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ABSTRACT

This supplementary text provides details of the
method presented in the main manuscript, as well
as supplementary results. It discusses mathematical
details of measures of association to elicit sequence
motifs with discriminative learning. The gradients of
those objective functions are given that are used in
the gradient optimization of the HMM parameters.
Furthermore, in addition to the mathematical
formalism of HMMs, in particular of binding site
HMMs, we describe how the gradient of the
HMM likelihood with respect to transition and
emission parameters are computed. Multiple testing
correction in motif analysis is also discussed.
We explain the multiple motif discovery mode of
Discrover, and illustrate the Discrover module for
the bioinformatics web framework Galaxy.

Supplementary results presented here include
detailed motif discovery performance metrics on
synthetic data for all considered motif discovery
results. For data of the PUF family of RBP this
supplement includes a dilution analysis, as well
as word-based analyses. For the ChIP-Seq data
positional distributions of the motif occurrences in
the ChIP-Seq regions are displayed. Also, tables
with detailed numbers of occurrences of motifs in
signal and control data are included for both RBP
data and for ChIP-Seq data.

MEASURES OF ASSOCIATION

Here we collect various discriminative objective functions,
some of which are implemented in the accompanying
software, while others are used by related methods. Among the
objective functions are measures of association in contingency
tables, as well as measures not based on contingency tables.
Some of these objective functions are directional, i.e. motifs
that maximize them are not only differential but in fact
enriched in the signal sequences. By considering motifs that
minimize directional objective functions one can identify
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Supplementary table T1. 2×2 contingency table of
number of sequences in datasets for two conditions that
have or do not have at least one occurrence of a motif.
TP and FP stand for true and false positives, TN and
FN for true and true negatives.

Condition Motif present Motif absent

Signal TP FN
Control FP TN

differential motifs that are depleted in the signal sequences.
For non-directional objective functions it is possible to filter
differential motifs for enrichment in the desired sample.

2×2 CONTINGENCY TABLES BASED MEASURES

First we will discuss measures that are based on 2×2
contingency tables, as exemplified in supplementary table T1.
Such contingency tables are applicable in binary classification
problems on data representing contrasts involving a pair of
positive and negative example sets.

Difference of relative frequency - DFREQ
The simplest directional measure of association is the
difference of relative frequency of motif prevalence in the
signal and control data (DFREQ),

DFREQ=∆F =
TP

TP+FN
− FP

FP+TN
. (1)

One may argue that a possible drawback of this measure is
the failure to assign higher relevance to qualitative differences
between signal and control samples. As an example, consider
the following two contingency tables,

T1=

(
1000 0
500 500

)
and T2=

(
950 50
450 550

)
.

For both T1 and T2 the relative frequency difference ∆F = 1
2 ,

but there is a qualitative difference in that the data of T1 are
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Supplementary table T2. k×2 contingency table of
number of sequences with and without a feature in
datasets of k conditions. mi gives the number of
sequences with motif in the regulatory sequences of
condition i. ni is the number of sequences in condition
i.

Condition Motif present Motif absent

1 m1 n1−m1

2 m2 n2−m2

...
...

...
k mk nk−mk

consistent with the hypothesis FN=0, while there is evidence
contradicting this hypothesis for T2.

Matthews correlation coefficient - MCC
Another directional measure of association is Matthews
correlation coefficient (1) (MCC), defined as

MCC=
TP ·TN−FP ·FN√

(TP+FP )(TP+FN)(FN+TN)(FP+TN)
.

(2)

As the name indicates, the MCC is a proper measure of
correlation, i.e. it takes on values between -1 and 1, where a
value of 1 indicates perfect correlation, a value of -1 an inverse
perfect correlation, and a value of 0 statistical independence.

The MCC of the matrices T1 and T2 is 0.577 and 0.546,
respectively, demonstrating that the MCC assigns higher
relevance to the association observed in the case of T1.

Fisher’s exact test
Another widely used measure of association on 2×2
contingency tables is Fisher’s exact test (2). It is based
on the tail probabilities of the hypergeometric distribution.
Fisher’s exact test amounts to summing the probabilities of all
contingency tables that are more extreme than the observed
contingency table. It thus gives the probability of observing a
contingency table as extreme or more so than the observed one
based on a null model of independence of rows and columns
under fixed marginals.

For T1 and T2 Fisher’s exact test gives an odds ratio of∞
and 23.17, respectively, which both correspond to p-values
less than the smallest representable positive floating point
number. When adding one pseudo-count before computing
Fisher’s exact test, the resulting odds ratios are 984.59 and
22.73, respectively. There exist generalizations of Fisher’s
exact test to contingency tables larger than 2×2 (3).

K×2 CONTINGENCY TABLES BASED MEASURES

In case multiple positive or negative example sets are
available, or in case a signal grading contrast is used,
contingency tables of motif occurrence in the sequence data of
n conditions take the form depicted in supplementary table T2.

Note that for probabilistic motif models θ we will use
contingency tables that hold expected counts mi(θ) of
sequences with motif occurrence in condition i.

Normalized enrichment scores
The first k×2 contingency table based measure that we want
to discuss here are normalized enrichment scores. These are
usable when the contrast provides one set of positive example
sequences and multiple sets of control sequences. They are
related to the difference of relative frequency discussed
above. Normalized enrichment scores divide the difference
of relative frequency in the signal data and the mean of
relative frequencies in the control by a standard deviation
computed from the relative frequencies in the control datasets.
For this we define the relative frequency of sequences with
motif occurrences in condition i to be fi=

mi
ni

. Assume that
condition 1 is the signal dataset, and conditions 2 to l+1 are
control datasets. The mean relative frequency of sequences
with motif occurrences in the control data is labeled µ=
1
l

∑l+1
i=2fi, and the standard deviation of relative frequencies

in the control datasets, σ, is given by σ2= 1
l−1
∑l+1
i=2(fi−µ)2.

Then the normalized enrichment score z is given by

z=
f1−µ
σ

. (3)

The following measures of association are applicable to
general n×k contingency tables.

Pearson’s χ2 test for independence
Perhaps the most well known such measure is given by
Pearson’s χ2 test for independence (4). Given a contingency
table with counts Oij in the cell in row i and column j,
and defining the row sums Ri=

∑k
j=1Oij and column sums

Cj=
∑n
i=1Oij , as well as the expected counts under the

independence hypothesis Eij=
RiCj

N , where N=
∑n
i=1Ri=∑k

j=1Cj , then the X2 statistic is given by

X2=

n∑
i=1

k∑
j=1

(
Oij−Eij

)2
Eij

. (4)

This statistic X2 is asymptotically distributed like χ2 with
(n−1)·(k−1) degrees of freedom, and thus p-values are
available for it.

Mutual information of condition and motif occurrence -
MICO
Assume we are given a contingency table for the number of
sequences with or without at least one occurrences of a motif
M across the conditions of a contrast C. Mutual information
of condition C and motif occurrence M (MICO) is an non-
directional measure of association from information theory
(5–7), which measures in bits the expected log odds ratio
of the observed contingency table to an independence model
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that assumes no association between conditions and motif
presence.

MICO=I (C;M)=
∑
c∈C
m∈M

P (c,m)log2
P (c,m)

P (c)P (m)
, (5)

where P (c,m) are joint relative frequencies of contingency
tables like depicted in supplementary table T2, and P (c)=∑
m∈MP (c,m), and P (m)=

∑
c∈CP (c,m) are their row

and column marginal relative frequencies, respectively. In
terms of the variables given in supplementary table T2 this
is

I (C;M)=
1∑
jnj

(
k∑
i=1

mi(θ)log2
mi(θ)

ni
∑
jmj(θ)

+

k∑
i=1

(ni−mi(θ))log2
ni−mi(θ)

ni
∑
j

(
nj−mj(θ)

))

+log2
∑
j

nj .

(6)

Mutual information is closely related to the likelihood ratio
statistic Λ (8) and the G-test statistic (9),

G=−2logΛ=2log2 ·I (C;M) ·
∑
j

Mj . (7)

Due to Wilks’ theorem (10), the G-test statistic for k×2
contingency tables is distributed like χ2 with k−1 degrees
of freedom, where k is the number of objects in the contrast.
This connection allows the calculation of p-values for mutual
information.

MEASURES NOT BASED ON CONTINGENCY
TABLES

Difference of log likelihood
A directional discriminative objective function that is not
based on contingency tables is the difference of log likelihood
between signal and control (DLOGL),

DLOGL=∆logL=logP
(
Xsignal|θ

)
−logP (Xcontrol|θ)

=
∑

i∈signal

logP (Xi|θ)−
∑

i∈control

logP (Xi|θ),

(8)

where Xsignal and Xcontrol are the signal and control data,
respectively, and θ are the parameters of a probabilistic model.
In words, this objective functions identifies models for which
the signal data appear as typical examples but simultaneously
the control data appear as unlikely examples. Thus, data

C

M

Xθ

Supplementary figure S1. The graphical model of MMIE. C represents the
class, or dataset,M the motif presence, andX the observed sequence. For an
explanation of the graphical model notation see e.g. (11).

yielding high likelihood for a model selected by ∆logL tends
to indicate signal data.

The choice of ∆logL as objective function for learning
necessitates balancing of the sizes of signal and control data.
In case the control dataset is considerably larger, any gain
in likelihood for the signal data may be outweighed by a
loss of likelihood for the control data. Dominating control
data sizes may thus lead to parameters that are determined
primarily by being bad generative models for the control data.
Conversely, in case the control dataset is considerably smaller,
this objective function is dominated by the signal likelihood
and loses it discriminative character.

Difference of entropy rates
A related approach, that we did not pursue further, but that
might obviate the need to balance signal and control dataset
sizes, is to scale the log likelihoods by the data size, effectively
computing entropy rates, and then to consider the difference of
entropy rates of signal and control.

Classification probability - MMIE
We now turn to consider a probabilistic model of classes. For
this we assume that the data are given in form of paired sets
of sequences X=(Xi) with corresponding classes c=(ci).
one may consider the probability of correctly classifying all
samples (MMIE),

P (C=c|X,θ)=
∏
i

P (Ci=ci|Xi,θ), (9)

or its logarithm,

logP (C=c|X,θ)=
∑
i

logP (Ci=ci|Xi,θ). (10)

It may appear tempting to identify the classes with motif
presence or absence, but this turns out to be problematic
when the data includes mislabeled samples, in particular false
positives. As this situation appears to be common in real
biological data, it makes sense to consider alternatives. One
possibility is to add a mixture model as follows.

The model comprises three random variables, X for the
sequence, a binary variable M for the motif presence in
a sequence, and a discrete variable C for the class of
the sequence. Additionally, there are parameters θ for a
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probabilistic (sub-) model that determines P (X|θ). The
structure of the model is as depicted in supplementary
figure S1, which corresponds to the following factorization,

P (C,M,X|θ)=P (X|M,θ)P (M |C)P (C). (11)

The conditional probabilities P (M |C), the prior P (C), as
well as the HMM parameters θ are parameters of the
model. P (C) is a probability distribution over k= |C| classes,
and thus represents k−1 free parameters. P (M |C) is a
table of conditional probabilities with k×2 entries, and
k free parameters. Given an expression for the likelihood
P (X|θ) and for posterior probability of a feature occurrence
P (M |X,θ), we then have

P (C,M,X|θ)=
P (X,M |θ)

P (M)
P (M |C)P (C)

=
P (M |X,θ)P (X|θ)

P (M)
P (M |C)P (C),

(12)

where P (M)=
∑
c∈CP (M,c)=

∑
c∈CP (M |c)P (c). The

likelihood of motif presence and class, P (C,M |X,θ), is then
given by

P (C,M |X,θ)=
P (M |X,θ)P (X|θ)

P (M)P (X|θ)
P (M |C)P (C)

=
P (M |X,θ)

P (M)
P (M |C)P (C).

(13)

By summing over M ∈{m,¬m} we can express the posterior
probability of classifying data X as class C given the HMM
parameters θ, P (C|X,θ), as follows,

P (C|X,θ)=P (C,m|X,θ)+P (C,¬m|X,θ) (14)

=P (C)

(
P (m|X,θ)

P (m)
P (m|C)+

P (¬m|X,θ)

P (¬m)
P (¬m|C)

)
(15)

=P (C)

(
P (m|X,θ)

P (m)
P (m|C)+

1−P (m|X,θ)

1−P (m)
(1−P (m|C))

)
(16)

=P (C)

(
P (m|X,θ)

P (m)
P (m|C)− P (m|X,θ)

1−P (m)
(1−P (m|C))+

1−P (m|C)

1−P (m)

)
(17)

=P (C)

(
P (m|X,θ)

(
P (m|C)

P (m)
− 1−P (m|C)

1−P (m)

)
+

1−P (m|C)

1−P (m)

)
(18)

=
P (C)

1−P (m)

(
P (m|X,θ)

(
P (m|C)

P (m)
−1

)
+1−P (m|C)

)
. (19)

In (15) we use (13). Step (16) uses the fact thatM is a binary
variable, and thus m and ¬m are complementary events, from
which we have P (m)=1−P (¬m), and similarly P (m|C)=
1−P (¬m|C), and P (m|X,θ)=1−P (¬m|X,θ). The steps
(17), (18), and (19), are just rearranging and cancelling terms.
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GRADIENTS OF DISCRIMINATIVE OBJECTIVE
FUNCTIONS

Next, in order to allow for gradient optimization, we give
expressions for the gradients of these objective functions.

Throughout this section, we generally assume a proba-
bilistic model with parameters θ for a motif M, and will
occasionally denote the presence ofM withM(θ) to indicate
that it depends on the probabilistic model θ. Similarly, mi(θ)
is used to stress that the number of sequences in condition
i with occurrences of motif M depends on θ. The gradient
expression presented below generally depend either directly
on the log likelihood gradient,∇logP (X|θ), or indirectly via
the gradient of the expected counts of sequences with motif
occurrences, ∇mi(θ). Later in this supplement we will give
expressions for both of these gradients.

Below, we first give gradient expressions for the likelihood
difference before turning to the contingency table based
measures. We will first consider 2×2 contingency tables,
and give gradients for the difference of relative occurrence
frequency, for the MCC, and for mutual information. We
exclude Fisher’s exact test due to the absence of simple
expressions for its gradient. While expressions for the gradient
of Pearson’s X2 statistic are available, they are not as simple
as those presented below.

Likelihood difference
The gradient of the difference of the log likelihood is simply
the difference of log likelihood gradients

∇∆logL=
∑

i∈signal

∇logP (Xi|θ)−
∑

i∈control

∇logP (Xi|θ) (20)

For the case of hidden Markov models, we give expressions
for the log likelihood gradient∇logP (X|θ) in a later section.

