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ABSTRACT

DNaseI footprinting is an established assay for identi-
fying transcription factor (TF)–DNA interactions with
single base pair resolution. High-throughput DNase-
seq assays have recently been used to detect in vivo
DNase footprints across the genome. Multiple com-
putational approaches have been developed to iden-
tify DNase-seq footprints as predictors of TF binding.
However, recent studies have pointed to a substan-
tial cleavage bias of DNase and its negative impact
on predictive performance of footprinting. To assess
the potential for using DNase-seq to identify individ-
ual binding sites, we performed DNase-seq on de-
proteinized genomic DNA and determined sequence
cleavage bias. This allowed us to build bias corrected
and TF-specific footprint models. The predictive per-
formance of these models demonstrated that pre-
dicted footprints corresponded to high-confidence
TF–DNA interactions. DNase-seq footprints were ab-
sent under a fraction of ChIP-seq peaks, which we
show to be indicative of weaker binding, indirect
TF–DNA interactions or possible ChIP artifacts. The
modeling approach was also able to detect variation
in the consensus motifs that TFs bind to. Finally, cell
type specific footprints were detected within DNase
hypersensitive sites that are present in multiple cell
types, further supporting that footprints can identify
changes in TF binding that are not detectable using
other strategies.

INTRODUCTION

The identification and characterization of eukaryotic tran-
scriptional regulatory regions to understand complex gene

expression patterns has long been hampered by large
genome sizes and regulatory elements that can act over large
distances. The recent integration of high-throughput exper-
imental and computational approaches has made it possi-
ble to characterize functionally important regions via the
identification of chromatin states using a variety of histone
modifications (1,2).

A complementary and unbiased approach to identify
candidate regulatory regions has been the mapping of ac-
cessible chromatin by DNase-seq, which identifies DNase
hypersensitive (DHS) sites across the genome. DHS sites
typically span a few hundred bases and have been shown
to overlap all types of known regulatory elements, includ-
ing promoters, enhancers, insulators, locus control regions,
active histone modifications and the majority of transcrip-
tion factor binding sites (TFBSs) (3–7). The reduction of
the entire genome to a set of small putatively functional
DHS sites has enabled computational approaches that de-
code condition-specific expression patterns, for instance by
building models that can distinguish the expression of genes
based on the sequence features in nearby regulatory regions
(8–10).

A wealth of genome-wide association evidence supports
the notion that these noncoding regions of the genome
are relevant to disease risk (11–14). Elucidating the mech-
anism of these diseases will require formal understanding
of how noncoding sequence variation impacts gene expres-
sion levels. To accomplish this goal, it is necessary to know
the exact location of where regulatory interactions occur at
base-pair resolution, such as binding of transcription fac-
tors (TFs) to specific DNA elements. For decades, DNase
footprinting––the identification of regions of local DNA
protection from DNase cleavage––has been the method of
choice to identify TFBS. However, this method is laborious
and only focuses on a single small region of the genome (15).
With sufficient sequencing coverage now available, DNase-
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seq has the potential to pinpoint DNase footprints all across
the genome by locating relative depletion of DNase-seq sig-
nal at a candidate-binding site compared to the flanking
DNA. Depending on the precise interaction of a TF with
its cognate-binding site, footprints for different factors dif-
fer from each other and display distinct cleavage profiles
(8,16). This observation raises the possibility of learning
TF-specific footprint models through intersection of ChIP
and DNase data from the same cellular state, and using
these data to predict binding sites for these TFs in other
cell types and conditions where only DNase-seq data have
been collected.

This application of DNase-seq has spurred a number of
studies for predicting functional TFBS from three direc-
tions, which make different assumptions but are often not
clearly distinguished. The simplest method assesses only
the number of DNase-seq reads that surround a candidate-
binding site (17). While robust, this method does not reflect
the footprint shape and specific DNase-seq cleavage profiles
around the binding site. A second strategy uses a variety of
approaches to model and identify footprints (18–21). These
de novo approaches generally assume that all TF-binding
events lead to similar generic footprint shapes, and do not
generally require knowledge of the sequence specificity for
each TF. A third method integrates DNase signal strength
and shape with conservation and other sequence features,
all within a relatively large window size (200 bp), to iden-
tify footprints via a hierarchical mixture model (16). While
this method utilizes DNase footprint shape, its predictions
are also driven by other features such as general chromatin
accessibility across the entire window and sequence conser-
vation.

One factor that complicates the use of DNase to reli-
ably detect footprints is its sequence cleavage bias, which
was originally described over 30 years ago (22) and has
been recently revisited in the context of genome-wide stud-
ies (23–25). Here, we describe a method that solely mod-
els DNase footprint shape in a high resolution, TF-specific
manner. Focusing on a small window (50 bp) surround-
ing candidate-binding sites, this method simultaneously ac-
counts for DNase sequence cleavage bias to distinguish true
footprints from background effects. Together, this allows us
to identify high-confidence TFBSs at high resolution. Fur-
ther, we demonstrate advantages of footprinting in addi-
tion to chromatin immunoprecipitation on untangling di-
rect and indirect binding and pinpointing TFBS at single-
nucleotide resolution.

