HCNRs assayed.

Construct
GFP
in F0

Founders
(n) Notochord

Neural
tube Forebrain Midbrain Hindbrain

Otic
vesicle Pronefros Eye Notes

C25 + 3 2 1 0 1 1 0 0 0

C29 + 5 0 3 0 0 2 3 4 0

C30 + 3 0 1 3 3 3 2 0 0

C32 + 3 0 3 0 0 0 3 3 0

C33 + 3 0 1 2 0 1 2 0 0 1 Somites.

C36A + 3 1 0 0 0 1 0 0 0 At 24 hpf.

C40 + 4 0 1 2 0 1 2 0 1

C41 + 3 0 3 3 3 3 3 0 0

C43 + 3 0 0 0 0 0 0 0 0

C44 + 5 1 2 2 2 2 0 0 0

C50A + 3 1 1 2 2 1 1 0 0

C60 + 8 0 2 4 2 2 5 0 1

C61 + 5 0 0 0 0 0 0 0 1 1 Somites at
24 hpf.

C76 + 4 0 1 1 1 1 0 0 1 1 Pectoral fin.

C81 + 3 0 2 3 3 3 2 0 3 1 somites at
24 hpf.

C86 + 5 0 1 0 1 1 2 0 3

C91 + 2 0 0 0 0 0 0 0 0

C96 + 4 0 1 1 0 0 1 0 1

C97 + 7 0 0 4 0 0 2 0 1

C106 + 3 0 0 0 0 0 1 0 1

C107 + 3 0 0 0 0 0 0 0 0 1 Hind/Midbrain
boundary.

C114 + 2 0 2 2 1 1 1 0 0

C118 + 3 0 1 0 1 1 1 0 0

C121 + 4 0 0 0 1 1 2 0 1

C122 + 3 0 0 0 1 1 2 0 1

C130 + 2 0 0 0 0 2 1 0 0 Expression at
24 hpf.

C134A + 7 0 0 0 0 2 0 0 0

C135 + 3 1 2 0 0 0 3 0 0 1 Hutching
gland.

C137 + 5 0 4 0 0 2 0 0 1

C139 + 3 0 0 0 0 3 0 0 0

C140 + 8 0 2 1 0 0 0 0 0

C141 + 3 0 0 0 0 3 0 0 3

C145 + 2 0 2 2 2 2 0 0 0

C150 + 2 0 0 0 0 0 0 0 0

C153 + 4 0 2 2 0 2 3 0 0

C26 2 3 0 0 0 0 0 0 0 0

C35 2 8 0 0 2 0 1 1 1 1

C52 2 2 0 0 0 0 0 0 0 0

C59 2 4 0 1 2 0 2 2 0 1

C65 2 2 0 1 0 1 1 0 0 0

C78 2 2 0 0 0 0 0 0 0 0 at 24 h, general
expression.

C82 2 2 2 0 2 0 1 2 0 0

C90 2 2 0 0 0 0 0 0 0 0

C99 2 3 0 0 0 1 0 0 0 0

C111C 2 3 0 0 1 0 0 0 0 1 1 gut.

doi:10.1371/journal.pone.0024824.t001

Enhancer Screen of Chromosome 16 HCNR

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e24824



corresponding ZED-HCNR constructs, and injected in zebrafish

embryos (Table S1). Among them, 39 (34%) exhibited mosaic

EGFP expression at 24, 48 and/or 72 hpf in F0 and where

therefore selected for their analysis in F1 stable transgenic lines.