Difference of relative frequency of occurrence
Adopting the notation of supplementary table T2 and
assuming that conditions 1 and 2 represent signal and
control respectively, the gradient of the difference of relative
frequencies of sequences with motifs between the signal and
control is given by

∇∆F =
∇m1(θ)

n1
−∇m2(θ)

n2
. (21)

Mutual information
To derive an expression for the gradient of the mutual
information of condition and motif presence we consider the
gradient of (6),

∇I(C;M(θ))=
1∑
ini

(∑
i

(∇mi(θ))log2
mi(θ)

ni−mi(θ)

−

(∑
i

∇mi(θ)

)
log2

∑
imi(θ)∑

ini−mi(θ)

)
. (22)

Matthews correlation coefficient
To find an expression for the gradient of the MCC we first
adopt the notation of supplementary table T2,

MCC=
1

√
n1n2

· n2m1(θ)−n1m2(θ)√
(m1(θ)+m2(θ))(N−m1(θ)−m2(θ))

,

(23)

where N=n1+n2. We now consider first the gradient of the
numerator of the second term of (23),

∇(n2m1(θ)−n1m2(θ))=n2∇m1(θ)−n1∇m2(θ). (24)

The gradient of the denominator of the second term of (23) is

∇
√

(m1(θ)+m2(θ))(N−m1(θ)−m2(θ))

=

(
N
2 −m1(θ)−m2(θ)

)
·(∇m1(θ)+∇m2(θ))√

(m1(θ)+m2(θ))(N−m1(θ)−m2(θ))
. (25)

Using these two expressions and the quotient rule for
differentiation, and canceling a few terms we have the
following somewhat lengthy expression for the gradient of the
MCC,

∇MCC=
1

√
n1n2

· 1√
(m1(θ)+m2(θ))(N−m1(θ)−m2(θ))

·
(
n2∇m1(θ)−n1∇m2(θ)

+(n2m1(θ)−n1m2(θ))

(
N

2
−m1(θ)−m2(θ)

)
· ∇m1(θ)+∇m2(θ)

(m1(θ)+m2(θ))(N−m1(θ)−m2(θ))

)
. (26)

Classification probability - MMIE
Our MMIE learning routine uses gradient optimization for the
HMM parameters θ=(θi)i. The other MMIE parameters, i.e.
the class prior P (C) and the conditional motif occurrence
priorsP (M |C), are simply reestimated by our MMIE learning
routine. Thus, for MMIE, we only give the gradient of the
classification probability ∇P (C|X,θ) with respect to the
HMM parameters θ,∇=

(
∂
∂θi

)
i
,

∇P (C|X,θ)=
P (C)

1−P (m)

(
P (m|C)

P (m)
−1

)
·∇P (m|X,θ). (27)

As the global MMIE objective (10) is given by the sum of
log probabilities of correct classification of the individual
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sequences, we finally consider

∇logP (C|X,θ)=
∇P (C|X,θ)

P (C|X,θ)

=
P (C)

1−P (m)

(
P (m|C)

P (m)
−1

)
∇P (m|X,θ)

P (C|X,θ)
. (28)
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MEASURES FOR CONDITIONAL ASSOCIATION

Our method makes use of conditional mutual information
(cMI) (6), as mentioned in the multiple motif mode section
of the methods part of the main manuscript. cMI of a variable
X and a variable Y given a variable Z, I(X;Y |Z), is defined
as,

I (X;Y |Z)=
∑
x∈X
y∈Y
z∈Z

P (x,y,z)log2
P (x,y|z)

P (x|z)P (y|z)

=
∑
x∈X
y∈Y
z∈Z

P (x,y,z)log2
P (x,y,z)P (z)

P (x,z)P (y,z)
.

(29)

In particular, we use it to determine cMI of conditions of a
contrast C and occurrence of motif A given occurrences of
motif B (cMICO),

cMICO(C;A|B)=I (C;A|B), (30)

as well as to define motif pair cMI of occurrences of two
motifs A and B given conditions of a contrast C,

motif pair cMI(A;B|C)=I (A;B|C). (31)

cMICO of a contrast C and a motif A given a motif B
measures the discriminatory contribution of A across the
contrast C after accounting for the discriminatory contribution
of B. Motif pair cMI of A and B across C quantifies how
strongly occurrences of A and B are associated throughout
the contrast.

Motif pair MI and motif pair cMI
Our usage of cMICO and motif pair cMI for filtering (see page
16 of this supplement) is motivated by FIRE (12). Unlike our
criterion, however, FIRE uses the (non-conditional) motif pair
MI in place of the motif pair cMI. In our opinion motif pair
cMI improves over motif pair MI, as illustrated by the two
cases in supplementary figures S2 and S3. In the first case,
two motifs that independently occur within each condition are
found as associated by MI, but not by cMI. Conversely, in the
second case two motifs that are dependently occurring within
each condition are only found as associated according to cMI,
but not according to MI.

In other words, usage of (non-conditional) motif-pair MI
may lead to the conclusion that independently occurring
motifs are occurring dependently, and conversely that
dependent motifs are occurring independently, while cMI does
not have this problem. Theses cases are of course instances of
Simpson’s paradox (13).

A Condition 1
A ¬A

B 1 9
¬B 9 81

B Condition 2
A ¬A

B 81 9
¬B 9 1

C Marginal (1+2)

A ¬A
B 82 18
¬B 18 82

Supplementary figure S2. Two motifs occur independently in condition 1,
and independently in condition 2, but their marginal distribution appears
dependent. In this case motif pair cMI yields 0.44 bit, while motif pair MI
yields 61 bit (calculations done after adding a pseudo-count of 1).

A Condition 1
A ¬A

B 40 0
¬B 0 60

B Condition 2
A ¬A

B 0 60
¬B 40 0

C Marginal (1+2)

A ¬A
B 40 60
¬B 40 60

Supplementary figure S3. Two motifs are dependently occurring in
condition 1, and dependently in condition 2, but their marginal distribution
appears independent. In this case motif pair cMI yields 167 bit, while motif
pair MI yields 0 bit (calculations done after adding a pseudo-count of 1).
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HMMS FOR MOTIF DISCOVERY

INFERENCE WITH HMM

This section first introduces notation and then gives brief but
concise definitions of important algorithms for inference using
HMMs.

Relevant literature on HMM includes a famous review
by (14), as well as textbooks on speech recognition
applications (15), biological sequence applications (16), and
more theoretical aspects (17). Also, general machine learning
textbooks may serve as introduction to the theory of HMM
(7, 18).

Hidden Markov modeling involves two spaces, one that
represents the observable entities, and another one that
represents underlying states. Both observation and state space
may be continuous or discrete. Here we will only consider
discrete observation and state spaces.

Formal definition of hidden Markov models
The notation and definitions here follow (19) and (14).
Hidden Markov model LetA=(aij) be anN×N stochastic
matrix, i.e.

∑N
j=1aij=1 for all 1≤ i≤N . Let a=(ai),1≤ i≤

N be a probability distribution, i.e.
∑N
i=1ai=1. For each 1≤

i≤N let bi(y) be a probability density:
∫
bi(y)dy=1. Let θ

be the tripleA,a,b={bi}. We define a stochastic processX=

{Xt}Tt=1 with density

P (X|θ)=P (X1=x1,X2=x2,...,XT =xT |θ)

=

N∑
i0,i1,...,iT=1

ai0ai0i1bi1(x1)ai1i2bi2(x2)···aiT−1iT biT (xT ).

(32)

Then θ is a hidden Markov model for {Xt}.
Hidden Markov model with start and end state As above,
let A=(aij) be an N×N stochastic matrix, and for each 1≤
i≤N let bi(y) be a probability density. Let θ be the pairA,b=
{bi}. We define a stochastic processX={Xt} with density

P (X|θ)=P (X1=x1,X2=x2,...,XT =xT |θ)

=

N∑
i1,...,iT=1

a1i1bi1(x1)ai1i2bi2(x2)···aiT−1iT biT (xT )aiT 1.

(33)

Then θ is a hidden Markov model with start and end state S1
for {Xt}. Below we, will exclusively use HMMs with start
and end state S1.

The start and end state S1 is the only state to emit a specific
symbol, ε, the so called empty symbol that is never occurring
in the observations and which is not emitted by any other state.
It is assumed that the observation sequence X=X1X2 ...XT
is pre- and postfixed by the empty symbol ε, i.e. that X0=
XT+1=ε, thus forcing any valid state path to begin and end
in that state.

Inference with HMMs
HMMs are useful probabilistic models of sequence data
because they can give answers to questions like which state
the system was in at a given point in the observation.

Important tools to perform efficient inference with HMMs
are the forward and backward algorithms that compute two
matrices α and β of likelihoods of partial observations, such
that

αt(i) :=P (X1X2 ...Xt,qt=Si|θ) (34)

is the conditional joint probability of the partial observation
sequence X1X2 ...Xt and being in state Si at time t given the
model θ. The matrix β is defined by

βt(i) :=P (Xt+1Xt+2 ...XT |qt=Si,θ) (35)

and gives the conditional probability of the partial observation
sequence Xt+1Xt+2 ...XT given the model θ and given that
the state at time t is Si.

Algorithm to compute the forward matrix
The following algorithm computes the forward matrix.

1. Initialization (t=0):

α0(j)=

{
1 for j=1

0 for 1<j≤N (36)

2. Recursion (t=1,...,T+1):

αt(j)= bj(Xt)

N∑
i=1

αt−1(i)aij for 1≤j≤N (37)

Regarding the initialization step in the algorithm, note that
we use an HMM with start and end state, assuming that it is
initialized in state q0=S1.

Algorithm to compute the backward matrix
The following algorithm computes the backward matrix.

1. Initialization (t=T+1):

βT+1(j)=

{
1 for j=1

0 for 1<j≤N (38)

2. Recursion (t=T,...,0):

βt(i)=

N∑
j=1

aijbj(Xt+1)βt+1(j) for 1≤ i≤N (39)

Regarding the initialization step in the algorithm, note again
that we use an HMM with start and end state, assuming that it
has to end in state qT+1=S1.
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Computing the posterior probability of being in a state
Using the forward and backward matrices we find that the joint
probability of being in state Si at time t and an observation
sequenceX=X1X2 ...XT given the model θ is given by

P (X,qt=Si|θ)=αt(i)βt(i). (40)

And, using the Bayesian theorem, from this we see that the
posterior probability of being in state Si at time t given an
observation sequenceX=X1X2 ...XT is given by

P (qt=Si|X,θ)=
P (X,qt=Si|θ)

P (X|θ)
=
αt(i)βt(i)

P (X|θ)
. (41)

Similarly, if we want to compute the posterior probability of a
transition from state Si to state Sj at time t we may use

P (qt=Si,qt+1=Sj |X,θ)=
P (X,qt=Si,qt+1=Sj |θ)

P (X|θ)

=
αt(i)aijbj(Xt+1)βt+1(j)

P (X|θ)
. (42)

Computing the likelihood
By marginalizing (40) over all states at any time t we can
compute the likelihood of an observation sequence X=
X1X2 ...XT given the model θ,

P (X|θ)=

N∑
i=1

P (X,qt=Si|θ)=

N∑
i=1

αt(i)βt(i). (43)

For HMMs with start and end state S1 another way of
determining the likelihood from the forward matrix alone is

P (X|θ)=P (X,qT+1=S1|θ)=αT+1(1), (44)

and similarly, using only the backward matrix:

P (X|θ)=P (X,q0=S1|θ)=β0(1). (45)

Scaled forward-backward matrices
With increasing length of the observation the numbers in the
matrices α and β quickly become smaller than what can
be represented by floating point numbers. To alleviate this
problem a scaling method can be used, which is detailed
below.

The scaled forward-backward algorithm determines two
matrices α̃ and β̃, as well as a scaling vector s such that

αt(i)= α̃t(i)

t∏
k=0

sk= α̃t(i)

t∏
k=1

sk, (46)

and

βt(i)= β̃t(i)

T+1∏
k=t

sk. (47)

In equation (46) the latter identity is due to s0=1.

Algorithm to compute the scaled forward matrix
The following algorithm computes the scaled forward matrix
α̃ and the scaling vector s.

1. Initialization (t=0):

α̃0(j)=

{
1 for j=1

0 for 1<j≤N (48)

s0=1 (49)

2. Recursion (t=1,...,T+1):

α̂t(j)= bj(Xt)

N∑
i=1

α̃t−1(i)aij for 1≤j≤N (50)

st=

N∑
i=1

α̂t(i) (51)

α̃t(j)=
α̂t(j)

st
for 1≤j≤N (52)

Note that the algorithm to compute the scaled forward matrix
α̃ differs from the algorithm for the unscaled forward matrix
α in that first an intermediate value α̂t is computed, which is
subsequently summed over to yield st. This sum is then used
to scale the values in the matrix α̂ for time t, yielding α̃.

Algorithm to compute the scaled backward matrix

The following algorithm computes the backward matrix β̃
using the scaling vector s.

1. Initialization (t=T+1):

β̃T+1(j)=

{
1

sT+1
for j=1

0 for 1<j≤N
(53)

2. Recursion (t=T,...,0):

β̂t(i)=

N∑
j=1

aijbj(Xt+1)β̃t+1(j) for 1≤ i≤N (54)

β̃t(i)=
β̂t(i)

st
(55)

Note that in the algorithm for the scaled backward matrix the
same st values are used that were determined in the calculation
of the scaled forward matrix.
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Computing the likelihood
Building on (44), and using the scaling coefficient vector s,
the likelihood of the observation sequence X=X1X2 ...XT
given the model θ may be computed by

P (X|θ)=αT+1(1)= α̃T+1(1)

T+1∏
t=0

st=

T+1∏
t=1

st, (56)

as α̃T+1(1)=1, and s0=1. Similarly, and numerically
preferably, the log-likelihood may be determined by

logP (X|θ)=

T+1∑
t=1

logst. (57)

Computing the posterior probability of being in a state
An expression based on the scaled variants of the forward and
backward matrices, α̃ and β̃ corresponding to (41) for the
posterior probability of being in a state Si at time t given the
observation sequenceX=X1X2 ...XT and the model θ is

P (qt=Si|X,θ)=
αt(i)βt(i)

P (X|θ)

=
α̃t(i)

∏t
k=0skβ̃t(i)

∏T+1
k=t sk∏T+1

t=0 st

=α̃t(i)β̃t(i)st.

(58)

Similarly, (42) may be computed as

P (qt=Si,qt+1=Sj |X,θ)=
αt(i)aijbj(Xt+1)βt+1(j)

P (X|θ)

=
α̃t(i)

∏t
k=0skaijbj(Xt+1)β̃t(i)

∏T+1
k=t+1sk∏T+1

t=0 st

= α̃t(i)aijbj(Xt+1)β̃t+1(j). (59)

Expected number of transitions
By summing over (42) or over (59), we compute for each
observation sequenceXm the expected number of transitions
Amij from state Si to state Sj ,

Amij =

T∑
t=0

P (qt=Si,qt+1=Sj |Xm,θ)

=

T∑
t=0

αmt (i)aijbj(X
m
t+1)βmt+1(j)

P (Xm|θ)

=

T∑
t=0

α̃mt (i)aijbj(X
m
t+1)β̃mt+1(j),

(60)

By subsequently summing over all M observation sequences,
we determine the total expected number of transitions Aij
from state Si to state Sj ,

Aij=

M∑
m=1

Amij . (61)

Expected number of observations
The expected number of times that observation x occurs in
state Si in observation sequence Xm is given by summing
(41) or (58) over those times t at which x is observed,

Bmi (x)=
∑

{t|Xm
t =x}

P (qt=Si|Xm,θ)

=
∑

{t|Xm
t =x}

αmt (i)βmt (i)

P (Xm|θ)

=
∑

{t|Xm
t =x}

α̃mt (i)β̃mt (i)st.