MATERIALS AND METHODS

Scanning the genome for candidate-binding sites

To identify candidate-binding locations of TFs, we scan the
human genome (hg19 assembly) using position weight ma-
trices (PWMs). PWMs model the occurrence frequency of
each base pair independently within a TFBS, with a typi-
cal size of ∼10 nucleotides for a eukaryotic TF. To elimi-
nate zero entries in PWMs, we add pseudo counts (0.0005)
to each entry in the PWM. We slide a window of the size
of each PWM across the genome and measure the similar-
ity of each window to the TF-binding motif using PWM

log-likelihood scoring (26), calculating the log likelihood ra-
tio of that nucleotide being generated by the PWM as op-
posed to a background frequency model. In this scoring
scheme, we call windows that are assigned a positive score
as ‘sequence motif matches.’ For the background frequency
model, we use a first order Markov model that is estimated
from a 500-bp window centered at the currently considered
window. Compared to a fixed zero-order background model
for whole human genome, the local background model al-
lows us to more realistically account for nucleotide fluctua-
tions across genomic domains, and accounts for higher or-
der nucleotide dependencies such as CpG islands (27).

We use a set sequence motif matches with high scores to
identify an initial set of candidate-binding sites that will be
classified as bound versus unbound by the footprint mod-
els. To start from a consistent number across all TFs, we
used the 50 000 top-scoring candidate-binding sites for each
PWM to build the initial stringent set, instead of using
a numeric threshold on PWM scores, which typically re-
sults in different number of candidate-binding sites for each
TF (16). To ensure that the initial stringent candidate sets
contained meaningful and significant sequence matches, we
sampled log-likelihood scores from both genomic back-
ground model and PWM model. Using this approach, we
noted that PWM score threshold consistently corresponded
to P values less than 10−4 across all factors (Supplementary
Table S1). We also built a set of relaxed set of sequence motif
matches at TF-specific, typically less stringent thresholds,
using the same sampling approach. For the relaxed thresh-
old, we used a PWM score threshold that corresponds to P
values of 10−2.

For protein binding microarray (PBM) based candidate-
binding site discovery, we utilized E2F1 universal PBM
data. We scanned the genome for two consecutive 8-mers
that both have an E-score of 0.4 or higher (28–30). This ap-
proach was used to scan for E2F1 sequence motifs in E2F1
ChIP-seq peaks for experiments conducted in the MCF7
cell line.

DNase-seq assay and sequence bias of DNase

To quantify the DNase I sequence-dependent cleavage bias,
we performed DNase-seq experiments using deproteinized
DNA from K562 and MCF7 cell lines. K562 or MCF7 cells
were cultured in Roswell Park Memorial Institute (RPMI-
1640) or Dulbecco’s modified Eagle’s media (DMEM) +
10% fetal bovine serum (FBS), respectively. Deproteinized
genomic DNA was isolated from ∼20 million cells using
a DNeasy Blood and Tissue kit (Qiagen). Isolated total
DNA was then subjected to two phenol-chloroform extrac-
tions followed by ethanol precipitation to ensure removal
of bound protein. DNase-seq experiments were performed
essentially as previously described (31) with the following
modifications: DNase I digestions were performed in 120-
�l solution with ∼50 �g of deproteinized DNA. DNase
digestions were stopped by addition of 50-mM ethylene
diamine tetraacetic acid (EDTA) and 15-min incubation
at 75◦C. Digestions performed with 1.2 and 2.4 U total
DNase I were selected based on 0.8% agarose gel sizing to
be similar to typical DNase-seq assay digestions and pooled
for the two cell lines separately. Libraries were constructed
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from pooled digests as described and sequenced on the Illu-
mina HiSeq2000 platform with 50-bp single-end reads at the
Duke Sequencing and Analysis Core Resource. This proto-
col generates essentially fixed-length 20 bp insert fragments
due to MmeI cleavage of DNA 20 bp from the MmeI recog-
nition site included in the first ligated linker. Therefore, the
first 20 bp of reads were aligned against hg19 assembly using
Burrows–Wheeler aligner, allowing up to two mismatches
and multireads mapping up to four locations. Aligned reads
were further processed through a pipeline to remove po-
tential PCR artifacts to match standard DNase-seq anal-
ysis previously applied to all Duke generated DNase-seq li-
braries and as described previously in (4,31). This resulted
in approximately 140 million mapped reads per cell line.

After sequencing tags were aligned, we counted the num-
ber of DNA 6-mers centered at each DNase cleavage site
(between the third and fourth base pair) and calculated the
relative frequency of each 6-mer. These relative frequencies
are normalized by the relative frequency of each 6-mer in
the human genome and genomic relative frequencies are
corrected for regions that are mappable using our DNase-
seq protocol. This ratio is called cleavage propensity of the
6-mer. As there is no chromatin structure or TF-binding
events in such deproteinized cell lines, any deviation from
one indicates an increased or decreased propensity of DNa-
seI cleavage for a 6-mer.

We use cleavage propensity values to generate the back-
ground signal profile around a set of motif matches that
would solely result from DNase sequence bias. More specif-
ically, DNase-seq signal at each base pair is estimated as
cleavage propensity of the 6-mer centered at the current po-
sition (i.e. corresponding to the fourth base of the 6-mer).
For a set of sequence motif matches, we first obtain the
DNA sequence surrounding each sequence motif match.
We estimate the aggregate sequence bias background sig-
nal around that set of motif matches by iterating over each
base pair and each sequence motif match.