The remaining constructs did not show visible EGFP activity

although clear and homogenous RFP expression in the somites

and heart was observed, indicating an efficient integration of the

cassette. In order to determine the ratio of false negatives, 10

random HCNRs with no apparent F0 EGFP activity were also

raised to sexual maturity and screened for enhancer activity in

stable transgenics. Finally, to determine the likelihood of enhancer

trapping of our reporter cassette, the empty ZED vector without

any cloned HCNR upstream the minimal promoter (ZED-zero)

was also injected and the embryos grown to sexual maturity. Upon

raising and out-crossing the adult fishes, 35 HCNRs were suitable

for analysis. For the remaining ones we only obtained a single

founder that precludes us to unambiguously determine the real

enhancer activity of the HCNR under evaluation. A first analysis

highlighted that approximately 63% of the F0 EGFP+ HCNRs (22

out of 35) do showed enhancer activity in stable lines. The

expression patterns promoted at different tissues in the different

founders of each HCNR are summarized in Table 1. Among these

22 regions, 9 HCNR showed reproducible expression patterns

among founders (Fig. 1 and Fig. S1). These HCNRs were consi-

dered to contain robust enhancers. The remaining 13 HCNRs

contained enhancers with more variable activity observed between

their corresponding founders (Table 1 and Fig. S2). A similar

proportion between enhancers with robust and variable activities

has been shown before when assaying HCNRs from other

genomic regions [33,34,35]. From these 13 HCNRs, we found

one extreme case in which the different founders showed strong

but largely non-overlapping expression patterns (Fig. 2). This

phenomenon has been traditionally named enhancer trapping.

However, according to the vector design, the two strong insulators

flanking the expression cassette should reduce unspecific EGFP

expression caused by the genomic context in which the integration

occurs. Indeed, among six independent founders containing the

empty ZED vector only two showed some weak position effect

(Fig. S3), which confirmed that our reported construct prevents

strong position effects. Therefore, the HCNR showing multiple

founders with strong but different expression patterns seems likely

overcoming the influence of the insulators of the reporter module

and boosting the enhancer activity of the genomic landscapes

around each particular transgene insertion point. Interestingly, we

have also detected this type of booster activity in other regulatory

regions found within other unrelated HCNR enhancer screens

(unpublished results).

Finally, among the 10 HCNRs that were EGFP2 in F0 assays

and were surveyed for enhancer activity in F1 stable lines, 8 of

them exhibited only the RFP expression corresponding to the

positive control contained in the vector. However, the remaining

two (C82 and C59; Table 1, Fig. S1 and Fig. S2) did contain

enhancer activity.

Transient versus stable transgenic assays
Many groups use the compilation of the results from several

mosaic transient transgenic embryos to extract the regulatory

potential of a candidate regulatory element, assuming that this

compilation would recapitulate the expression that should be

observed in stable transgenic lines [7,24,29,30,31]. This type of

experimental approximation is particularly interesting given the

fact that most of the effort required for the generation of transgenic

zebrafish animals resides in raising and out crossing the injected

fishes. In our screening, we have documented the enhancer

activity of all HCNRs in F0 injected embryos and generated stable

lines for all potential enhancer regions positive in these transient

assays. This has allowed us to compare the enhancer behavior of

HCNRs in F0 and F1 trasngenic embryos. Our results indicate

that for those HCNRs with reproducible enhancer activity in F1

stable lines, F0 data would be a good predictor for expression

patterns in F1, being always the information obtained from stable

lines more compete (Fig. 3A–D). In contrast, transient F0 are poor

Figure 1. Reproducible enhancer. EGFP expression patterns exhibited from four different founders f(A–D) of the HCNR C32 at 48 hpf. EGFP
expression can be seen in otic vesicle (ov), spinal cord (sc) and pronephros (pr). Fluorescence in the pineal gland (pg) in these and other embryos
shown below correspond to non specific expression observed in most transgenic generated with the ZED vector.
doi:10.1371/journal.pone.0024824.g001

Enhancer Screen of Chromosome 16 HCNR
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predictors of patterns driven by less-specific enhancers (Fig. 3E–

H). This, along with the fact that F0 negative regions, in some

cases, do show enhancer activity in F1 stable lines, indicate that

conclusions drawn from enhancer analysis in F0 transient assays

may be incomplete and in cases misleading.

Comparison of HCNR enhancer activity in mice and
zebrafish embryos

We have also compare our results with those produced in mice

and available at public databases (http://enhancer.lbl.gov/, [5].