(62)

Again, by summing over all M observation sequences, the
total expected number of emissions of kind x in state Si are
determined,

Bi(x)=

M∑
m=1

Bmi (x). (63)

HIGHER-ORDER HMMS

As mentioned in the introduction of the main manuscript,
HMMs can account for interacting neighboring positions.
There are several different ways in which this can be achieved
via higher-order dependencies (illustrated in supplementary
figure S4). In the simplest case, both emission and
state transition probabilities depend simply on the current
state (supplementary figure S4A). However, state transition
probabilities can be modeled to additionally depend on more
than just the immediately preceding state (supplementary
figures S4B and C). Similarly, also emission probabilities can
depend both on the current state as well as on preceding
emissions (supplementary figures S4D and E). Alternatively,
aside from the current state, emission probabilities can also
depend on preceding states (supplementary figures S4F and
G) Finally, also combinations of the afore-mentioned cases are
possible (not shown).

Note that in this manuscript we only consider HMMs
with first-order transition and first-order emission probabilities
(supplementary figure S4A). For higher-order models, the
equations presented in this section become slightly more
complicated, but retain the essential property that inference
and learning can be done in time linear in the length of the
data.
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A 1st order transitions, 1st order emissions

B 2nd order transitions, 1st order emissions C 3rd order transitions, 1st order emissions

D 1st order transitions, 2nd order emissions E 1st order transitions, 3rd order emissions

F Emissions depend on the current and
preceding states

G Emissions depend on the current and two
preceding states

Supplementary figure S4. Graphical model notation for HMMs of different transition and emission orders. Circles correspond to state variables, rectangles
to emission variables. Doubly-circled states are non-emitting start and stop states. Filled nodes are observed. (A) Standard HMM for a sequence of length 5.
(B) Transition probabilities depend on the preceding two states. (C) Transition probabilities depend on the preceding three states. (D) Emission probabilities
depend on the current state and the preceding emission. (E) Emission probabilities depend on the current state and the two preceding emissions. (F) Emission
probabilities depend on the current and the preceding state. (G) Emission probabilities depend on the current state and the two preceding states.

Motif

S EB

1 2 3 4 5 6 7 8

Supplementary figure S5. State transition graph of a binding site HMM with
a motif of 8 nucleotides length and a background state B. The model includes
a start state S, and an end state E. The numbered states represent motif chain
states, the diamond shaped states are (optional) insert states. The box around
the motif is an instance of plate notation from probabilistic graphical models
(see (11)) and indicates that there may be multiple motifs, which may have
different lengths. Note that the implementation in Discrover uses a combined
start/end state, rather than two separate states as depicted.

BINDING SITE HMM

Supplementary figure S5 illustrates the default topology of
binding site HMMs as used by Discrover.

We now describe how to calculate the posterior probability
of at least one motif occurrence, and then give expressions for
the gradient thereof.

Given an HMM θ that models binding sites for motif M,
let M be the set of states of M in θ. The likelihood of no
occurrence of M is the joint probability given θ of data and
all state paths that avoid transitions throughM . This is the sum
of probabilities of all state paths q that do not transit through

M ,

P (¬M,X|θ)=
∑

q:qi /∈M
P (q,X|θ). (64)

With this we can compute the posterior probability of no
occurrence ofM,

P (¬M|X,θ)=
P (¬M,X|θ)

P (X|θ)
. (65)

By considering the complementary element, we have the
posterior probability of at least one occurrence ofM,

P (M|X,θ)=1−P (¬M|X,θ). (66)

However, it would be fairly inefficient to enumerate all
paths q :qi /∈M in order to compute P (¬M,X|θ) according
to (64). Instead, we may consider modified parameters θ′
which are identical to θ except for having the transition
probabilities to all states q∈M set to zero. It is important
not to renormalise after setting these zero. Specifically, when
θ=(θi)i=1,...,n and θ′=

(
θ′i
)
i=1,...,n then θ′i=0 for all i for

which θi represents a transition probability to a state q∈M ,
and θ′i=θi otherwise. We then have

P (¬M,X|θ)= P̃
(
X|θ′

)
, (67)

where we use P̃ in P̃ (X|θ′) to indicate that this not
a normalized probability, i.e.

∑
X P̃ (X|θ′)≤1 in general.
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However, P̃ (X|θ′) may still be computed with the forward-
backward algorithm applied toX and θ′.

The gradient of the posterior occurrence probability is

∇P (M|X,θ)=
P̃ (X|θ′)∇P (X|θ)−P (X|θ)∇P̃ (X|θ′)

P (X|θ)2

=
P̃ (X|θ′)
P (X|θ)

(
∇P (X|θ)

P (X|θ)
−∇P̃ (X|θ′)

P̃ (X|θ′)

)

=P (¬M|X,θ)
(
∇logP (X|θ)−∇logP̃ (X|θ′)

)
.

(68)

This expression is in terms of the gradient of the log likelihood
which is given in the next section.

HMM GRADIENT CALCULUS

Gradient learning is an iterative, local learning method.
The parameter estimates θk are improved in iteration k by
computing the direction of steepest increase of the likelihood
∇P (X|θ) and taking small steps into that direction.

θk+1=θk+ηk∇P (X|θ) (69)

The step size ηk may be a sufficiently small constant
(ηk=η), decrease with the iterations (e.g. ηk= 1

k ), or be
chosen (approximately) optimal for each iteration k using line
searching. Our method makes use of the Moré-Thuente line
searching algorithm (20).

Likelihood gradient
We first consider expressions for the likelihood gradient of a
single sequenceXm.

Partial derivatives w.r.t. transition probabilities Expression
(70) for the partial derivatives of the likelihood with respect to
the transition probabilities was given by Leonard Baum (21),

∂P (Xm|θ)

∂aij
=

T∑
t=0

αmt (i)bj(X
m
t+1)βmt+1(j) (70)

=
Amij
aij

P (Xm|θ). (71)

Expression (71) uses the definition of the expected number of
transitions from state Si to Sj , Amij , as given in (60). From
this we have the partial derivative of the log-likelihood with
respect to the transition probabilities,

∂ logP (Xm|θ)

∂aij
=

1

P (Xm|θ)

∂P (Xm|θ)

∂aij
=
Amij
aij

(72)

Partial derivatives w.r.t. emission probabilities An
expression for the partial derivative of the likelihood with
respect to the emission probabilities corresponding to the one
of Baum is

∂P (Xm|θ)

∂bj(k)
=

∑
{t|Xm

t =k}

N∑
i=1

αmt−1(i)aijβ
m
t (j) (73)

=
1

bj(k)

∑
{t|Xm

t =k}
αmt (j)βmt (j) (74)

=
Bmj (k)

bj(k)
P (Xm|θ). (75)

Expression (74) uses the definition of αmt (j), in (37),
expression (75) uses the definition of the expected number of
emissions of kind k in state Sj , Bmj (k), in (62). From this we
get the partial derivative of the log-likelihood with respect to
the emission probabilities,

∂ logP (Xm|θ)

∂bj(k)
=
Bmj (k)

bj(k)
. (76)

Another derivation of (72) and (76) can be found in (22).

Transformed probabilities
In order to avoid boundary issues during gradient optimization
Mao and Hu (23) suggest to consider quantities gij and
hil, which are defined to transform into the corresponding
transition and emission probabilities as

aij=
exp
(
gij
)∑N

k=1exp(gik)
(77)

and

bi(l)=
exp(hil)∑M
k=1exp(hik)

. (78)

Partial derivatives w.r.t. transformed transition
probabilities Using that ∂aij

∂gkl
=δik

(
δjl−aij

)
ail Mao and

Hu (23) give (79) for the partial derivative of the likelihood
with respect to the transformed transition probabilities gij ,

∂P (Xm|θ)

∂gij
=

N∑
k=1

T∑
t=0

αmt (i)bk(Xm
t+1)βmt+1(k)

(
δkj−aij

)
aik

(79)

=

N∑
k=1

(
δkj−aij

) T∑
t=0

αmt (i)aikbk(Xm
t+1)βmt+1(k)

(80)

=P (Xm|θ)

N∑
k=1

Amik
(
δkj−aij

)
. (81)
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While (80) is just a reordering of (79), (81) uses the definition
of Amik in (60). From this we have the partial derivative of
the log-likelihood with respect to the transformed transition
probabilities

∂ logP (Xm|θ)

∂gij
=

N∑
k=1

Amik
(
δkj−aij

)
. (82)

Partial derivatives w.r.t. transformed emission
probabilities Similarly, with ∂bi(l)

∂hjk
=δij (δlk−bi(l))bi(k)

Mao and Hu (23) give an expression for the partial derivative
of the likelihood with respect to the transformed emission
probabilities hjk that we can further simplify with an
expression from (62) for the expected number of observations,

∂P (Xm|θ)

∂hjk
=

|A|∑
l=1

 ∑
{t|Xm

t =l}

N∑
i=1

αmt−1(i)aijβ
m
t (j)


·
(
δkl−bj(k)

)
bj(l) (83)

=

|A|∑
l=1

1

bj(l)

 ∑
{t|Xm

t =l}
αmt (j)βmt (j)

(δkl−bj(k)
)
bj(l)

=P (Xm|θ)

|A|∑
l=1

Bmj (l)
(
δkl−bj(k)

)
, (84)

where |A| denotes the size of the alphabet. From this we have
the partial derivative of the log-likelihood with respect to the
transformed emission probabilities

∂ logP (Xm|θ)

∂hjk
=

|A|∑
l=1

Bmj (l)
(
δkl−bj(k)

)
, (85)

Note on gradients for non-normalized models
A comment is due regarding the calculation of the partial
derivative of the (ordinary or log) likelihood with respect to
the transformed transition probabilities for the non-normalized

models, ∂P̃ (Xm|θ′)
∂gij

.
Let us consider a state i that has a transition to a state j∈M ,

whereM is the set of states corresponding to a motifM. In the
full model parameters θ we have aij>0 with

∑
kaik=1, and

in the reduced, non-normalized model parameters θ′ a′ij=0

with
∑
ka
′
ik<1 (see section on binding site HMM, page 11).

Correspondingly, for the transformed transition probabilities
and j∈M we have gij>−∞ and g′ij=−∞ for the full and
non-normalized parameters θ and θ′, respectively, while for
k 6∈M we have g′ik=gik.

In this case it is important to define the term in the
denominator of (77) based on the transition probabilities of
full model parameters,

a′ij=
exp
(
g′ij

)
∑N
k=1exp(gik)

. (86)

Note here that only the terms in the denominator lack
apostrophes to indicate that only they are referring to the full
model parameters. Otherwise, the resulting gradient would
erroneously point out of the probability simplex.

As described in the main manuscript, our method by
default uses hybrid learning. In this mode, only the emission
probabilities of the motif states are optimized by maximizing
discriminative objectives through gradient learning. The
transition probabilities (and the non-motif state emission
probabilities) on the other hand are optimized by the Baum-
Welch algorithm. Thus, in the hybrid learning mode, the note
above is actually not of relevance. Yet, we feel it necessary to
include it for the sake of correctness for the general case.

RUNTIME OF HMM ALGORITHMS

Supplementary table T3 gives an overview of the runtime
complexities of the calculations necessary to compute the
gradient. As is visible, the total runtime to compute the
gradient due to Baum is O(TE+NM). The formulation due
to Krogh are simpler than those of Baum but depend on
calculation of the expected statistics, and thus have the same
cumulative runtime of O(TE+NM). When transformed
probabilities are used, the formulation due to Mao and Hu is
O(TEN+TN2M). Our formulation reduces this toO(TE+
EN+NM2).



14 Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models

Supplementary table T3. Runtime complexity and inter-dependence of inference algorithms. T is the length of the observation
sequence, N the number of states, E the number of edges of the HMM (the number of non-zero transition probabilities). M is the
size of the alphabet.

# Algorithm Complexity Depends on # Equations

1 Forward, unscaled / scaled O(TE) (36), (37) / (48), (50)
2 Backward, unscaled / scaled O(TE) (38), (39) / (53), (54)
3 Expected transitions O(TE) 1, 2 (60)
4 Expected emissions O(TN) 1, 2 (62)
5 L gradient due to Baum (21) O(TE+NM) 1, 2 (70), (73)
6 L gradient due to Krogh (22) O(E+NM) 3, 4 (72), (76)
7 L gradient, transformed statistics due to Mao and Hu (23) O(TEN+TN2M) 1, 2 (79), (83)
8 L gradient, transformed statistics O(EN+NM2) 3, 4 (82), (85)
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MULTIPLE TESTING CORRECTION FOR MOTIF
FINDING PROBLEMS

Any motif finding method aims to find optimal sets of
parameters according to some objective function. During this
(exact, approximate or heuristic) optimization many parameter
values are tested and the best one is reported. Clearly, the
larger the allowed motif space the higher the maximally
achievable objective function is. It is thus desirable to account
for the difference in number of parameters when comparing
the values of the objective function on the same data for
two parameter sets with differing numbers of parameters.
There is no generally applicable way to account for difference
in number of parameters for arbitrary objective functions.
However, whenever the objective function represents a p-value
P , we may, in a Bonferroni style, multiply the p-value with
the size N of the motif space, to yield a corrected p-value
Pcorrected. In log-space we have then

logPcorrected =min(0,logP+logN). (87)

Continuous motif space sizes
Next, we outline how we determine the motif space size for
continuous matrix based motif representations.

Here we propose to base the effective number of parameter
in a continuous matrix on rank statistics. Considering
individual positions, we assume that one to four nucleotide
may be allowed. If one nucleotide is allowed, there are
four possibilities of choosing this one nucleotide. When two
nucleotides are allowed, e.g. nucleotides x and y then we
may have x<y, x=y, x>y, indicating that nucleotide x is
respectively less frequent, as frequent, or more frequent than
nucleotide y. Thus, for two nucleotides, one can choose two
of the four nucleotides and can have the two nucleotides in
three relations, resulting in

(4
2

)
·3=18 possibilities. Following

this logic, we have the following formula for the total number
of rankings of up to 4 elements selected from the nucleic acid
alphabet,

J=

4∑
i=1

(
4

i

)
·K(i)=4 ·1+6·3+4·13+1·75=149, (88)

whereK(i) is the number of total preorders of i elements (24).
Then, by multiplying this number across the n positions of a
motif, we have a motif space size of N=Jn.
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DISCOVERING MULTIPLE MOTIFS

Supplementary figure S6 illustrates the first part of the
multiple motif discovery mode of Discrover. First, seeds
are discovered using Plasma. For each seed an HMM is
initialized and independently optimized by Discrover. The
HMM achieving the best MICO based p-value is accepted. In
a second part further motifs are then added to this HMM as
described below and illustrated in supplementary figure S7.

In turn, the single HMM motifs are added to the accepted
HMM, forming candidate HMMs. The candidate HMMs
are then filtered, ensuring that newly added motifs provide
sufficient additional discrimination and are not redundant
with previously accepted motifs. This is done by comparing
in each candidate HMM the new motif first pairwise
against each previously accepted motif, and then jointly
against all previously accepted motifs. Candidate HMMs and
corresponding single-motif HMMs are discarded when the
filtering criteria—outlined below—are not met for the newly
added motif, whether in any of the pairwise comparisons or in
the joint comparison.