Identification of DHS sites

The single-cut DNase-seq protocol used here yields data at
base-pair resolution by virtue of direct ligation of the first
sequencing linker to cleaved, blunt ended DNA fragments.
Mapping sequencing tags to the genome leads to discrete
numbers of DNase cleavage events within the library at each
position in the genome. To identify DHS sites that display
an enrichment of DNase cleavage, we use the F-seq peak
calling algorithm (32).

Aggregate DNase-seq profiles

Aggregate DNase-seq plots centered around set of genomic
loci are obtained by summing the number of DNase-seq
tags at each position over each loci. Generally each loci is
a region around sequence motif match and these plots are
centered around sequence motif with a fixed window size,
showing the total number of DNase-seq reads that mapped
to each position relative to sequence motif.

For clustering, we use DNase-seq read profiles in a win-
dow (± 25 nt) around positions of interest. In the case of
candidate TFBSs, where M is the length of the motif, these

50 + M long integer vectors make up a 50 + M by N matrix,
where N is the number of candidate TFBSs. These vectors
are clustered using K-means algorithm, with Pearson corre-
lation as distance metric. Pearson correlation was used in-
stead of Euclidian distance since DNase-seq coverage dif-
fers between different regions of the genome. The ‘Kmeans’
function from the R package ‘amap’ was used for this anal-
ysis. A similar analysis was previously performed for ana-
lyzing androgen receptor DNase footprints (33).

Modeling of DNase-seq footprints

DNase-I footprints reflect the propensity of a DNase cleav-
age at each position at and around the TFBS; with low prob-
ability of DNase cleavage at the binding site due to protec-
tion of TF and a high probability of cleavage surrounding
the binding site. To capture different positional propensity
of cleavage due to TF–DNA interaction, we modeled the
relative probability of a DNase cleavage at each position
using a TF-specific multinomial distribution. For training
and testing our models, we used ENCODE Duke DNase-
seq data from GM12878 cell type (34).

Any given candidate TFBS identified by a PWM match
may be bound or unbound in the particular condition for
which we have data. At bound locations, we assume to ob-
serve a footprint; unbound locations should not resemble
the footprint and are therefore represented by a background
model, which is also modeled by a multinomial distribution.

While many motif matches in ChIP-seq peaks are en-
riched for footprints, some resemble the background com-
ponent. DNase-seq signal around remaining motif matches
that are not in ChIP-seq peaks follow the opposite trend,
being enriched for background component. Since motif
matches are made of a mixture of footprint and back-
ground, we used a multinomial mixture model to learn both
models simultaneously. Even with ChIP data as a start-
ing point, a mixture model is able to correctly assign motif
matches in ChIP-seq peaks that do not have a footprint-like
signal to the background, while estimating the parameters
of footprint model, allowing us to arrive at a cleaner foot-
print model. Representing the DNase-seq signal in an M
base pair wide window around a motif match as sample X,
then

P(X) = λfp p(X|θfp) + (1 − λfp)p(X|θbg)

For a two-component mixture model, with � represent-
ing the mixing weights, and θ fp and θbg are the parame-
ters of footprint and background multinomials. We estimate
mixing weights and parameters of background and foot-
print multinomials using the Expectation Maximization al-
gorithm. To initialize θ fp, we calculate maximum likelihood
estimates from aggregate DNase-seq counts around motif
matches in ChIP-seq peaks for multinomial model. For θbg,
we either set the parameters as the maximum likelihood es-
timates from the 6-mer DNase sequence bias cleavage fre-
quencies, or allow it to be estimated de novo.

We used a two component mixture to learn θ fp while
θbg was fixed at maximum likelihood estimate from depro-
teinized naked DNA DNase-seq profile. To learn the de novo
background profile, we used a three component mixture be-
cause EM has a tendency to fit two symmetric footprints in
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a two component mixture. In the three component mixture,
two components that make up the footprint were combined
together to learn the final footprint model. The combined
footprint model is obtained by calculating the weighted av-
erage of two footprint models, using mixture weights. Back-
ground component is chosen automatically as the compo-
nent with most mass at the sequence motif since footprint
models have less mass at sequence motif.

For assessing the accuracy of footprint model as a predic-
tive model of TF binding, we use a 4-fold cross-validation
scheme. After footprint and background parameters are
trained, we calculate a footprint log-likelihood ratio (FLR)
for each motif match in our test set;

FLR = log
P(X|θfp)
P(X|θbg)

FLR measures how similar DNase-seq signal around
each motif match to footprint model. As the resolution
of ChIP-seq does not allow resolving closely spaced motif
matches, we use the highest FLR value of all the motif
matches (both stringent and relaxed sets) within a ChIP-seq
peak. For this task, we used ENCODE uniform pipeline
set of blacklist filtered ChIP-seq peaks called by SPP peak
caller (35,36) available at (http://www.broadinstitute.org/∼
anshul/projects/encode/rawdata/peaks spp/mar2012/
distinct/idrOptimalBlackListFilt/). For ChIP-seq peak
enrichment values, we used the signal enrichment value
reported by the peak caller.

To allow for a fair comparison, we follow the same eval-
uation for the D-s score. Following (17), we assess accu-
racy using two metrics: the area under the receiver operating
characteristic curve (auROC) and the sensitivity at 1% false
positive rate. We built footprint models for 21 different TFs
for which ChIP data and PWMs were already available for
Tier 1 ENCODE cell types (Supplementary Table S2). For
comparison of FLR and D-s score distributions from dif-
ferent cell types, we used subsamples with equal number of
DNase-seq reads for a fair comparison.