We found 6 human sequences with tissue-specific enhancer

activity in mice that partially overlapped our initial HCNR

collection. Three of them were also detected as enhancers driving

consistent tissue-specific patterns in our zebrafish assays (C81,

C139, C141, table 2). The expression patterns observed in

zebrafish embryos were similar to that observed in mouse embryos

(Fig. 4, Fig. S4 and Fig. S5), suggesting that the transcription

factors required to activate these enhancers are similarly expressed

in both mice and zebrafish.

The other three enhancers active in mice cases were found

negative in our F0 zebrafish assays and therefore not selected for

F1 analysis (C48, C93 and C103). It is possible that, since the exact

sequence included in the constructs for the two experiments was

not the same, sequence differences might account for the different

Figure 3. Reproducible enhancers may be distinguished in F0. Side by side comparison of the expression patterns expected from F0 (left
panels) and the corresponding F1 (right panels). Strongly (A–D), but not weakly (E–H) reproducible enhancers showed a high similarity in transient
(A–H) and stable (A9–H9) transgenic assays. Abbreviations are: notochord (n), branchial arches (ba), otic vesicle (ov), eye (e), forebrain (f), midbrain (m),
hindbrain (h) and spinal cord (sc).
doi:10.1371/journal.pone.0024824.g003

Figure 2. CNR with genomic boosting behaviour. EGFP expression patterns exhibited from six different founders (A–F) from HCNR C60 at
48 hpf. EGFP expression can detected in different territories depending on the founder, suggesting that a transcription pattern largely depending on
the genomic context. Abbreviations are: branchial arches (ba), otic vesicle (ov), eye (e), forebrain (f), midbrain (m), hindbrain (h) and spinal cord (sc).
doi:10.1371/journal.pone.0024824.g002

Enhancer Screen of Chromosome 16 HCNR
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experimental outcome. Alternatively, these sequences might have

behaved as negative in transient but have shown activity if

established as stable lines. Finally, all HCNR detected as enhancer

in zebrafish had been shown to be enhancers in mice as well.

HCNRs negative in enhancer assays may harbor
insulators

Among the different types of cis-regulatory elements, insulators

play key roles in controlling gene expression and organizing the

chromatin [38]. Since many HCNRs did not showed enhancer

activity, we determined if a fraction of them could be associated

with insulators activity. For that we used a recently described

vector [32] that has been used in zebrafish to functionally evaluate

insulator activity in vivo [32,39,40]. We concentrated on 13 HC

NRs lacking enhancer activity in our initial F0 enhancer assays

and located all along 2 Mb covering the Iroquois B (IRXB) genomic

cluster. Interestingly, three of these HCNRs showed a significant

enhancer-blocking activity, ranging between 40–60% blockage

(C75 and C91, respectively. p,1023, student t-test) (Fig. 5, Table

S2). These data suggest that HCNRs, in addition to harboring

enhancer elements, also contain insulators that regulate enhancer-

promoter interactions.

Discussion

In this report we present a chromosome-wide analysis of

the HCNRs present on human chromosome 16. Among the 113

HCNRs assayed, 35% showed enhancer activity in transient F0

transgenic embryos. Nevertheless, only 60% of them are associated

with detectable enhancer activity in stable (F1) zebrafish transgenic

lines. Only those enhancers showing highly reproducible expression

in F0 transient assays correspond to those that are also highly

reproducible in stable lines. Therefore, F0 assays are only infor-

mative for strong enhancers. Indeed, here we show that 40% of

HNCRs scored positive in F0 transient assays may not be real

enhancers. Most of these regions showed a low number of EGFP

positive cells in the F0 assays, which may indeed reflect positional

effects and not true enhancer activity. In addition, by examining in

stable transgenic lines the activity of a fraction of the regions scored

Figure 4. Enhancer assays in zebrafish allow a detailed spatiotemporal characterization of the expression patterns. A) Illustration of
the first 48 hpf development of the zebrafish (upper panel). In the lower panel, EGFP expression of HCNR C81 during the first 48 hpf. B) Detailed EGFP
expression of the HCNR C81 at 48 hpf. The same CNR was as assayed (Vista browser element37, http://pipeline.lbl.gov/cgi-bin/gateway2).
Abbreviations are: eye (e), forebrain (f), midbrain (m), hindbrain (h) and spinal cord (sc).
doi:10.1371/journal.pone.0024824.g004

Table 2. Comparison of the enhancer activity among the HCNRs assayed in the present study versus those available from VISTA.