Filtering is based on conditional mutual information (cMI),
calculated in two ways: (I) cMI of conditions of the contrast
and occurrences of the newly added motif given occurrences
of previously accepted motifs (cMICO), and (II) cMI between
occurrences of newly added and previously accepted motifs
given the conditions of the contrast (motif pair cMI). cMICO
quantifies the discriminatory contribution of the new motif
after accounting for previous ones, while motif pair cMI
quantifies association between occurrences of the newly added
and previously accepted motifs. See page 7 for definitions of
cMICO and motif pair cMI. In order to concentrate on motifs
with a large residual explanatory contribution relative to their
association with previous motifs, HMMs are discarded if at
least one of two criteria is fulfilled: (a) the ratio of cMICO over
motif pair cMI does not meet a threshold1, or (b) the cMICO
based p-value is not significant.

As mentioned above, these criteria are first checked
pairwise for the newly added motif and each previously
accepted motif, and subsequently for the new motif and
jointly all previously accepted motifs. In the joint comparison,
an occurrence for the previously accepted motif is counted
whenever any of the previously accepted motifs occurs.

Among the candidate HMMs that pass the filtering steps,
we select the one whose newly added motif achieves the
best cMICO based p-value. This HMM is then re-trained to
optimize MICO for the feature of sequences having at least
one occurrence of any of its motifs. If, after retraining, the
MICO based p-value improves over the previously accepted
one’s, it is accepted, and further motifs may be added.
Otherwise, or if all candidate motifs have been discarded, the
last accepted HMM is reported.

1We use the same threshold value of 5.0 as FIRE (12). As noted by Elemento
et al., the user may want to experiment with this value, as it serves as a
redundancy trade-off parameter. High values yield fewer motifs, low values
yield more redundant motifs.

Contrasts

Plasma: find seeds

Seeds

Discrover: Seed &
optimize HMMs

Single-motif HMMs

Select by
MICO
p-value

Accepted HMM Remaining HMMs

best
other

Supplementary figure S6. Flow chart of the first part of multiple motif
discovery. The resulting accepted HMM and the set of remaining single-motif
HMMs are the inputs for the second part, depicted in supplementary figure S7.
See text for description.

Note on filtering
Note that usage of the ratio of cMICO over motif pair cMI
is quite related to the usage of cMICO over motif pair MI
as is done by FIRE (12). However, as already mentioned on
page 7 in this supplement, unlike FIRE we use the motif
pair cMI instead of motif pair MI. The intention behind this
choice is to avoid pitfalls as illustrated by the two cases in
supplementary figures S2 and S3. While the illustrated cases
may be said to be extreme, we found the underlying issue to
be real. As motif pair cMI is used in the denominator of the
ratio, the filtering step is rather sensitive to misjudgement of
motif pair association. It is, in our view, therefore crucial to
avoid quantitatively misjudging motif pair association as may
frequently happen when using motif pair MI.
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Add single motifs
to accepted HMMAccepted HMM Single-motif HMMs

Candidate HMMs

Filter by
ratio of

cMICO to
motif pair

cMI

Discard corresponding
single-motif HMM

Filter by
cMICO
p-value

Select by
cMICO
p-value

Keep corresponding
single-motif HMM

Retrain HMM
for MICO

Improved
MICO
p-value?

Stop

pass

fail
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Supplementary figure S7. Flow chart of the second part of multiple motif discovery. Inputs are the accepted HMM, and the set of remaining single-motif HMMs
resulting from the first part, depicted in supplementary figure S6. This part is executed until all single-motif HMMs have been accepted or discarded, or until the
MICO p-value is not improved after retraining. See text for description.
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GALAXY MODULE OF DISCROVER

A Simple interface B Advanced interface

Supplementary figure S8. Screen shots of the (A) simple and (B) advanced Galaxy (25) web interfaces of Discrover. Both interfaces can be used to perform
either RBP motif discovery on the forward strand only, or DBP motif discovery by also considering occurrences on the reverse complementary strand. Motif
lengths may be specified as a comma-separated list of lengths or length ranges, e.g. ‘8’, ‘5-10’, or ‘5,8-10’. Multiple best seeds per length may be used. Using
both interfaces, multiple contrasts may be specified for joint analysis. The simple interface is designed for easy specification of binary contrasts, and assumes the
first sequence set of each contrast to be the signal sequences, while the second are assumed to be control sequences (control sequences can either be shuffles of
the signal sequences, as shown in the screen shot, or they can be another set of sequences uploaded by the user). The advanced interface allows specification of
contrasts of more than two conditions, and grants additional control over how the individual conditions of each contrast are to be used.
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PERFORMANCE METRICS

Supervised performance metric require the knowledge of
the true model used to generate data. As such they might
require an exhaustive specification of all true binding sites
in a synthetic sequence dataset. The first two supervised
performance metrics discussed below, both defined by (26),
fall into this category.

Nucleotide level performance metrics
Given a set of implanted and predicted motif coordinates,
individual nucleotide positions may be classified as true and
false positives, and true and false negatives, see supplementary
figure S9A.

Basic nucleotide level statistics The following definitions for
basic nucleotide level statistics can be found in (26).

nTP Number of nucleotides part of a site correctly predicted

nTN Number of background nucleotides correctly predicted

nFP Number of background nucleotides predicted to be part
of a motif

nFN Number of nucleotides part of a site predicted as
background

Nucleotide correlation coefficient Originally defined by
(27), the nucleotide correlation coefficient (nCC) is the MCC
applied on the nucleotide-level statistics. The nCC is given by

nCC=
nTP ·nTN−nFP ·nFN√

(nTP+nFN)(nTN+nFP )(nTP+nFP )(nTN+nFN)
. (89)

The nCC, like the general MCC, is a value between −1
and +1. A coefficient of +1 implies perfect prediction, and
−1 perfect inverse prediction. A coefficient of 0 implies that
the prediction performance is equivalent to that of a random
prediction.

For the limit of any of the product terms under the square
root in the denominator approaching zero, the limiting value
of the MCC is zero.

Site level performance metrics
Basic site level statistics (28) give the following definitions
for basic binding site level statistics, see supplementary
figure S9B.

sTP Number of real sites that share over 50% of their
nucleotides with a predicted site

sFP Number of predicted sites that share less than 50% of
their nucleotides with a real site

sFN Number of real sites that share less than 50% of their
nucleotides with a predicted site

These definitions are more strict than the site level statistics
given by (26), which consider a single overlapping base
as sufficient. Using these basic statistics, one may define
the following site-level performance metrics. First, the site
sensitivity sSn is defined as

sSn=
sTP

sTP+sFN
. (90)

Next, the site positive predictive value is defined as

sPPV=
sTP

sTP+sFP
. (91)

Sensitivity is also known as recall, while another name for
positive predictive value is precision.

Average site performance The average site performance
(sAP) is the arithmetic mean of site sensitivity sSn and of site
positive predictive value sPPV,

sAP=
sSn+sPPV

2
. (92)

As both sSn and sPPV represent relative frequencies, they
take on values between 0 and 1, where in both cases 0 signifies
the worst performance. For the sSn a value of 1 denotes that
each true site shares at least 50% of its nucleotides with a
predicted site, which is equivalent to the statement that there
are no false negative sites. In case of the sPPV a value of 1
denotes that none of the predicted sites is a false positive.
Clearly, as the sAP is the average of these two measures, its
values are confined to the same range.

Site sF1 score Another choice of site level statistic is the site
level sF1 score. It is related to the average site performance,
as it is the harmonic mean of site sensitivity and site positive
predictive value:

sF1=2
sSn·sPPV
sSn+sPPV

. (93)

Like the sASP the sF1 score is symmetrical in the
underlying statistics, takes values between 0 and 1, and
assumes its maximal value exactly when both underlying
statistics achieve their maxima. However, unlike the sASP it
is zero whenever either underlying statistic is zero. Whenever
sSn is not equal to sPPV, the sF1 score is less than the sASP,
otherwise they are equal.
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A

Predicted

Implanted

TN TN TN FP FP TP TP TP TP FN FN TN TN TN

B

Predicted

Implanted

FP

TP FN FN

FP

Supplementary figure S9. (A) Classification of nucleotide positions as true positives (TP), false positives (FP), false negatives (FN), and true negatives (TN),
based on the overlap with implanted and predicted motifs. (B) Classification of implanted binding sites as true positives (TP) and false negatives (FN), based on
≥50% overlap with predicted sites. Classification of predicted sites as false positives (FP) based on lack of ≥50% overlap with implanted sites.

Summarization
Another topic worth discussion in the context of performance
metrics is that of summarization. It is in principle possible to
compute the nCC and sAP independently for each experiment
and study their distribution over some variate of interest.
However, discussion is eased by applying one of various ways
of summarization.

(26) consider three summarization methods. These are
‘average’, ‘normalized’, and ‘combined’.

Average This method summarizes by computing the average
value of the performance metric of interest for a variate
of interest.

Normalized This method standardizes the performance of
each experiment by subtracting the mean performance
of all methods applied to this experiment and dividing
by the standard deviation of all methods’ performance
values. For summarization, these standardized scores
are then averaged.

Combined This method unites the underlying statistics of the
experiments to yield super-experiment statistics. From
these super-experiment statistics the final performance
values are computed.

(26) report few qualitative differences among these three
methods of summarizing, except for that averaging of nCC
and sAP tends to reward methods that make no prediction on
many datasets. In light of this, we use the ‘combined’ method
for summarization.
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SUPPLEMENT FOR EVALUATION OF MOTIF
DISCOVERY PERFORMANCE ON SYNTHETIC DATA

Bugs in published motif discovery methods
Our evaluation revealed bugs in two motif finders: CMF and
MoAn.
Off-by-one error in CMF CMF failed to report motif
occurrences matching the found motif that begin at the first
position of a sequence, or end on the last position of a
sequence. The authors of CMF were quick to provide a patch
for this off-by-one programming mistake.
Faulty random number generation in MoAn The problem
we found with MoAn was due to faulty integer random
number generation. The routine used by MoAn is shown
in supplementary figure S10A. It is supposed to generate
integers greater or equal to 0 and less than max. First, an
integer x between 0 and RAND_MAX=231−1=2147483647
is generated using the system routine rand(). max is cast
to float and multiplied with x which is implicitly cast
to float for this. The product is subsequently divided by
RAND_INT+1, a value strictly greater than x, thus supposedly
yielding a value that is strictly less than max. Finally, the
resulting floating point number is cast to int by truncating
the fractional part.

However, this routine generates values that are equal to
max with a probability of 64

2147483647 or about 2.98×10−8.
The reason for this is that variables of type float lack
resolution to represent values that are close to, but less than 1.
In particular, all division results that fall above the largest
representable number less than 1 are rounded to one. The
consequence is that instead of yielding numbers between 0
and n−1, the routine sometimes returns n. As such numbers
are used by MoAn to index arrays, segmentation violations
may occur, and MoAn aborts. Although such events are
individually relatively rare, MoAn generates a lot (millions)
of random numbers per run, and thus the problems may
occur with a frequency in the percent range. We fixed this
problem by modifying the routine as shown in supplementary
figure S10B.

Additional results for motif discovery performance on
synthetic data
Supplementary figure S11 provides further motif discovery
performance metrics on the three sets of experiments with
synthetic data for the methods considered in in figure 2. This
includes, in addition to nCC, which is already displayed in
figure 2, the motif discovery performance metrics sSn, sPPV,
sAP, and sF1.

Motif discovery performance of additional methods
We evaluated the motif discovery performance of all
objective functions implemented in Discrover, as well as
further published methods on the three sets of experiments.
Supplementary figure S12 shows the nCC of all considered
methods, including those of figure 2. These supplementary
results show that usage of MCC, MICO, MMIE, and DLOGL
as objective function in Discrover all yield comparable results,
with DFREQ performing worse.
Additional evaluation of DREME During the review process
of this manuscript, and updated version of DREME became

available. Our initial evaluation was based on the earlier
version that lacked a dedicated single-strand mode suitable
for RBP analysis. The results of the initial analysis using
the double-stranded mode are labelled “DREME DNA” in
supplementary figure S12. The later analysis using the updated
version in the single-stranded mode is labelled “DREME
RNA”. Motif discovery performance is practically identical
between the two analysis modes.

By default, DREME reports motifs until the last reported
motif fails to meet the E-value threshold (0.05). The above-
mentioned evaluations of DREME use a command line switch
to instruct DREME to only provide the first motif. To
establish whether this reduced motif discovery performance
on our synthetic datasets, we also ran DREME in the default
mode—letting it reporting motifs until the E-value threshold
was met—and subsequently selecting the best scoring one
according to DREME’s objective function. This evaluation is
labelled “DREME RNA*” in supplementary figure S12, and
did not increase motif discovery performance over “DREME
RNA”.

We also sought to establish whether using DREME might
be a viable alternative to our own seeding method Plasma.
Thus we combined DREME with Discrover, with DREME
run in the single-stranded RBP analysis mode to discover one
seed, on which subsequently an HMM is seeded and further
optimized by Discrover. This approach is labelled “MICO-
DREME” in supplementary figure S12. It yielded very nearly
the same motif discovery performance as when using our own
seeding method Plasma to seed HMMs.
Additional evaluation of MoAn As described in the main
manuscript, the default number of 3×107 iterations used by
MoAn made it infeasible to evaluate performance on the decoy
dataset. Supplementary figure S12 presents the partial motif
performance results of MoAn with the default number of
iterations on the basic and 3’UTR datasets, labelled simply
“MoAn”. Labelled as “Moan-3M” is the evaluation of MoAn’s
motif discovery performance using only 3×106 iterations,
that is also included in figure 2. As is visible, motif discovery
performance increases when more iterations are done.

Runtime of motif discovery methods
Supplementary figure S16 gives the total runtime of the
evaluated motif discovery methods on the three sets of
experiments. Note that the vertical axis shows runtime in
hours on a logarithmic scale. The evaluations were done on
an Intel R© Xeon R© E5645 CPU running at 2.40GHz with 12
CPU cores.

Discrover and its seeding method Plasma may make use
of multi-threading capabilities of modern CPUs. Thus, two
time measurements are given for each evaluation, one for
single-threaded (labelled “ST”) and one for multi-threaded
execution.

Overall, there is considerable variation in the run times of
the considered motif discovery methods, with the slowest one
taking between 226 and 932 times longer than the fastest one.

The order of the methods’ runtimes is relatively similar
across the three sets of experiments. As is visible from the
figure, using multiple threads Plasma is faster than any other
method. DME is faster than Plasma on the 3’UTR dataset
when Plasma uses only one thread. Following Plasma, the next



22 Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models

(A) #define RAND_INT(max) (int) (((float) max) * rand() / (RAND_MAX + 1.0))
(B) #define RAND_INT(max) (int) (((double) max) * rand() / (RAND_MAX + 1l))

Supplementary figure S10. Random number generation in MoAn. (A) Faulty random number generation routine in MoAn. (B) Proposed fix.

Supplementary table T4. Runtime of several motif discovery method on one pair of signal and control sequence sets. We considered
one particular motif discovery experiment from the basic dataset with 10 000 signal and 10 000 control sequences each of length 1000
with a motif implantation probability of 1 % at an information content of 14 bit. Times are given as hours:minutes:seconds. The last two
columns give average CPU utilization in percent of a single CPU, and wall clock time relative to that of Discrover. Experiments were
run on an Intel R© Xeon R© E5645 CPU running at 2.40GHz with 12 CPU cores. Note: DEME did not finish after more than 74 days, 20
hours. Note: DIPS experienced contention for the used CPU, otherwise wall clock time would be around the same as the CPU time.