An R implementation of our model is available at http:
//ohlerlab.mdc-berlin.de/software.

Discovery of cobinding elements

For each TF with a footprint model, potential cobind-
ing factors were identified by querying for overlapping
ChIP-seq peaks of other DNA binding proteins, such as
RNA Polymerase II and P300. A set of ENCODE uni-
form pipeline processed ChIP-seq peaks were utilized for
this analysis. Two ChIP-seq peaks are overlapping if the in-
tersection of two ChIP-seq peaks is at least 1bp long. For
each TF, we assigned a footprint score to each ChIP-seq
peak of that TF, as defined by the maximum of FLR value
of all sequence motif matches under the peak.

For each TF in the set of 21 TFs that have footprint mod-
els, ChIP-seq peaks that contain a stringent sequence motif
match are sorted according to FLR and overlapping ChIP-
seq peaks of all other DNA-binding proteins (i.e. we call this
set of proteins associated binders) are identified. To discover
if overlapping ChIP-seq peaks of other factors are enriched
at peaks with large FLR values (peaks with a DNase-seq

footprint) or small FLR values (peaks without a DNase-
seq footprint), we used two-sample Kolmogorov–Smirnoff
(K–S) test. Specifically, we calculate the significance of the
hypothesis that the distribution of FLR scores of ChIP-seq
peaks is significantly different from the distribution of FLR
scores of ChIP-seq peaks that only overlap with peaks of
another associated binder. One-sided tests are performed
to discover binders that associate with footprint enriched
peaks versus footprint depleted peaks. Binders that asso-
ciate with footprint enriched and depleted peaks are called
direct and indirect associations, respectively.

Data

All DNase-seq datasets have been deposited in Gene Ex-
pression Omnibus under accession numbers GSE32970.
Deproteinized DNase-seq is available under accession num-
ber GSE61105 and universal PBM dataset is available under
accession number GSE61854.

RESULTS

At least four different scenarios arise when searching for
bona fide DNase footprints at candidate TF-binding sites,
which we define as DNA sequences that match the sequence
preferences of a specific TF (i.e. a sequence motif match).
We provide examples of these scenarios using NRSF ChIP-
seq and DNase-seq data from the GM12878 lymphoblas-
toid cell line (37,38). First, true positives are sequence mo-
tif matches that overlap both a DNase footprint and a
ChIP-seq peak for a TF associated with the sequence motif.
These are highly likely to represent direct binding sites (Fig-
ure 1A). Second, true negatives are sequence motif matches
without a DNase-seq footprint that do not map in a ChIP-
seq peak (Figure 1B). Third, ChIP may not have the resolu-
tion to tell apart which one of two sequence motif matches
is indeed bound, but this may be resolved by the presence
of a footprint (Figure 1C). Fourth, sequence motif matches
that overlap ChIP-seq peaks but do not exhibit a DNase-seq
footprint (Figure 1D) may represent weak or indirect bind-
ing of TFs, long-range chromatin looping (39) or simply
artifacts due to false-positive ChIP-seq peak calls (40,41).
Together, these scenarios illustrate the challenges of iden-
tifying footprints and the motivation behind our modeling
approach.

ChIP-seq sites display a heterogeneous mixture of DNase di-
gestion profiles

To show that DNase-seq generates unique digestion pro-
files that are TF-specific, we generated aggregate DNase-
seq profiles by summing DNase signal centered on sequence
motif matches within ChIP-seq peaks. This is exemplified
by three well-studied TFs, including CCCTC binding factor
(CTCF) - (Figure 2A), STAF (Figure 2B) and NRF1 (Fig-
ure 2C). Unexpectedly, we observed that a simple unsuper-
vised k-means clustering of these aggregate DNase-seq pro-
files leads to two distinct aggregate DNase-seq profiles: one
with an obvious peak/trough/peak footprint shape, and a
second more flattened signal that retains a distinct shape in
the absence of a footprint (Figure 2D). This indicates that
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Figure 1. Scenarios relevant to identifying DNase footprints. On the right, representative examples of DNase-seq data from GM12878 cell type and ChIP-
seq data for NRSF from ENCODE (34). The location of sequence motif match for the TF NRSF is indicated with a yellow box. On the left, a schematic
representation of TF–DNA interaction is shown and whether a footprint is detected or not detected at the motif match. (A) A DNase footprint centered
at the motif maps within a ChIP-seq peak indicating a direct binding event. (B) A motif that maps within a DHS site, but has no appreciable ChIP-seq
signal, nor footprint, indicating no interaction between TF and sequence motif match. (C) Multiple sequence motif matches within a DHS site may only
have a single footprint, showing that TF may be more likely to interact with one of the motif matches. (D) ChIP-seq peak with a sequence motif match
that does not have a footprint suggests a possible indirect binding event.

while each TF has its own distinct DNase footprint shape
visible in aggregate plots, aggregate plots are a mixture of
footprint digestion profiles and a background digestion pro-
files.