VISTA Chr Start End size Activity
Present
Study Chr Start End Size Activity

Overlapping
(bp)

element73 16 50134226 50135602 1376 + C48 16 50134268 50135590 1322 2 1322

element65 16 50515789 50517189 1400 + C55 16 50516006 50516943 937 n.a. 937

element37 16 53208099 53209383 1284 + C81 16 53208063 53209682 1619 + 1284

element27 16 53636738 53637930 1192 + C90 16 53636501 53637749 1248 n.a. 1011

element23 16 53981917 53983239 1322 + C93 16 53981929 53983259 1330 2 1310

element16 16 71538401 71540046 1645 + C109 16 71539086 71539495 409 2 409

element4 16 78930094 78931256 1162 + C139 16 78930617 78931252 635 + 635

element1 16 84987588 84988227 639 + C141 16 84987535 84988024 489 + 436

doi:10.1371/journal.pone.0024824.t002

Enhancer Screen of Chromosome 16 HCNR
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negative in F0 assays, we showed that 20% of them display

enhancer activity. Therefore, at least with our ZED vector and

using human sequences, F0 transient transgenic zebrafish assays

might be unreliable as predictors of enhancer activity, as we detect

40% of false positives and 20% of false negatives. A similar analysis

to that performed here would be recommended for other vectors

commonly used for evaluating enhancers in zebrafish though F0

transient assays to determine their specificity and sensitivity.

We have generated multiple different founders for the 24

enhancers we have identified. This allows us to categorize the

enhancer activity of the HCNRs in two major groups: highly

reproducible enhancers and less specific ones, as previously also

described [33,34,35]. Within the last group, we find one HCNR

with apparently strong booster activity: Different founders for this

region show strong but unrelated expression patterns. This is

something that we have also observed for other enhancers

previously identified (unpublished results). Indeed, this type of

very interesting regions, although barely characterized, has been

previously described for the mice TAL1 gene [41]. In this work, a

mammalian interspersed repetitive element (MIR) was shown to

Figure 5. In vivo enhancer-blocking assay of HCNRs mapping the human IRXB locus. 30 hpf zebrafish injected with the insulator-vector
assay lacking any HCNR (panel A) and C91 (panel B). With no insulator activity, Z48 enhancer interacts with the cardiac actin promoter promoting
EGFP expression to the midbrain (C). Whenever an insulator is placed between the enhancer and the promoter, midbrain expression is reduced when
compared to the somites expression, which remain unaffected. Adapted from Bessa et al, 2009. E) Wisker-plot representation of the midbrain/somite
ratios from different regions tested.
doi:10.1371/journal.pone.0024824.g005

Enhancer Screen of Chromosome 16 HCNR
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boost the activity of a close enhancer. Acting together, both

enhancer and booster drive expression of TAL1 to different

hematopoietic tissues in transgenic mice. The HCNR with booster

activity we now identify is located within a gene desert between

human SALL1 and TOX3 genes. Eight independent founders

provide evidence that this region may be playing a positive role

over transcription, however its physiological role and its target

gene are still unknown.

Cis-regulatory elements include enhancers, silencers, insulators

and likely other unidentified type of sequences [42]. All of these

types of elements could be in principle highly conserved at the

sequence level in the vertebrate lineage [43]. However, to our

knowledge, HCNRs have been only functionally assayed for

enhancer activity. We show that 20% (3 of 13) of the HCNRs

examined, that do not show any enhancer activity in F0 transient

assays, seem to behave as insulators. This strongly indicates that

functions other than enhancer activity is associated also with

highly conserved sequences. We have examined the region

comprising the Iroquois B (IRXB) genomic cluster, an evolutionary

conserved cluster that spans <1.3 Mb of the chromosome that

contains three developmental genes (IRX3, 5 and 6) with multiple

function during development [44]. To be able to exert these

multiple functions, these genes have complex expression patterns

[45,46,47] controlled by multiple cis-regulatory elements spread

all over the cluster, many of them located within HCNRs [6].