Method Wall clock CPU time CPU [%] Relative wall clock
Discrover 00:01:59 00:08:12 413 1.00
DEME > 74 days > 74 days 100 > 54330.59
DIPS 628:27:21 605:10:46 96 19008.43
Dispom 40:09:41 88:09:16 219 1214.73
MoAn-3M 00:45:31 00:45:26 100 22.95
MoAn 08:20:57 08:20:04 100 252.53

fastest methods are DME and “DREME RNA”, followed by
the slightly slower “DREME DNA”.

Only a little bit slower than “DREME DNA” are the various
objective function modes of Discrover. Depending on whether
multiple, or just a single thread is used, Discrover is faster or
slower than MDscan and BioProspector. It is noteworthy that
among the objective functions of Discrover, the discriminative
ones—with the exception of DFREQ—are faster than the
generative one using the Baum-Welch algorithm. Aside from
being slower, DFREQ is also showing worse motif discovery
performance than the other discriminative objective functions
of Discrover (see supplementary figure S12).

Again with the exception of DFREQ (and BW on the decoy
datasets), but regardless of whether using multiple threads or
not, Discrover is considerably faster than the other published
discriminative motif discovery methods CMF, FIRE, DECOD,
and MoAn-3M.

Note again, that the default number of 3×107 iterations for
MoAn would imply a roughly ten-fold higher runtime than
that of “MoAn-3M” which uses only 3×106 iterations.

The runtime of “MICO-DREME” on the 3’UTR datasets is
lower than that of MICO because unlike our Plasma seeding
method, DREME for some datasets does not return a motif.
Particularly, no motif is reported when DREME does not find

Supplementary table T5. Motif discovery performance. nCC: nucleotide-level Matthews correlation coefficient, %: nCC in percent of
recognizability. NA: not available. Numbers are plotted in supplementary figure S12.

Basic 3’UTR Decoy
nCC % nCC % nCC %

Recognizability 0.68 100 0.68 100 0.59 100
BioProspector 0.43 63 0.43 63 0.21 36
CMF 0.40 59 0.45 66 0.27 45
DECOD 0.42 62 0.34 51 0.42 72
DME 0.48 71 0.41 60 0.44 75
DREME DNA 0.56 83 0.59 86 0.52 88
DREME RNA 0.56 83 0.59 86 0.53 90
DREME RNA* 0.56 83 0.59 87 0.53 90
FIRE 0.39 58 0.40 59 0.37 62
MDscan 0.15 23 0.19 28 0.09 15
MoAn-3M 0.60 89 0.62 91 0.50 85
MoAn 0.63 92 0.64 94 NA NA
Discrover - BW (MICO) 0.67 98 0.51 76 0.55 93
Discrover - BW 0.67 98 0.51 74 0.49 83
Discrover - DFREQ 0.61 89 0.59 87 0.30 51
Discrover - DLOGL 0.66 97 0.66 97 0.58 97
Discrover - MCC 0.66 97 0.66 97 0.56 95
Discrover - MICO-DREME 0.65 96 0.66 97 0.57 96
Discrover - MICO 0.66 97 0.66 97 0.57 96
Discrover - MMIE 0.66 98 0.67 98 0.57 96
Plasma 0.63 93 0.61 90 0.56 95
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a motif that meets its significance threshold. Whenever this
is the case, no subsequent optimization happens for “MICO-
DREME”, thus fewer HMMs are optimized, which explains
the reduced runtime. On the other hand, as the figure shows,
DREME itself is somewhat slower than Plasma, which is why
“MICO-DREME” is slightly slower than “MICO” on the basic
and decoy datasets.

Interestingly, our Baum-Welch learning method BW is
slower than most of our discriminative ones. This is in spite
of the fact that line searching for gradient optimization of
the discriminative objectives evaluates the objective function
(and simultaneously its gradient) multiple times per iteration,
typically three times. Also, within our hybrid learning
approach the Baum-Welch algorithm is used to reestimate
the probabilities for state transitions and background state
emissions (see section Hybrid Learning in main manuscript).
The increased runtime of the pure BW approach, then, is
due to the higher total number of iterations needed until
convergence, as compared to that needed for convergence in
hybrid learning for discriminative objectives.

Effect of significance filtering on motif discovery
performance
Supplementary figure S17 shows the effect that significance
filtering based on MICO has on the motif discovery
performance. It considers the effect on the performance of
signal-only, generative HMM parameter learning, and on that
of MICO-based, discriminative HMM parameter learning. For
the signal-only case, seeds are determined in two ways: (I)
either by frequency in the signal-data alone (“BW”), or (II)
in a discriminative way by evaluating MICO on the signal
and control data (“BW (MICO)”). As is evident from the
figure, the effect of discarding motifs that are not significantly
associated with the signal/control distinction is large in case
HMM parameters are trained only using the signal data, i.e.
for “BW” and for “BW (MICO)”. On the other hand, when
HMM parameters are trained by MICO, then the effect of
significance filtering based on MICO, is not very pronounced.
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Supplementary figure S11. Summarized motif finding performance of various methods on three synthetic datasets measured by the nucleotide-level Matthews
correlation coefficient (nCC), average site performance (sAP), site sensitivity (sSn), and site positive predictive value (sPPV), as well as the sF1-score. See (89)–
(93) for definition of the metrics. Recognizability (red) serves as reference. Blue denotes signal-only motif learning methods, while green denotes discriminative
motif discovery methods. Dark letters and light background denote published motif finding methods, light letters and dark background denote motif finding with
objective functions implemented in Discrover. BW: Baum-Welch training of HMMs seeded with the most frequent IUPAC motifs of degeneracy maximally 2,
BW (MICO): Baum-Welch training of HMMs seeded with IUPAC motifs maximizing MICO. Plasma: IUPAC RE motif optimization with MICO as objective
function.
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Supplementary figure S12. Summarized motif finding performance of methods on three synthetic datasets measured by the nucleotide-level Matthews
correlation coefficient (nCC). Recognizability (red) serves as reference. Blue denotes signal-only motif learning methods, while green denotes discriminative
motif discovery methods. Dark letters and light background denote published motif finding methods, light letters and dark background denote motif finding with
objective functions implemented in Discrover. BW: Baum-Welch training of HMMs seeded with the most frequent IUPAC motifs of degeneracy maximally 2,
BW (MICO): Baum-Welch training of HMMs seeded with IUPAC motifs maximizing MICO. Plasma: IUPAC RE motif optimization with MICO as objective
function. MoAn-3M: MoAn with 3×106 iterations. MoAn: MoAn with 3×107 iterations; note that it was infeasible for us to evaluate the decoy dataset in
this case. MICO-DREME: DREME provides seeds, on which HMMs are seeded and further optimized for MICO by Discrover. DREME DNA: DREME in
double-stranded motif analysis mode, suitable for DNA-binding protein analysis; providing one seed. DREME RNA: DREME in single-stranded motif analysis
mode, suitable for RNA-binding protein analysis; providing one seed. DREME RNA*: DREME in single-stranded motif analysis mode, discovering motifs as
long as the E-value threshold is met, of which subsequently the highest scoring one is used for evaluation.
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Supplementary figure S13. Motif recognizability and discovery performance measured by average site performance (sAP) on synthetic data in the (A) basic,
(B) 3’UTR, and (C) decoy experiments. Note that sAP is not defined when sPPV is not defined (see supplementary figure S15). See legend of figure 3 for further
explanations.
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Supplementary figure S14. Motif recognizability and discovery performance measured by site-level sensitivity (sSn) on synthetic data in the (A) basic,
(B) 3’UTR, and (C) decoy experiments. See legend of figure 3 for further explanations.
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Supplementary figure S16. Runtime of motif discovery methods on the three synthetic datasets using an Intel R© Xeon R© E5645 CPU running at 2.40GHz with
12 CPU cores. Note that the runtime is given on a logarithmic scale. Grey bars denote published methods. As Discrover can utilize multiple threads, we include
two time measurements: orange bars denote multi-threaded runtime (wall clock time), blue bars denote single-threaded runtime (CPU time). Note that the runtime
of MoAn with the default number of iterations, which we performed for the basic and 3’UTR experiments is not included, as it was run on a different compute,
and thus the runtimes are not comparable.
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(nCC). Blue and red bars give motif discovery performance respectively with or without discriminative filtering for significance of association after learning.
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sequences, computing the associated p-value, correcting for multiple testing, and discarding motifs failing the significance threshold. BW: signal-only learning
of HMM parameters with the Baum-Welch algorithm, using as seeds the 8mers of degeneracy at most 2 that are most frequent in the signal data. BW (MICO):
signal-only learning of HMM parameters with the Baum-Welch algorithm, using discriminative seeds that maximize MICO for IUPAC regular expressions on the
signal and control data. MICO: Discriminative learning of HMM parameters by MICO, with discriminative seed determined by optimizing MICO.



Supplementary material Jonas Maaskola and Nikolaus Rajewsky doi: 10.1093/nar/gku1083 31

ADDITIONAL RESULTS FOR PUF FAMILY RBP

To investigate the disparity of conclusions regarding the
second half of the PUM2 motif between our analyses of RIP-
chip and PAR-CLIP data, we first investigated the influence
of the choice of objective function. We thus repeated the
analysis of the PUF RBP family data using MMIE as objective
function. We initialized HMMs with seeds of length 7-12 nt
determined by MICO, optimized the HMM parameters for
MMIE, and selected the HMM with highest MMIE score. The
results are tabulated in supplementary table 6B. We found that
MMIE identifies longer variants of the MICO motifs which
include positions with relatively low information content. This
is because for MMIE we lack a comparable significance
correction for motif length as is available for MICO. The
motifs identified by MMIE frequently have slightly lower
information content than the MICO motifs, and occur more
frequently than those of MICO. This observation is in line with
our findings on the synthetic datasets that MMIE yields higher
sSn and lower sPPV than MICO. Also for MMIE we observe a
disparity between the RIP-chip and PAR-CLIP analysis results
regarding the second half of the motif.

To see what generative signal-only learning might yield,
we applied the Baum-Welch algorithm to optimize the IUPAC
seed sequence NNUGUANAUANN on the full PUF RBP family
signal datasets. While this successfully determines models
with higher likelihood than those for MICO or MMIE, it did
not yield useful motifs (supplementary table 6C). Although we
used a seed similar to the motifs discovered by discriminative
analysis in all but the Puf1 and Puf2 datasets, the PRE is
mostly replaced by unspecific sequence. Only in the cases
of Puf3, Puf4, and PUM2 PAR-CLIP data do some traces of
the motif remain. However the motifs incorporate so much
background characteristic that they occur in more than half
of the respective control sequences, which are either random
shuffles or all non-target 3’UTRs.

Next, because the covered regions of PAR-CLIP data are
much shorter than the 3’UTR sequences used for the RIP-
chip data (supplementary figure S18), we performed a dilution
analysis of the PUM2 PAR-CLIP data by embedding the
real sequences in increasingly larger, synthetically generated
sequence context (see paragraph below). We thus analyzed
the original PUM2 data (mean length 35.0 nt), as well
as variants padded to minimum lengths of 64, 128, 256,
512, and 1024 nt. Then, for the objective functions MICO
and MMIE, we optimized parameters of HMMs seeded on
NNUGUANAUANN, and the results are shown in supplementary
figures S19 and S20. We found that with increasing sequence
context size the discriminative motif analyses of PAR-CLIP
data embedded in random sequence become more alike to the
results of our RIP-chip data analyses. The dilution has the
effect of yielding higher information content, particularly on
the second half of the motif.

As another line of evidence we turned to word count
analysis. Scatter plots of frequencies of sequences that
have a given word in supplementary figures S21-S24
reveal that the longer sequence sizes of the array data
compress the variability of word frequencies between signal
and control sequences. In order to separate independent
contributions due to central and neighboring words we
employed a simple progressive algorithm to determine

relevant words (see supplementary figure S25 and paragraph
below for details). We found a great variety of independently
discriminative, UGUANNNN conforming words in the PAR-
CLIP data among the 50 most discriminative 8mers, while
strong differential enrichment in the array data is limited
to UGUAAAUA, UGUAUAUA, and UGUACAUA. The IUPAC
motif UGUAHAUA, which comprises these three words is
occurring in more than half of the PUM1 and PUM2 array
data signal sequences, and in less than 15% of corresponding
control sequences (supplementary figure S26). In contrast, for
the PAR-CLIP data, this motif is only present in 19.7% and
2.3% of signal and control sequences, respectively.

Given the higher variety of weaker variants that
independently contribute to MICO in the PAR-CLIP
data, and that by diluting the PAR-CLIP data the results
of discriminative motif discovery agree with those of the
array data, we surmise that the smear is not observed in
the array data due to the large length of 3’UTR sequences
precluding discovery of weakly affine variants. It is likely
that this shadowing of the weaker variants in the array data
is a consequence of our choice of feature, that a sequence is
considered a target if it has at least one occurrence of a motif.

Dilution analysis of PUM2 PAR-CLIP data
We performed a dilution analysis of the PUM2 PAR-CLIP
data by embedding the real sequences in increasingly larger,
synthetically generated sequence context. Specifically, for
each signal dataset, we extracted dinucleotide frequencies,
and generated for each signal sequence shorter than the
desired length flanks of the appropriate size, as well as
a control sequence of equal total size. We thus analyzed
the original PUM2 data (mean length 35.0 nt), as well as
variants embedded to minimum lengths of 64, 128, 256,
512, and 1024 nt. Then, for the objective functions MICO
and MMIE, we optimized parameters of HMMs seeded on
NNUGUANAUANN. The results are shown in supplementary
figures S19 and S20.

Word based discriminative analysis
We performed a simple word based analysis on the PUM1 and
PUM2 datasets, that we call corenmer analysis.

Algorithm 1 corenmer analysis
Require: word length n, number of words to determine k,

data X , objective function f , alphabet A
Ensure: (wi)i=1,...,n the k most relevant n-mers

for i=1→k do
wi←argmaxw∈An f(w,X)
X←mask(X,wi)

end for

The algorithm determines the k most relevant words
of length n on the data X according to some objective
function f . This is done by progressively identifying the
most relevant word, and masking its occurrences in the data,
before identifying further words. The objective functions must
be based on discrete counts, and we typically employed
MICO. As the objective function for a word may change after
masking of occurrences of an overlapping word, we refer to
the objective function value at which a word is selected as its
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Supplementary table T6. Motif discovery results for datasets of PUF RBP family members. Columns NS and NC give the number of
sequences in the signal and control sequence set, respectively. IC: information content, log-L: log-likelihood, S and C: expected relative
frequency of signal and control sequences with at least one occurrence of the motif, log-p: MT-corrected log-p value. (A): MICO is
used as objective function in discriminative motif analysis to find seeds of length 7-12 nt, and to optimize HMM parameters. Motifs are
selected by MT-corrected p-value. (B): discriminative motif analysis with MMIE. MICO was used to find seeds, and HMM parameters
were optimized by MMIE. Motifs are selected by MMIE score. (C): Baum-Welch algorithm is applied to the seed NNUGUANAUANN.
Note that the analysis of the FBF-1 data in the paper was done by splitting the data into 15 sets, as described in the methods part, while
for the analysis results presented here the data was split as indicated in the table. Data sources: a (29), b (30), c (31), d (32), e (33), f (34).