Sequence bias of DNase-seq is protocol specific

We hypothesized that background profile observed in the k-
means clustering reflected recently reported intrinsic cleav-
age biases of DNase I (23,25), which may affect a portion of
the DNase-seq aggregate profiles (24). To accurately sepa-
rate footprint profile from background bias profile, we mea-
sured the intrinsic sequence cleavage bias of DNaseI by per-
forming DNase-seq (Song and Crawford, 2010) on depro-
teinized genomic DNA from K562 and MCF7 cells, and
calculated cleavage propensity values for all possible DNA
6-mers. Cleavage propensity values represent any positive or
negative cleavage bias of DNase I, compared to what would
be expected from the prevalence of each 6-mer across the
genome. These cleavage propensities ranged over two or-
ders of magnitude and were highly reproducible between ge-
nomic DNA isolated from the two cell lines (0.99 Spearman
correlation), ruling out possible cell type specific biases such
as different DNA methylation patterns (Figure 3A). We
also estimated cleavage propensities on a published DNase-
seq data set generated from deproteinized IMR90 cell ge-
nomic DNA (23) that used an alternative DNase-seq pro-
tocol (19,42). We observed that the 6-mer cleavage propen-
sities between DNase-seq protocols were far less correlated
(Figure 3B, 0.75 Spearman correlation), suggesting that
the two protocols each display significant differences in se-

quence bias (25). Therefore, accurately modeling footprints
using different DNase-seq protocols will likely require us-
ing protocol-specific deproteinized DNase-seq datasets. For
this study, we limited the modeling and analysis to data that
use the single cut, high molecular weight DNase-seq proto-
col (31).

DNase footprints are an aggregation of a footprint and back-
ground profiles

The observations described thus far motivated us to develop
TF-specific footprint models to assess the predictive accu-
racy of DNase-seq footprinting alone. These models also
take DNase cleavage bias into account. Specifically, this
method would not include additional chromatin accessibil-
ity or genomic features that may indicate the general pres-
ence of a regulatory region (Figure 4). Following the foot-
print modeling strategy used in earlier approaches such as
CENTIPEDE (16), our models sought to reflect the relative
propensity of DNase-I cleavage at each position around se-
quence motif matches using factor-specific multinomial dis-
tributions. In addition, to accurately quantify the extent of
DNase sequence bias, we incorporated a separate nonuni-
form background model that accounts for variability in sig-
nal profiles in the absence of functional footprints at candi-
date binding sites. This intrinsic sequence bias background
model is estimated from the DNase-seq profile that would
result from the selected DNA sequences alone, i.e. the rela-
tive cleavage propensity of each 6-mer surrounding the se-
quence motif matches (Figure 3A).
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Figure 2. Aggregate DNase plots identify distinct TF-binding profiles. Aggregate DNase-seq signal was calculated for motifs that map within ChIP-seq
peaks for (A) CTCF, (B) STAF (ZNF143) and (C) NRF1. Note that each TF displays variation of general footprint shapes, indicating that footprint
detection requires a TF-specific approach. (D) Top panel shows aggregate DNase-seq signal centered on REST motif matches that map within REST
ChIP-seq peaks. K-means clustering of the REST aggregate plot (top) identifies two types of DNase aggregate profiles (bottom). Cluster 1 identifies subset
of REST-binding sites that does not display depletion of DNase signal, while Cluster 2 represents REST-binding sites with depletion of DNase-seq signal.

To train these models, we used expectation-maximization
(EM), which is an unsupervised training algorithm for mix-
ture modeling. As Figure 1A and D illustrate, ChIP-seq
data do not distinguish between true- and false-positives,
or in other words, direct from indirect binding. We therefore
used ChIP-seq data to initialize the true positive motif set,
but allow the model to reassign motifs to the background
should they display evidence of being derived from cleav-
age bias. This approach ensures that bound sequence motif
matches that follow the background DNase profile were ex-
cluded from training of the footprint model, leading to a
cleaner footprint model.

Importantly, to avoid conflating the DNase-seq signal in
the larger genomic region with the one at an individual site,
we use a relatively small window (± 25 bp) around the motif
match. This is a more targeted approach compared to pre-
vious approaches that opted for a 200 bp or larger window
(16,17). We expect the smaller window to better exclude in-
fluences from neighboring footprints from the same or dif-
ferent TFs.

DNase footprints predict direct binding events with high sen-
sitivity

To assess the performance of using footprint models alone
to predict TF binding at candidate-binding sites, we set up a
binary classification scheme using ChIP-seq data as the gold
standard (Figure 4). To discover candidate binding sites
(sequence motif matches), we scanned the human genome
(hg19) using 21 PWMs from the JASPAR and TRANS-
FAC databases (Supplementary Table S2). These PWMs
were largely chosen based on their availability of ChIP-seq
data from more than one cell type. Following model training
with EM algorithm, each sequence motif match in the test
set is assigned a footprint score based on the log-odds ratio
of footprint and background components. We call this log-
odds ratio the footprint likelihood ratio (FLR). In the case
of multiple sequence motif matches within a single ChIP-
seq peak (Figure 1C), we assigned the highest FLR value to
each of the sequence motif matches.
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Figure 3. DNase-seq displays cleavage bias that is protocol specific. (A) Scatter plot of cleavage propensities of all possible DNA 6-mers (log10 scale)
for deproteinized genomic DNA from MCF7 and K562 cell lines using the single hit high molecular weight DNase-seq protocol (31). (B) Scatter plot
comparing cleavage propensities of 6mers from deproteinized genomic DNA from K562 using the single hit DNase-seq protocol versus deproteinized
genomic DNA from IMR90 cell line using an independent two hit small molecular weight DNase-seq protocol (42). The inset box represents maximum
and minimum cleavage propensity values for single hit DNase-seq protocol performed on K562 cell line. Spearman correlation is indicated in each plot.