These cis-regulatory sequences precisely interact with their

respective target promoters depending on the three-dimensional

looping of the cluster’s chromatin [22]. The IRXB region contains

a significant enrichment of HCNRs when compared to the rest of

the chromosome (2% of the chromosome’s size harboring 20% of

the total HCNRs), which correlates with the highly complex

regulation of the genes within it [6,22]. The high proportion of

sequences with insulator activity in this region may be thus

associated with the complex regulation of the IRXB genes. It

remains to be determined if a similar fraction of insulator also

exists in HCNRs from other chromosomal regions.

Most insulators found in vertebrates are associated with the

DNA binding factor CTCF [48]. When HCNRs with insulator

function where subjected to in silico motif discovery for CTCF,

these sequences exhibited weak scores according to the position

weigh matrix tested. Moreover, the examination of the available

data on the distribution of CTCF in different human cell lines

generated by the ENCODE project [13] and available at the

UCSC browser [49], also indicated that these HCNRs are not

bound by CTCF in those cell lines. Therefore, it is likely that

additional insulator-associated proteins may be responsible for the

enhancer-blocking activity displayed by these sequences.

In summary, our large enhancer screen allows us to show the

different types of enhancer activities within HCNRs, ranging from

very specific and reproducible enhancers to boosters with little

tissue-specificity. In addition, for the first time, we have uncovered

the presence of insulator activity within these conserved sequences.

Many other functions such as some required for chromatin

topology or repressor activities could be also associated to these

HCNRs. Indeed, many HCNRs did not behave either as

enhancers or as insulators in our functional assays. However, the

identification of such activities remains a future challenge.

Supporting Information

Figure S1 Expression patterns associated to HCNRs
containing robust enhancers. Each box contains a series of

pictures showing the expression pattern obtained from different

founders from a single HCNR. Pictures were taken using a black/

white camera with a GFP filter.

(TIF)

Figure S2 Expression patterns associated to HCNRs
with variable enhancer activity. Each box contains a series of

pictures showing the expression pattern obtained from different

founders from a single HCNR. Pictures were taken using a black/

white camera with a GFP filter.

(TIF)

Figure S3 Controls suggest a low enhancer trapping
capacity of the empty ZED vector. Diagram showing the

structure of the ZED vector (A). Transgenic zebrafish evaluated at

48 hpf from six independent founders obtained from the ZED-

zero construct. Pictures evidenced both spurious or no EGFP

expression (B–F), despite strong RFP expression in the somites (G).

Abbreviations: Tol2: Tol2 transposase target site; C. Actin: cardiac

actin promoter; rfp; red fruorescent protein gene; ins: insulator;

gfp: green fluorescent protein gene; Min. Prom: minimal promo-

ter; entry site: gateway entry site, which was eliminated to generate

the ZED-zero construct.

(TIF)

Figure S4 Comparison of the enhancer activity deter-
mined for C139 versus the data available from VISTA
Element-4. Three different founders from zebrafish (A) and mice

(B), obtained upon the evaluation of the enhancer activity of the

human sequence assigned as C139 (A), or Element-4 (B). In panel

C we represent the alignment of both sequences.

(TIF)

Figure S5 Comparison of the enhancer activity deter-
mined for C141 versus the data available from VISTA
Element-1. Three different founders from zebrafish (A) and mice

(B), obtained upon the evaluation of the enhancer activity of the

human sequence assigned as C141 (A), or Element-1 (B). In panel

C we represent the alignment of both sequences.

(TIF)

Table S1 Details of the highly conserved non-coding
regions assayed.
(DOC)

Table S2 In vivo enhancer-blocking assays.
(DOC)
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