A

Protein NS NC Motif IC log-L S C MICO log-p
[bit] [%] [%] [bit]

PUF1 a 32 5180 19.4 −6862 40.8 0.7 64.3 0
PUF2 a 124 5088 18.9 −28 993 33.9 1.0 150.6 −47.3
PUF3 a 68 5144 17.8 −10 184 52.1 3.5 103.7 −24.6
PUF4 a 184 5028 15.2 −32 049 47.8 4.2 207.4 −101.9
PUF5 a 156 5056 16.9 −32 416 35.7 2.3 146.6 −49.5
FBF-1 b 3294 10 096 12.5 −970 238 20.9 5.2 462.4 −264.0

Pumilio c 834 12 135 14.5 −780 326 50.7 12.9 448.6 −274.4
PUM1 d 836 6320 14.5 −2 094 000 61.6 13.1 638.3 −406.1
PUM1 e 1401 18 651 14.5 −3 515 930 49.8 5.3 1375.8 −917.7
PUM2 e 565 19 535 14.4 −1 372 030 56.1 6.2 687.9 −440.5
PUM2 f 6916 6916 13.5 −327 370 54.1 10.8 2269.7 −1517.7

B

Protein NS NC Motif IC log-L S C MICO log-p MMIE
[bit] [%] [%] [bit]

PUF1 a 32 5180 19.3 −6876 38.7 0.8 58.3 0 −145
PUF2 a 124 5088 17.3 −29 003 36.2 2.0 130.5 −33.2 −464
PUF3 a 68 5144 19.0 −10 221 49.3 2.8 104.4 −15.0 −276
PUF4 a 184 5028 16.8 −32 077 45.6 3.5 208.7 −87.7 −611
PUF5 a 156 5056 16.2 −32 421 41.4 4.2 139.6 −39.6 −564
FBF-1 b 3294 10 096 9.8 −970 083 38.9 17.9 415.9 −246.7 −7005

Pumilio c 834 12 135 14.8 −780 320 54.7 15.7 441.9 −249.7 −2695
PUM1 d 836 6320 14.3 −2 093 960 65.8 16.4 618.2 −372.2 −1998
PUM1 e 1401 18 651 13.4 −3 515 800 59.1 9.0 1386.8 −905.3 −3776
PUM2 e 565 19 535 14.2 −1 372 080 58.3 7.9 646.1 −396.5 −1975
PUM2 f 6916 6916 12.9 −326 888 60.5 16.6 2127.8 −1419.3 −7626

C

Protein NS NC Motif IC log-L S C MICO log-p
[bit] [%] [%] [bit]

PUF1 a 32 5180 4.7 −6771 88.9 82.4 0.3 0
PUF2 a 124 5088 3.1 −28 733 93.1 89.5 0.9 0
PUF3 a 68 5144 9.0 −10 127 85.3 68.7 6.4 0
PUF4 a 184 5028 8.8 −31 993 81.3 67.7 11.3 0
PUF5 a 156 5056 8.4 −32 377 35.3 38.1 0.3 0
FBF-1 b 3294 10 096 4.3 −963 728 94.0 90.0 36.2 0

Pumilio c 834 12 135 2.2 −774 029 99.2 97.8 5.3 0
PUM1 d 836 6320 1.2 −2 070 780 99.6 96.8 18.6 0
PUM1 e 1401 18 651 2.3 −3 489 370 99.2 96.2 32.2 0
PUM2 e 565 19 535 1.2 −1 359 480 95.6 75.0 121.8 −27.2
PUM2 f 6916 6916 9.9 −324 488 82.0 53.8 934.2 −591.4
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residual objective value. The residual objective value is thus
an estimate of the independent contribution a word conveys
for discriminating two sets of sequences after more important
words have been accounted for.

We determined the top 50 words of length 8 on the human
PUM1 and PUM2 datasets of (32–34) according to residual
MICO. Supplementary figure S25 shows these in the order
produced by the algorithm, with the bars indicating how many
of the sequences in signal (blue) and control (red) have at
least one occurrence of the word. The light parts of the bars
indicate which of the sequences have occurrences of any
words with higher residual MICO, and thus are potentially
already explained by them. It it thus the dark portions of the
bars that indicate the novel explanatory contribution of a word
when accepting words in decreasing order of residual MICO.

As is visible from that figure, there is greater variety
of UGUANNNN conforming words in the PAR-CLIP data
among the 50 8mers with highest residual MICO, while
only UGUAAAUA, UGUAUAUA, and UGUACAUA appear to be
strongly differential in the array data.
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Supplementary figure S18. Boxplot of sequence lengths in the various datasets and their control sets. S: Signal sequences (dark blue). C: Control sequences
(light blue). Data sources: a (29), b (30), c (31), d (32), e (33), f (34).
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Supplementary figure S19. Dilution analysis of PUM2 PAR-CLIP data of (34) for MICO. Sequences were embedded in increasing amounts of random
sequences, varying from top to bottom. HMMs were seeded on the IUPAC word NNUGUANAUANN and parameters optimized for MICO.
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Supplementary figure S20. Dilution analysis of PUM2 PAR-CLIP data of (34) for MMIE. Sequences were embedded in increasing amounts of random
sequences, varying from top to bottom. HMMs were seeded on the IUPAC word NNUGUANAUANN and parameters optimized for MMIE.
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Supplementary figure S21. Scatter plot of percentages of PUM1 (32) signal and control sequences that have a given 8mer. The 30 words with highest marginal
MICO are labeled. The top three words according to residual MICO are highlighted in red.
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Supplementary figure S25. Discriminative word analysis of human RBP datasets of PUM1 (32) (A) and (33) (B), and PUM2 (33) (C), and (34) (D). Top 50
words of length 8 according to residual MICO as determined by algorithm 1. Bars indicate how many of the sequences in signal (blue) and control (red) have at
least one occurrence of the word. Light parts of the bars indicate which of the sequences have occurrences of any words with higher MICO, and thus are potentially
explained by them. It it thus the dark portions of the bars that indicate the novel explanatory contribution of a word when accepting words in decreasing order of
MICO.
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Supplementary figure S26. Number of sequences with at least one occurrence of the IUPAC motif UGUAHAUA in the PUF RBP family data. Data sources:
a (29), b (30), c (31), d (32), e (33), f (34).
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ADDITIONAL RESULTS FOR RBM10 PAR-CLIP DATA

Supplementary table T7. MICO motifs in RBM10 PAR-CLIP data from discriminative analysis versus shuffles. N1 and N2: number
of signal sequences in dataset 1 and 2, respectively. IC: information content. S and C: expected relative frequency of signal and control
sequences with at least one motif occurrence. MICO: mutual information of condition and motif occurrence. log-p: MICO based log-p
value, corrected for motif length.

Dataset 1 Dataset 2
Sequences N1 N2 Motif IC S C MICO log-p S C MICO log-p

[bit] [%] [%] [bit] [%] [%] [bit]

Exonic 7469 22 836
10.4 25.7 11.2 385.8 −225.8 22.2 10.7 816.2 −524.5

8.6 21.7 11.8 190.9 −100.3 18.2 10.9 359.8 −217.7
9.6 3.4 1.9 23.7 0.0 4.0 2.1 103.6 −29.5

Intronic 5908 21 764 10.2 12.5 6.9 76.8 −5.8 12.6 6.9 289.3 −153.7
13.3 5.6 1.3 128.5 −41.9 3.5 1.0 222.7 −107.4
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Supplementary figure S27. Occurrences of the exonic RBM10 motifs across the ranked exonic RBM10 sequences. Sequences are ranked by the number of
PAR-CLIP conversions.
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A RBM10 intronic motif
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Supplementary figure S28. Occurrences of the intronic RBM10 motifs across the ranked intronic RBM10 sequences. Sequences are ranked by the number of
PAR-CLIP conversions.

Supplementary table T8: RBM10 motifs of (35) in exonic RBM10 PAR-CLIP sequences of (36). (35) performed CLIP-Seq to identify
RNA-binding sites of RBM10 and defined 9 groups of 5mers as RBM10 target motifs. This table gives the number of exonic sequences
in the two PAR-CLIP datasets of (36) that have occurrences of these 5mers. S and C: relative frequency in percent of signal and control
sequences with at least one motif occurrence. MICO: mutual information of condition and motif occurrence. log-p: MICO-based log-p
value, corrected for motif length. The bars visualize the log-p values; black and red bars respectively correspond to enrichment in the
signal or control sequences.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

1 AACUC 3.5 3.7 0.3 0.0 3.7 4.0 2.0 0.0
1 AAGUC 3.5 3.8 0.5 0.0 3.8 3.9 0.2 0.0
1 UACUC 1.9 1.7 0.3 0.0 2.2 1.6 17.9 −7.3
1 AACUG 5.6 5.9 0.4 0.0 5.4 5.9 3.1 0.0
1 UACUG 3.0 2.5 2.2 0.0 3.1 2.5 9.5 −1.2
1 GACUU 5.3 4.4 5.2 0.0 5.0 4.3 8.9 −0.8
1 GACUC 3.4 3.7 0.5 0.0 3.7 3.9 1.2 0.0
1 GACUG 4.8 6.5 14.8 −5.1 4.7 6.3 39.9 −23.0
1 UUCUC 3.4 2.9 1.5 0.0 4.0 3.2 15.5 −5.6
2 ACUCU 3.3 3.4 0.1 0.0 3.4 3.8 5.2 0.0
2 UCUGA 5.2 6.6 9.6 −1.3 5.1 6.6 37.4 −21.2
2 UCUGG 6.4 4.5 17.6 −7.1 5.6 4.4 24.3 −11.9
2 CCUGA 5.6 5.5 0.0 0.0 5.4 6.4 16.4 −6.3
2 ACUCC 2.8 2.7 0.0 0.0 3.2 3.0 1.3 0.0
2 GCUUG 2.8 4.7 27.5 −14.2 2.5 4.1 72.8 −46.0
2 ACUGA 5.4 8.0 29.0 −15.3 5.3 7.3 56.4 −34.6
2 ACUUC 4.4 3.3 8.7 −0.6 5.1 3.2 76.2 −48.4
2 UCUUG 3.0 4.4 13.8 −4.4 3.1 4.4 37.6 −21.4
2 ACUGG 6.3 5.2 6.1 0.0 5.5 5.3 0.6 0.0
2 ACUCA 3.4 4.6 10.1 −1.7 3.9 4.5 8.0 −0.1
2 UCUUC 4.3 3.1 12.0 −3.1 4.6 3.3 39.7 −22.8
2 ACUCG 1.2 1.5 1.9 0.0 1.1 1.3 4.8 0.0
2 ACUGU 2.9 2.9 0.0 0.0 3.3 3.1 1.2 0.0
2 UCUUA 2.4 2.3 0.0 0.0 2.3 2.6 2.1 0.0
2 ACUUG 3.9 4.6 3.8 0.0 3.9 4.7 10.5 −1.9
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Supplementary table T8: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

2 UCUGU 2.8 2.4 2.1 0.0 2.7 3.0 2.7 0.0
2 UGUGA 4.6 6.3 16.6 −6.4 4.9 6.3 34.4 −19.1
3 CUCUG 4.7 4.3 0.8 0.0 4.7 5.0 1.7 0.0
3 UUCUG 5.3 4.1 9.1 −0.9 5.1 4.2 15.3 −5.4
3 GUGUU 2.0 1.8 0.7 0.0 2.3 1.9 6.1 0.0
3 GUCUU 2.2 2.3 0.1 0.0 2.3 2.4 0.8 0.0
3 CUCUC 2.6 2.8 0.5 0.0 3.0 3.4 5.6 0.0
3 CUGUG 4.7 4.6 0.1 0.0 5.1 4.5 6.1 0.0
3 CUUUG 4.7 3.9 3.5 0.0 4.9 4.4 3.9 0.0
3 CUCUU 3.7 3.1 2.5 0.0 3.5 3.6 0.8 0.0
3 CUGUC 1.9 2.4 3.1 0.0 2.5 2.6 0.4 0.0
3 CUGUU 2.8 2.7 0.1 0.0 2.9 3.0 0.1 0.0
3 CUUUC 3.1 3.3 0.3 0.0 3.6 3.2 4.7 0.0
3 GUUUG 2.9 3.3 1.5 0.0 3.1 3.1 0.0 0.0
3 GUCUG 2.6 3.1 2.4 0.0 2.8 3.4 9.0 −0.8
4 CUGAA 10.0 8.7 5.4 0.0 9.3 8.4 7.3 0.0
4 UUGUG 3.4 4.2 4.4 0.0 3.3 4.0 11.6 −2.8
4 UUGAC 2.8 4.5 21.9 −10.2 3.0 4.5 53.2 −32.3
4 CUGAG 4.8 8.4 54.3 −33.1 4.9 7.9 120.0 −79.1
4 UUGUC 1.8 2.4 5.0 0.0 2.0 2.5 11.2 −2.5
4 CUGAC 3.0 4.2 11.5 −2.7 3.3 4.7 45.5 −27.0
4 UUGGA 11.1 7.4 45.7 −27.0 9.2 7.0 56.1 −34.4
4 UUGGG 3.8 4.5 2.9 0.0 3.5 4.2 10.6 −2.0
4 UUGAA 8.3 10.9 21.9 −10.2 8.1 9.4 18.2 −7.6
4 CUGGA 12.5 7.1 89.5 −57.8 11.1 6.9 185.1 −124.4
4 UUGUA 1.7 2.0 1.1 0.0 1.9 2.0 0.7 0.0
4 CUUGA 4.0 7.2 50.4 −30.4 4.0 6.5 100.1 −65.2
4 GUGGA 11.6 6.1 102.4 −66.8 8.8 5.2 163.2 −109.2
5 GAACU 6.8 6.3 1.0 0.0 6.0 5.6 3.1 0.0
5 GAAGG 9.7 9.4 0.2 0.0 8.8 8.1 6.0 0.0
5 GUACU 1.5 1.3 0.8 0.0 1.6 1.3 4.8 0.0
5 GAAGA 32.6 15.5 440.0 −301.6 27.5 14.4 868.2 −598.7
5 CAACU 3.6 4.0 1.7 0.0 4.0 3.9 0.0 0.0
5 GAGCU 5.7 5.1 1.6 0.0 5.0 5.3 1.2 0.0
5 GGACU 5.2 4.7 1.7 0.0 4.8 4.4 4.0 0.0
5 GAAGU 8.3 5.9 23.3 −11.2 8.0 5.6 73.7 −46.7
6 UGGAA 14.6 9.3 72.6 −45.9 13.3 8.8 167.7 −112.3
6 UGUUG 3.5 3.8 0.5 0.0 3.5 3.7 1.1 0.0
6 UGUGC 2.4 3.2 6.0 0.0 2.6 2.9 2.4 0.0
6 UGUAG 2.3 2.0 1.4 0.0 2.0 2.3 2.4 0.0
6 UGGAG 13.5 8.5 68.6 −43.1 11.8 8.0 133.2 −88.3
6 UGUAC 2.0 1.3 8.1 −0.2 1.9 1.3 18.4 −7.7
6 UGAAG 20.2 11.5 153.9 −102.7 18.0 10.4 395.8 −270.8
6 UGUCC 2.2 2.2 0.0 0.0 2.6 2.3 3.2 0.0
6 UGAAC 5.1 6.3 6.8 0.0 5.0 5.6 5.9 0.0
6 UGUUC 2.4 2.0 1.6 0.0 2.7 2.4 2.7 0.0
6 UGGAC 9.7 5.2 77.1 −49.1 7.2 4.6 97.9 −63.6
6 UGUGG 6.7 4.8 17.0 −6.7 6.1 4.5 45.8 −27.1
6 AGAAC 9.2 7.5 10.3 −1.8 8.1 7.3 9.2 −1.0
7 CUUUU 3.7 3.7 0.0 0.0 4.0 3.8 0.6 0.0
7 GAUCU 4.3 4.6 0.6 0.0 3.8 4.7 15.5 −5.6
7 UGUCU 2.4 2.9 3.2 0.0 2.8 2.9 0.7 0.0
7 CCUUU 3.1 2.9 0.4 0.0 3.6 3.2 3.7 0.0
7 GGUCU 1.7 2.3 4.8 0.0 1.8 2.4 15.0 −5.3
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Supplementary table T8: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