Figure 4. Workflow of binary classification scheme.

We next compared the performance of FLR footprinting
scores against the simple D-s score of overall DNase hyper-
sensitivity (17), which is defined as the number of DNase-
seq reads within a 200-bp window around the sequence mo-

tif match. Therefore, the D-s score predicts binding without
modeling the footprint. We again used the highest D-s score
in cases of multiple sequence motif matches within a single
ChIP-seq peak. D-s has been reported to perform as well
as CENTIPEDE (17), which predicts whether a sequence
motif match is bound by jointly modeling the DNase foot-
print, overall DNase hypersensitivity with a 200-bp win-
dow and other static genomic features such as conserva-
tion. We did not compare performance of FLR to CEN-
TIPEDE since CENTIPEDE models multiple features over
a larger window and our objective is to quantify the predic-
tive power of DNase-seq footprinting alone. We could not
also compare performance against another recent footprint
metric (20) because of the unavailability of parts of software
implementation. Following previous comparisons (Cuellar-
Partida et al. (17)), we evaluated the predictive performance
via the auROC and the sensitivity at 1% false-positive rate
(FPR) threshold. AuROC assesses how well the classifier
separates positives from negatives across different thresh-
olds, whereas the sensitivity at 1% FPR assesses the classi-
fiers’ ability to identify true positives at a relatively low level
of false positives.

For most factors, the majority of unbound sequence mo-
tif matches map outside DHS sites. By definition, D-s score
separates sequence motif matches within DHS sites from
those that fall outside of DHS sites. Thus, as anticipated,
D-s outperformed our pure footprint model in terms of
auROC and sensitivity when we consider all genome wide
sequence motif matches (Supplementary Figure S1). Due
to the generally low coverage of DNase-seq signal outside
DHS sites, FLR cannot perform well since this model re-
quires DNase-seq coverage at multiple positions in a four
times narrower window (50 versus 200 bp) without aggre-
gating the signal. Limiting the classification of sequence
motif matches to those occurring only within DHS sites,
the two approaches perform comparably, with D-s score
still outperforming FLR in auROC (Figure 5A), but FLR
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Figure 5. Comparison of FLR to general D-s score. Motif matches for 21 TFs that map within DHS sites were compared to ChIP-seq data to calculate
(A) auROC and (B) sensitivity at 1% false-positive rate for FLR and D-s scores. Each TF is indicated as a circle, dashed lines represent the means.

outperforming D-s in terms of sensitivity at 1% FPR (Fig-
ure 5B). Thus, while D-s is reliable in generally distinguish-
ing bound from unbound sequence motif matches, there is
a subset of bound sequence motif matches exhibiting strong
DNase footprints that lead to higher sensitivity at 1% FPR
using the FLR.

Predictive performance of FLR and D-s score varied be-
tween the 21 TFs, and between different transcriptional fac-
tor families (Table 1). For instance, some of the best scor-
ing FLR footprints belonged to zinc finger family members
(e.g., CTCF, NRSF, NRF1), which are typically character-
ized by unique sequence preferences corresponding to high
information content PWMs. In contrast, other factors that
are part of the basic helix–loop–helix TF family (e.g. Max,
C-Myc) tend to bind variations of a core motif such as the
E box. Therefore, learning specific footprints for members
of such families is more difficult since scanning the genome
with a PWM that corresponds to one family member in-
evitably introduces matches to other family members, con-
founding the model. Another challenge for high resolution
motif based footprint models is that the sequence motif for
certain TFs may not be correct. For E2F1, a TF that binds
to a motif very similar to E2F4, scanning the genome with
8-mers from PBM experiments yields an aggregate DNase-
seq plot with much deeper trough compared to the PWM
scan (Supplementary Figure S2). This demonstrates that 8-
mers from PBM experiments are better suited to discover
candidate-binding sites for some TFs, and further illustrates
that accurate footprinting can be dependent on the class of
TF and the accuracy of the known sequence motif.

ChIP-seq peaks without a DNase footprint suggests weak or
indirect binding

The success of footprinting methods will clearly depend on
the amount of data available to detect local DNase pat-
terns. This trend is illustrated in a tripartite structure of the
auROC curves (Supplementary Figure S3). After a quick
rise in true positives for high FLR scores, the performance
quickly flattens out; indicating that for a considerable sub-
set of candidate sites there is not sufficient data to make a

clear call as to whether a footprint is detected. As evidenced
by the sudden rise of true positive rate at high false-positive
rates, the FLR mixture models identify a third subset of
ChIP-seq peaks that do not exhibit a DNase footprint, even
though they map within a DHS site.

To ensure sequence bias was not a driving factor for this
distribution of scores, we ranked sequence motif matches
according to FLR and estimated the DNase-seq signal that
would result purely from DNase sequence bias using cleav-
age propensity values. Estimated signal was similar for up-
per and lower quintiles of FLR ranked sequence motif
matches, showing that the footprint profile is not caused by
sequence bias itself (Supplementary Figure S4).