7 CUUCU 4.0 3.3 4.5 0.0 4.2 3.7 7.2 0.0
7 UCUCU 3.1 3.1 0.0 0.0 3.3 3.6 1.8 0.0
7 CUUGU 1.9 2.6 5.0 0.0 2.1 2.8 15.5 −5.6
7 CUUAU 2.7 1.7 11.3 −2.5 2.5 2.1 5.1 0.0
7 UCUUU 3.2 3.5 0.4 0.0 3.7 3.8 0.4 0.0
7 GCUCU 3.4 2.9 2.6 0.0 3.3 3.3 0.1 0.0
7 GCUUU 3.2 2.8 1.3 0.0 3.5 3.0 5.8 0.0
7 CCUCU 3.2 3.0 0.3 0.0 3.4 3.6 0.8 0.0
7 AGUCU 2.8 3.3 3.0 0.0 2.7 3.5 17.9 −7.3
7 UGACU 3.8 5.3 13.6 −4.2 4.2 5.1 15.2 −5.4
8 UUCCU 4.0 3.0 9.4 −1.1 4.4 3.4 24.6 −12.1
8 UGCUU 2.6 3.6 9.2 −1.0 3.1 3.5 5.4 0.0
8 UCCUU 3.3 2.6 4.0 0.0 3.5 3.2 2.4 0.0
8 UCCCU 2.3 2.6 0.8 0.0 2.9 3.0 0.4 0.0
8 UUCUU 3.3 3.5 0.6 0.0 4.1 3.8 1.5 0.0

Supplementary table T9: RBM10 motifs of (35) in intronic RBM10 PAR-CLIP sequences of (36). (35) performed CLIP-Seq to
identify RNA-binding sites of RBM10 and defined 9 groups of 5mers as RBM10 target motifs. This table gives the number of intronic
sequences in the two PAR-CLIP datasets of (36) that have occurrences of these 5mers. S and C: relative frequency of signal and control
sequences with at least one motif occurrence. MICO: mutual information of condition and motif occurrence. log-p: MICO-based log-p
value, corrected for motif length. The bars visualize the log-p values; black and red bars respectively correspond to enrichment in the
signal or control sequences.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

1 AACUC 3.8 3.7 0.2 0.0 3.7 3.7 0.1 0.0
1 AAGUC 1.8 1.8 0.0 0.0 2.3 2.6 3.7 0.0
1 UACUC 3.3 3.4 0.1 0.0 3.6 2.8 17.1 −6.8
1 AACUG 3.0 3.7 3.0 0.0 3.3 4.3 20.7 −9.3
1 UACUG 2.5 3.0 2.3 0.0 2.9 3.0 0.0 0.0
1 GACUU 3.4 3.7 0.3 0.0 3.7 3.9 1.0 0.0
1 GACUC 3.6 4.5 3.8 0.0 3.4 4.1 12.8 −3.7
1 GACUG 4.6 6.3 11.2 −2.5 4.4 5.1 8.2 −0.3
1 UUCUC 10.2 7.7 17.1 −6.8 10.7 7.7 85.5 −55.0
2 ACUCU 6.3 6.9 1.3 0.0 5.9 6.2 1.8 0.0
2 UCUGA 5.2 6.3 4.8 0.0 5.3 6.1 9.7 −1.3
2 UCUGG 10.8 10.8 0.0 0.0 8.7 9.0 0.4 0.0
2 CCUGA 6.4 7.4 3.1 0.0 6.2 6.2 0.0 0.0
2 ACUCC 5.3 5.7 0.9 0.0 4.6 5.1 4.6 0.0
2 GCUUG 4.8 5.8 4.2 0.0 3.7 5.2 43.3 −25.4
2 ACUGA 3.5 3.9 1.3 0.0 3.7 4.5 13.0 −3.8
2 ACUUC 4.6 4.5 0.0 0.0 4.9 4.7 1.0 0.0
2 UCUUG 5.2 7.2 15.1 −5.3 5.1 7.3 63.6 −39.6
2 ACUGG 6.8 7.5 1.7 0.0 5.5 6.4 11.0 −2.3
2 ACUCA 3.9 4.9 4.2 0.0 4.3 4.7 3.0 0.0
2 UCUUC 8.5 7.8 1.3 0.0 8.9 7.4 20.9 −9.5
2 ACUCG 1.0 1.0 0.1 0.0 0.9 1.0 0.1 0.0
2 ACUGU 5.0 4.4 1.6 0.0 5.1 4.5 6.6 0.0
2 UCUUA 3.6 3.9 0.8 0.0 4.4 4.7 1.8 0.0
2 ACUUG 3.5 4.6 7.0 0.0 3.7 4.8 21.5 −9.9
2 UCUGU 7.3 6.3 3.1 0.0 7.0 6.2 8.0 −0.1
2 UGUGA 4.4 4.4 0.0 0.0 5.1 4.4 9.0 −0.8
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Supplementary table T9: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

3 CUCUG 12.3 12.1 0.2 0.0 10.7 10.4 0.6 0.0
3 UUCUG 8.5 8.1 0.5 0.0 8.0 7.5 3.8 0.0
3 GUGUU 3.2 3.1 0.1 0.0 3.7 3.1 7.9 −0.0
3 GUCUU 3.6 4.6 6.0 0.0 4.0 4.8 11.8 −2.9
3 CUCUC 10.0 10.1 0.0 0.0 8.8 8.7 0.1 0.0
3 CUGUG 12.6 9.8 16.8 −6.5 11.1 8.2 74.0 −46.9
3 CUUUG 5.4 5.9 1.2 0.0 5.5 6.5 14.7 −5.0
3 CUCUU 10.3 10.1 0.1 0.0 9.7 9.3 1.9 0.0
3 CUGUC 7.0 6.7 0.3 0.0 6.5 6.3 0.3 0.0
3 CUGUU 5.5 5.5 0.0 0.0 5.7 5.6 0.2 0.0
3 CUUUC 9.2 7.3 9.4 −1.2 9.6 7.2 58.6 −36.1
3 GUUUG 2.8 2.9 0.1 0.0 3.4 3.6 0.7 0.0
3 GUCUG 6.1 6.7 1.3 0.0 5.1 6.0 11.6 −2.8
4 CUGAA 4.5 4.1 0.7 0.0 4.8 4.6 0.6 0.0
4 UUGUG 4.0 4.6 1.4 0.0 4.1 5.0 14.2 −4.7
4 UUGAC 1.7 3.4 27.5 −14.2 2.5 3.8 43.9 −25.8
4 CUGAG 8.1 8.5 0.4 0.0 7.4 7.5 0.2 0.0
4 UUGUC 3.3 4.1 3.8 0.0 3.3 4.5 29.8 −15.9
4 CUGAC 4.5 6.1 10.3 −1.8 4.5 5.1 6.1 0.0
4 UUGGA 4.9 4.7 0.2 0.0 4.6 5.0 2.3 0.0
4 UUGGG 7.7 7.4 0.2 0.0 6.3 6.5 0.7 0.0
4 UUGAA 2.4 3.2 5.0 0.0 3.6 4.6 19.0 −8.1
4 CUGGA 10.1 7.9 12.8 −3.7 8.3 6.8 25.1 −12.5
4 UUGUA 1.4 1.8 1.9 0.0 2.0 2.7 13.7 −4.3
4 CUUGA 3.1 4.9 18.3 −7.6 3.5 5.5 70.5 −44.5
4 GUGGA 6.0 4.6 8.4 −0.4 5.4 4.4 16.9 −6.6
5 GAACU 3.1 2.9 0.2 0.0 2.8 3.2 5.7 0.0
5 GAAGG 4.7 3.8 3.6 0.0 4.7 4.2 4.2 0.0
5 GUACU 1.8 2.0 0.9 0.0 1.7 2.0 3.0 0.0
5 GAAGA 4.9 2.9 22.5 −10.7 5.7 3.7 68.9 −43.4
5 CAACU 2.4 4.5 27.8 −14.4 2.9 4.3 42.9 −25.1
5 GAGCU 5.0 5.4 0.8 0.0 4.8 5.0 0.6 0.0
5 GGACU 5.0 5.1 0.1 0.0 4.2 4.9 7.6 0.0
5 GAAGU 2.8 2.1 4.2 0.0 3.1 2.6 5.8 0.0
6 UGGAA 5.6 3.6 20.5 −9.2 5.9 4.3 38.8 −22.2
6 UGUUG 4.0 4.3 0.7 0.0 3.8 4.6 12.2 −3.2
6 UGUGC 6.3 5.9 0.8 0.0 5.6 5.5 0.2 0.0
6 UGUAG 2.1 1.9 0.4 0.0 2.1 2.3 0.7 0.0
6 UGGAG 8.9 7.5 5.5 0.0 8.2 6.9 17.7 −7.2
6 UGUAC 1.6 2.0 1.6 0.0 2.0 2.2 0.9 0.0
6 UGAAG 4.9 3.6 8.5 −0.5 5.2 4.4 12.2 −3.2
6 UGUCC 6.1 5.5 1.5 0.0 5.6 5.2 3.2 0.0
6 UGAAC 2.5 3.1 2.7 0.0 2.6 3.1 6.1 0.0
6 UGUUC 4.2 3.9 0.5 0.0 4.5 4.6 0.3 0.0
6 UGGAC 6.3 5.1 5.3 0.0 4.7 4.8 0.1 0.0
6 UGUGG 10.6 8.8 8.4 −0.5 8.7 7.2 24.4 −12.0
6 AGAAC 2.7 1.9 5.3 0.0 2.7 2.6 0.1 0.0
7 CUUUU 7.6 7.4 0.1 0.0 9.2 8.4 5.8 0.0
7 GAUCU 2.2 3.4 9.8 −1.5 2.5 3.6 33.7 −18.6
7 UGUCU 5.9 6.1 0.2 0.0 5.8 6.2 1.9 0.0
7 CCUUU 8.1 7.3 2.1 0.0 8.5 7.0 22.4 −10.6
7 GGUCU 5.3 6.3 3.9 0.0 4.6 5.6 15.6 −5.7
7 CUUCU 9.9 10.1 0.0 0.0 9.7 8.8 7.7 0.0
7 UCUCU 10.3 9.7 1.0 0.0 10.4 9.1 17.2 −6.8
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Supplementary table T9: continued from previous page.

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Group Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

7 CUUGU 3.8 5.4 12.3 −3.3 3.9 5.6 51.7 −31.3
7 CUUAU 2.8 3.1 0.7 0.0 3.3 3.7 3.7 0.0
7 UCUUU 8.4 7.8 1.1 0.0 9.6 9.0 3.7 0.0
7 GCUCU 7.9 8.1 0.0 0.0 6.9 7.1 0.7 0.0
7 GCUUU 5.0 4.4 1.9 0.0 5.1 4.6 4.3 0.0
7 CCUCU 12.2 11.5 0.8 0.0 10.0 10.0 0.0 0.0
7 AGUCU 2.8 3.9 7.0 0.0 3.1 4.5 43.6 −25.6
7 UGACU 4.3 5.6 8.3 −0.4 4.6 5.2 5.9 0.0
8 UUCCU 12.4 7.7 51.1 −30.9 11.6 7.8 130.9 −86.6
8 UGCUU 5.1 5.8 2.0 0.0 5.6 5.8 1.3 0.0
8 UCCUU 10.1 8.4 7.1 0.0 9.6 7.9 27.8 −14.4
8 UCCCU 9.5 9.0 0.7 0.0 8.5 7.9 4.1 0.0
8 UUCUU 8.2 7.9 0.3 0.0 9.5 8.5 9.8 −1.5

Supplementary table T10. Summary statistics for enrichment in the PAR-CLIP data of (36) of the 94 CLIP-Seq-based RBM10 motifs
reported by (35). See supplementary tables T8 and T9 for details. Absolute and relative numbers of RBM10 motifs that are less or
equally frequent (≤), more frequent (>), or much more frequent (�) in the signal sequences compared to shuffled sequences. Motifs
are counted as much more frequent if their relative frequency is higher in signal than control and the MICO-based log-p value is less
than or equal to −10.

Data set S ≤ C S> C S � C
[%] [%] [%]

Exonic 1 45 47.9 49 52.1 9 9.6
Exonic 2 49 52.1 45 47.9 14 14.9
Intronic 1 49 52.1 45 47.9 2 2.1
Intronic 2 54 57.4 40 42.6 10 10.6

Supplementary table T11. RBM10 motifs of (37) in (A) exonic and (B) intronic RBM10 PAR-CLIP sequences of (36). (37) defined
motifs based on the sequences of 5’ splice sites of two exons affected by RBM10 knock-down. This table gives the number of exonic
sequences in the two PAR-CLIP datasets of (36) that have occurrences of these motifs. The vertical bar in the motif indicates exon-
intron boundary of the two example sequences (note: all occurrences in PAR-CLIP sequences are counted, whether across exon-intron
boundaries or not). S and C: relative frequency in percent of signal and control sequences with at least one motif occurrence. MICO:
mutual information of condition and motif occurrence. log-p: MICO-based log-p value, corrected for motif length. The bars visualize
the log-p values; black and red bars respectively correspond to enrichment in the signal or control sequences.

A Exonic PAR-CLIP sequences

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

AG|GUAA 0.6 0.8 2.3 0.0 0.5 0.7 4.0 0.0
GG|GUAAG 0.1 0.1 0.6 0.0 0.1 0.1 3.5 0.0

B Intronic PAR-CLIP sequences

PAR-CLIP dataset 1 PAR-CLIP dataset 2

Motif S C MICO log-p S C MICO log-p
[%] [%] [bit] [%] [%] [bit]

AG|GUAA 0.5 0.3 4.4 0.0 0.6 0.4 2.3 0.0
GG|GUAAG 0.2 0.1 0.0 0.0 0.1 0.1 0.1 0.0
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SUPPLEMENTARY CHIP-SEQ RESULTS

Discriminative motif analysis versus shuffles
We compared mouse ESC TF ChIP-Seq data sets of (38)
and (39) individually against shuffles, running Discrover in
multiple motif discovery mode. Supplementary table T12
gives detailed results. The table gives the ChIP’d protein and
the number of signal sequences (in each case as many shuffled
sequences as signal sequences were used as control). For each
ChIP’d protein one or motifs were discovered, and for each
motif we list the information content, the expected number of
occurrences in signal and control, the MICO value, and the
MICO-based log p-value. Also, where the discovered motifs
have previously been described, we list the factor known to
bind the pattern, highlighting those factors that are among the
ChIP’d proteins considered here. In case multiple members of
a protein family are known to bind to a pattern we list only the
family name, as we do e.g. for the Myc pattern.

Note that the number of reported motif occurrences in
supplementary table T12 is calculated for the resulting
multi-motif model. A consequence of this is that, where
multiple motifs are discovered, the counts of occurrence of
individual motifs compete for positions in sequences, and—
compared to corresponding single motif models—the number
of occurrences are underestimated. This is for example the
case in data sets for which both Sox2 monomer and Sox2-
Oct4 heterodimer patterns are discovered. MICO, as well as
the MICO-based log p-value, are calculated from the listed
counts.

Analysis of motif occurrence localization
We determined occurrences of the discovered motifs in
larger, 501 nt regions around the sequence mid-points. The
distributions of occurrences of discovered motifs in signal and
control sequences are shown in supplementary table T13. Note
that the number of occurrences in supplementary table T12 are
expected counts (and are based on 101 nt windows), while the
positional distribution plots of supplementary table T13 are
based on Viterbi decoded motif occurrences.

Where—aside from other motifs—Discrover finds the
previously described cognate motifs, the cognate motifs’
occurrences are visibly more concentrated around the
sequence midpoints than those of the other motifs.

Contrasting Nanog and Tcf3 sequences against datasets
enriched for Sox2-Oct4 heterodimer binding pattern
We analyzed the Nanog and Tcf3 ChIP-Seq datasets of
(38) and (39) by individually contrasting their sequence sets
against those of Oct4, Sox2, and Tcf3, and those of Nanog,
Oct4, and Sox2, respectively. For each contrast the three most
discriminative motifs of lengths 5–16 nt were identified by
heuristically maximizing MICO over the space of IUPAC
regular expressions using Plasma. HMMs were seeded on
these IUPAC motifs, as well as one one nucleotide-shifted
variants. In total, 3×12×3=108 HMMs were trained for
each contrast. The HMMs yielding the best MICO-based log
p-value and are enriched in the Nanog datasets, respectively
those of Tcf3, are shown in supplementary figure T14.

For the Nanog contrasts, we found in 9/10 cases the
previously described Nanog motif. In the case of the Nanog

(39) versus Oct4 (38) datasets, the Sox2 motif is more highly
enriched in the Nanog (39) sequences versus the Oct4 (38)
sequences, than the Nanog motif. In all six Tcf3 contrasts we
find the Tcf3 motif.

Comparison of motif discovery results for Oct4 with
Discrover, DREME, and FIRE
We compare motif discovery results of Discrover, DREME,
and FIRE for the Oct4 data of (38). In addition to the
set of shuffled sequences used in the analysis presented in
supplementary table T12, we generate two further sets of
shuffles of the Oct4 ChIP-Seq sequences as controls for
discriminative motif discovery. We apply Discrover, DREME,
and FIRE to the three contrasts defined by the Oct4 sequences
and the three sets of shuffles. Discrover is run in same manner
as explained in the ChIP-Seq section of the methods part of
the main text, and DREME and FIRE in their default way for
the analysis of DNA-binding proteins. The resulting motifs are
displayed in decreasing order of significance (as reported by
the methods) in supplementary table T15.

As is visible, Discrover consistently identifies for the three
contrasts the same two motifs of the Sox2-Oct4 heterodimer
pattern and the Klf motif.

DREME discovers between 18 and 21 motifs. The top
DREME motifs (according to the DREME E-value) are
identically discovered in the three contrasts. The lower
ranking DREME motifs are however not all re-discovered
in each contrast, and their significance order is differing.
The DREME results include the Klf motif, as well as
multiple motifs that are consistent with parts of the Sox2-
Oct4 heterodimer pattern. Yet, as DREME is designed for the
discovery of short motifs, no single one of them is long enough
to explain the entire Sox2-Oct4 heterodimer pattern. Overall,
between 7–10 of the motifs discovered by DREME in each
of the contrasts are clearly redundantly referring to different
parts of this long pattern.

FIRE discovers between 12 and 15 motifs, including motifs
that are depleted in the signal sequences. Of the motifs
discovered by FIRE 8–10 are enriched in the signal sequences.
As for the DREME results, FIRE finds in each contrast the Klf
motif, and 3–6 short motifs corresponding to different parts of
the Sox2-Oct4 heterodimer pattern.

DREME also consistently identifies two motifs that
apparently correspond to the Esrrb and Myc patterns, which
Discrover misses in the Oct4 data of (38) but discovers in
other datasets analyzed here. FIRE finds the Esrrb motif in
2 of 3 analyses and does not discover the Myc pattern. The
remaining motifs of low significance reported by DREME and
FIRE are not ESC-related, do not clearly correspond to any
known patterns, or are not consistently found in the analysis
of the three contrasts.
Analysis runtime As is shown in supplementary table T12,
Discrover needs longer than DREME for the analysis of the
Oct4 datasets. DREME and FIRE run in 13–17 min on a
single CPU, while Discrover requires slightly less than 2 h
using eight CPU cores (experiments run on an Intel R© CoreTM

i7-4770K CPU @ 3.50GHz with eight cores). DREME
and FIRE are designed for short motifs, and due to their
algorithmic design, memory and runtime scaling prohibit (on
our computers) discovery of motifs of length up to 16 nt.
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DREME discovered motifs of length 5–8 nt, FIRE seeds words
of length 7 nt that are then extended on both sides by 1 nt,
yielding a total motif length of 9 nt. In contrast, Discrover
considered the length range 5–16 nt. When Discrover only
considers motifs of the length range 5–8 nt (results not shown),
it requires less than 30 min. Thus, Discrover’s analysis of
longer motif causes most of the runtime increase.
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Supplementary table T12: Discriminative motif analysis of mouse ChIP-Seq data. Protein: ChIP’d protein. N: number of signal
sequences. Motifs: One or more motifs discovered in the sequences of the ChIP’d protein. Factor: TF (family) known to bind the
discovered motif (TOMTOM q-value≤0.05 (40)), bold if one of the ChIP’d proteins. IC: information content. S and C: expected
relative frequency of signal and control sequences with at least one motif occurrence. MICO: mutual information of condition and motif
occurrence. log-p: MICO based log-p value, corrected for motif length. Data sources: a (38), b (39).

Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

c-Myc a 3422 Myc 12.5 40.9 8.4 747.8 −467.1

Ctcf a 39 609 Ctcf 18.7 83.4 3.5 43 892.7 −30 350.6
? 20.3 5.2 0.2 1753.4 −1154.5

E2f1 a 20 699
Ets TF family 14.6 5.6 1.4 414.8 −210.9

Yy1 14.9 3.8 0.6 397.5 −223.9
Nrf1 17.1 3.1 0.4 360.9 −183.4

Esrrb a 21 647 Esrrb 14.0 68.3 6.7 14 108.6 −9735.0
? 21.2 3.5 0.5 406.0 −219.8

Klf4 a 10 875 Klf/Sp1 14.8 57.5 8.0 4767.3 −3254.4

Nanog a 10 343

Sox2 13.4 29.8 6.8 1410.1 −916.5
Sox2-Oct4 16.6 21.4 2.9 1341.9 −859.2

Zic 14.8 13.1 2.2 685.0 −408.4
Nanog 13.0 8.0 2.8 202.7 −103.5

Nanog b 16 667

Sox2-Oct4 15.5 25.8 4.1 2430.6 −1619.1
Sox2 13.3 24.1 6.6 1487.1 −979.9

Klf/Sp1 14.0 10.1 2.2 699.1 −443.2
Zic 15.8 6.6 1.2 519.8 −288.8

n-Myc a 7182 Myc 12.1 33.8 7.6 1152.3 −747.7
Klf/Sp1 16.0 10.5 3.1 235.4 −116.3

Oct4 a 3761 Sox2-Oct4 18.1 42.3 2.6 1422.7 −910.3
Klf/Sp1 16.1 7.3 1.6 109.8 −28.8

Oct4 b 17 225 Sox2-Oct4 17.4 46.8 3.8 6898.7 −4706.8
Klf/Sp1 15.5 8.4 1.7 635.2 −388.9

Smad1 a 1126

Sox2 11.2 31.0 9.6 119.5 −50.7
Oct4 12.2 17.5 4.5 74.3 −14.1

Klf/Sp1 14.2 13.2 2.5 69.7 −5.8
Esrrb 13.3 10.1 1.7 56.3 −1.5

Sox2 a 4526

Sox2 13.5 64.0 10.3 2177.7 −1434.0
Oct4 13.0 11.3 2.7 194.2 −102.6

Klf/Sp1 14.1 4.7 1.2 74.1 −13.9
Zic 16.3 6.2 0.9 149.2 −41.3

Sox2 b 15 036
Sox2-Oct4 17.5 38.9 3.3 4720.2 −3196.6

Sox2 13.2 30.2 6.7 2132.0 −1432.1
Klf/Sp1 14.1 7.7 1.4 554.1 −342.6

Stat3 a 2546 Stat3 14.1 40.0 3.7 800.8 −498.9
? 18.6 6.8 0.8 98.6 −11.0

Tcf3 b 6257

Sox2-Oct4 17.2 38.0 3.7 1829.5 −1192.4
Tcf3 14.5 22.5 4.3 702.2 −430.5
Zic 15.2 5.4 0.8 175.2 −64.4

Klf/Sp1 14.1 5.5 1.1 150.5 −47.2

Tcfcp2l1 a 26 910 Tcfcp2l1 14.6 75.0 10.9 17 829.4 −12 284.1
Esrrb 15.5 5.2 0.8 713.0 −457.9
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Supplementary table T12: continued from previous page.

Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

Zfx a 10 338 Zfx 11.5 44.4 17.5 1287.5 −841.4
? 15.0 6.8 2.4 170.3 −66.0

Supplementary table T13: Positional distribution of occurrences of predicted motifs of supplementary table T12 in windows of up to
250 nt from the peak of the ChIP-Seq regions. Black: occurrences in the signal sequences, red: occurrences in the control sequences.
Note that windws of length 101 nt were used for motif discovery and form basis of the statistics listed in supplementary table T12. Data
sources: a (38), b (39).
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Supplementary table T13: continued from previous page.

Protein Motif 1 Motif 2 Motif 3 Motif 4
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Supplementary table T13: continued from previous page.

Protein Motif 1 Motif 2 Motif 3 Motif 4
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Supplementary table T14. Inter-dataset comparison reveals motifs discriminating Nanog and Tcf3 data from other ChIP-Seq data.
(A),(B) comparing Nanog ChIP-Seq sequences against those of Oct4, Sox2, and Tcf3. (C): comparing Tcf3 ChIP-Seq sequences against
those of Nanog, Oct4, and Sox2. Data sources: A (38), B (39).

A Nanog A, N=10 343

vs. Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

Oct4 A 3761 Nanog 10.1 30.8 10.7 478.7 −255.3
Oct4 B 17 225 Nanog 10.8 23.4 8.5 827.4 −507.3
Sox2 A 4526 Nanog 10.1 23.9 11.0 256.7 −131.1
Sox2 B 15 036 Nanog 10.5 22.6 9.7 568.5 −342.6
Tcf3 B 6257 Nanog 10.5 19.9 8.6 290.0 −159.2

B Nanog B, N=16 667

vs. Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

Oct4 A 3761 Sox2 8.3 53.0 31.9 402.9 −227.7
Oct4 B 17 225 Nanog 11.0 14.0 6.5 374.7 −208.0
Sox2 A 4526 Nanog 10.9 10.3 5.1 92.4 −21.7
Sox2 B 15 036 Nanog 11.3 11.1 5.7 217.5 −103.8
Tcf3 B 6257 Nanog 8.5 25.4 19.8 57.8 −12.5

C Tcf3 B, N=6257

vs. Protein N Motifs Factor IC S C MICO log-p
[bit] [%] [%] [bit]

Nanog A 10 343 Tcf3 14.7 26.0 6.4 883.9 −556.4
Nanog B 16 667 Tcf3 14.9 24.6 6.6 924.4 −584.6
Oct4 A 3761 Tcf3 12.0 38.4 11.2 681.7 −416.2
Oct4 B 17 225 Tcf3 13.8 30.1 8.8 1078.2 −686.2
Sox2 A 4526 Tcf3 13.8 29.7 7.5 636.5 −389.8
Sox2 B 15 036 Tcf3 14.7 24.6 5.6 1042.9 −666.8
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Supplementary table T15. Comparison of discriminative motif discovery with (A) Discrover, (B) DREME, and (C) FIRE on Oct4
data of (38) against three sets of shuffled sequences. Motifs are presented in decreasing order of significance as reported by the method.
Factor: factor binding the motif; factor identification based on TOMTOM searches (with q-value < 0.05), with manual judgement in
ambiguous cases, and in cases (denoted ‘?’) where TOMTOM did not identify matches. Enrich: sample in which the FIRE motif is
enriched; +: signal sequences, -: control sequences. DREME and FIRE discover IUPAC regular expression motifs, shown in these
tables. Note, that for DREME and FIRE PWMs could be built from the statistics of words matching the discovered regular expressions.
The final rows list wall clock and CPU time (hours:minutes:seconds).

A Discrover

Shuffles 1 Shuffles 2 Shuffles 3
Rank Motif Factor Motif Factor Motif Factor

1 Sox2-Oct4 Sox2-Oct4 Sox2-Oct4
2 Klf/Sp1 Klf/Sp1 Klf/Sp1

Wall 01:54:12 01:54:41 01:57:28
CPU 11:38:04 11:32:09 11:30:48

B DREME

Shuffles 1 Shuffles 2 Shuffles 3
Rank Motif Factor Motif Factor Motif Factor

1 Oct4 Oct4 Oct4
2 Sox2-Oct4 Sox2-Oct4 Oct4
3 Oct4 Oct4 Sox2
4 Klf/Sp1 Sox2 Klf/Sp1
5 Sox2 Klf/Sp1 Ets TF family
6 Ets TF family Ets TF family? Sox2-Oct4
7 Oct4? Oct4? Oct4?
8 Esrrb Esrrb Esrrb
9 Oct4? ? Oct4?

10 Klf/Sp1 ? ?
11 ? Oct4? Oct4?
12 Sox2? Klf/Sp1 Sp/Egr
13 Oct4? Sox2 Sox8
14 ? ? ?
15 Oct4? Oct4? Myc
16 Myc ? Zic
17 ? Oct4? Oct4
18 ? ? ?
19 Yy1 Myc
20 ?
21 Oct4?

Wall 00:16:36 00:16:50 00:15:43
CPU 00:16:36 00:16:50 00:15:43

C FIRE

Shuffles 1 Shuffles 2 Shuffles 3
Rank Motif Factor Enrich Motif Factor Enrich Motif Factor Enrich

1 Oct4? + Oct4? + Oct4? +
2 Klf/Sp1 + ? - Sox2? +
3 ? - Klf/Sp1 + ? -
4 Sox2? + Oct4? + Klf/Sp1 +
5 ? - ? - Ets TF family +
6 ? - Ets TF family + ? -
7 ? - Nr4A2 + ? -
8 Ets TF family? + Oct4? + Oct4? +
9 Oct4? + ? + ? +

10 ? - ? - ? -
11 Sox2-Oct4? + ? - Esrrb +
12 ? + ? - ? +
13 Esrrb + Sox2? + ? +
14 ? -
15 Oct4? +
16 Oct4? +

Wall 00:13:02 00:14:54 00:14:03
CPU 00:13:02 00:14:54 00:14:03
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