We investigated possible reasons for the lack of footprints
at sequence motif matches that are ChIP-seq positive. For
this analysis we adopted a ChIP-seq peak-centric rather
than motif-centric approach and used the maximum FLR
score found within each peak. ChIP-seq peaks without a
sequence motif match were excluded from this analysis. For
all TFs we analyzed, there is a positive correlation (rang-
ing from 0.07 to 0.54, Spearman) between FLR and ChIP-
seq enrichment value. Sorting ChIP-seq peaks according to
FLR in descending order shows a consistent decrease of the
median ChIP-seq enrichment for all factors (Figure 6A).
This trend suggests that direct physical interaction between
the TF and candidate binding site is reflected by higher
FLR scores within stronger ChIP-seq signals. Absence of
the footprint (as measured by lower FLR scores) indicates
lack of TF–DNA interaction and the resulting protection
from DNase cleavage. Absence of a footprint in ChIP-seq
peaks may be explained by indirect binding events (possible
recruitment by cobinding partners) or weaker interactions
between the TF and the sequence motif match; these expla-
nations are elaborated in the rest of this section.

To further explore whether high FLR scores indicate di-
rect interactions, whereas low scores are indicative of indi-
rect binding, we compared footprint enriched and depleted
ChIP-seq peaks to ChIP-seq data from 83 other DNA-
binding proteins. We characterized significant associations
with footprint-enriched and -depleted peaks as direct asso-
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Table 1. auROC and Sensitivity at 1% FPR values for D-s and FLR for each TF.

AUC Sensitivity at 1% FPR

Whole genome DHS Whole genome DHS

TF Negative Positive D-s FLR D-s FLR D-s FLR D-s FLR

E2F4 49 532 468 0.99 0.68 0.89 0.69 0.72 0.45 0.14 0.08
NFY-A 48 565 1435 0.99 0.95 0.88 0.88 0.63 0.72 0.15 0.12
NFY-B 46 397 3603 0.98 0.86 0.9 0.82 0.77 0.67 0.11 0.15
NRF1 46 282 3718 0.99 0.9 0.93 0.89 0.8 0.85 0.16 0.26
RFX5 49 811 189 0.98 0.81 0.9 0.8 0.77 0.64 0.23 0.17
ZNF143 49 130 870 0.99 0.63 0.93 0.69 0.9 0.53 0.3 0.4
BHLHE40 47 651 2349 0.97 0.7 0.85 0.69 0.64 0.43 0.08 0.09
USF1 49 585 415 0.97 0.7 0.77 0.69 0.59 0.35 0.11 0.12
USF2 49 724 276 0.96 0.73 0.79 0.69 0.59 0.35 0.05 0.04
YY1 47 905 2095 0.99 0.87 0.94 0.87 0.85 0.62 0.41 0.38
CTCF 29 570 20 430 0.95 0.73 0.76 0.81 0.38 0.5 0 0.11
MEF2A 48 823 1177 0.97 0.73 0.85 0.7 0.56 0.37 0.06 0.15
NRSF 47 566 2434 0.81 0.69 0.64 0.82 0.11 0.32 0.01 0.45
PAX5 49 401 599 0.94 0.76 0.8 0.74 0.46 0.37 0.03 0.05
PU1 48 731 1269 0.94 0.82 0.81 0.79 0.41 0.38 0.08 0.07
SP1 49 678 322 1 0.9 0.91 0.89 0.89 0.74 0.33 0.27
SRF 49 134 866 0.94 0.61 0.83 0.63 0.53 0.28 0.09 0.1
TCF3 49 749 251 0.99 0.65 0.82 0.61 0.67 0.36 0.06 0.01
ZEB1 49 960 40 1 0.99 0.84 0.89 0.92 0.82 0.05 0.1
C-MYC 49 668 332 0.99 0.82 0.85 0.76 0.69 0.52 0.06 0.09
MAX 49 317 683 0.99 0.76 0.88 0.74 0.79 0.53 0.17 0.1

Figure 6. Footprint scores indicate mode of TF interaction. (A) Median ChIP-seq intensity scores of ChIP-seq peaks of five factors, sorted by FLR
footprint scores in descending order and divided into 10 bins. The highest FLR scores are in the first bin. Note footprint score correlates with ChIP-seq
signal, with the exception of the weakest footprinting scores where they are inversely correlated. (B) Boxplots of NRSF ChIP-seq intensity scores across
footprint scores. (C) A heat-map showing overlapping ChIP-seq peaks for the top and bottom 10% highest and lowest footprint scores. CoRest and Znf143
binding is enriched for the strongest NRSF footprints (left) and are depleted in the weakest NRSF footprints (right). (D) Conversely, Taf1 and Pol2 binding
is depleted for the strongest NRSF footprints (left), and enriched for the weakest NRSF footprints (right).

ciations and indirect associations, respectively. For example,
NRSF ChIP-seq peaks (Figure 6B) enriched with strong
NRSF footprints were associated with binding to CoRest
(K-S test, P < 1.4e − 12) and Znf143 (P < 5e 71; Figure
6C) occupied sites. CoRest is a known coregulator of NRSF
(43). For NRSF ChIP-seq peaks that are depleted for NRSF
footprints, a significant association was detected for PolII
(P < 1.4e − 20) and TBP associated factor 1 Taf1 (P < 2.9
–15; Figure 6D). We performed a similar analysis for CTCF

ChIP-seq peaks that are enriched for strong CTCF foot-
prints, and a significant direct association was detected for
YY1 (P < 7e − 171) and ZNF143 (P < 7e − 117). Both YY1
and ZNF143 have been previously documented to bind to-
gether with CTCF (44,45). CTCF ChIP-seq peaks that do
not contain strong CTCF footprints are also enriched for
PolII (P < 1.4e − 7) and Taf1 (P < 1.5e − 7). For CTCF and
NRSF, the indirect association with PolII and Taf1 may in-
dicate indirect binding or chromatin looping with the basal
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promoter machinery that result in a TF-DNA interaction
detected by ChIP-seq, but does not leave a footprint. In-
terestingly, many of these binding sites with the weakest
FLR footprint scores have a modest increase in ChIP-seq
intensities relative to FLR footprints with stronger scores
(Figure 6), indicating that this indirect interaction with the
basal machinery is stable. Another possible explanation for
this observation are possible ChIP-seq data artifacts; recent
studies have reported that regions in the yeast genome going
through active transcription are enriched for unrelated TFs,
indicating that some ChIP enrichments are due to nonfunc-
tional binding (40,41).

Footprint enriched associations are factor-specific as ex-
pected; however we detected significant (threshold P < 5 −
e2, Bonferroni correction) indirect associations with P300
for seven factors and Ikzf1 for five factors (Supplementary
Table S3). P300 is a well-known transcription co-activator
often marking sites with enhancer activity by acting as an
acetyl-transferase to increase histone acetylation levels, pro-
mote relaxation of local chromatin structure and recruit
transcriptional machinery (46,47) whereas Ikzf1 is associ-
ated with chromatin remodeling proteins (48). Indirect as-
sociation with P300 suggests a similar mechanism where
active transcription may introduce artifacts into ChIP-seq
data, whereas Ikzf1 association indicates we may not be able
to detect footprints in regions of active chromatin remodel-
ing.

DNase footprints detect microarchitecture changes in chro-
matin landscape

The above analyses support that ChIP-seq data likely rep-
resents a combination of both direct and indirect binding,
which cannot be distinguished using ChIP-seq data alone.
While overall DNase hypersensitivity (e.g. measured by D-
s) and DNase footprints (e.g. measured by FLR) present
themselves as equally good predictors of TF-binding events
across the genome (Figure 5), there is a trade-off between
the two approaches. Specifically, while D-s is a good indica-
tor of any binding event (either direct or indirect) around
the sequence motif match, FLR has the potential to dis-
tinguish between indirect and direct binding events. This
becomes important in situations where differential TF-
binding event does not change the overall chromatin acces-
sibility, but does change chromatin microarchitecture.

To explore this scenario, we used DNase-seq data from
different cell types for which it is known that specific TFs
are differentially expressed. We first compared DNase-seq
data from the medulloblastoma cell line D721 and the lym-
phoblastoid cell line GM12878. In medulloblastoma cells,
the NRSF repressor is not expressed, which results in ex-
pression of neuronal genes (49). In GM12878 cells, the pres-
ence of NRSF actively represses these genes. We identified
NRSF sequence motif matches that mapped within DHS
sites that are present in both cell lines. Within these regions,
we detected that the NRSF footprint was often only de-
tectable in GM12878 cells at individual loci (Figure 7A),
and at all potential NRSF-binding sites (Figure 7B). We
computed the overall distribution of FLR and D-s scores
for NRSF sequence motif matches that map in DHS sites
that are present in both cell types (Figure 7C). When com-

paring NRSF motif matches between GM12878 and D721
cell types, we only observed a significantly different distri-
bution of FLR scores (K-S test, P < 3.15e − 12) while D-s
score differences were not significant (P < 0.4). This indi-
cates that there is a class of regulatory elements (i.e. DHS
sites present in multiple cell types) where the D-s statis-
tic is not optimal for accurately identifying differential TF-
binding sites.

To test whether this advantage of FLR was specific to
NRSF, we also compared DHS sites from skin fibroblasts
that were transformed into induced pluripotent stem cells
(iPSCs) by overexpression of Oct4, Sox2, Klf4 and c-Myc
Yamanaka factors (50). When we compared the DHS sites
that were present in both the iPSC lines and the parental
skin fibroblast cell lines, the difference between the two cell
types was more significant for FLR footprint scores for each
of the four Yamanaka factors than D-s scores (Figure 7D
and Supplementary Table S4).

The ability of FLR to distinguish a change in binding
events in shared DHS sites therefore appears to be a distinct
advantage of FLR over a more general statistic that only
captures overall DNase hypersensitivity in a large window
around the sequence motif match. In cases where the dis-
appearance of a footprint does not abolish a DHS site, our
footprint model can be used to detect subtle but function-
ally significant changes in the chromatin microarchitecture
landscape.

Unsupervised EM training can identify de novo DNase bias

To illustrate the robustness and flexibility of the TF-specific
mixture modeling approach, we evaluated how well it would
allow us to separate bound from unbound sites, even in
the absence of the intrinsic sequence bias detected using
the deproteinized naked DNA DNase-seq data, using un-
supervised EM training of mixture components. Rather
than using two mixture components for a footprint and
background, we often observed that the EM algorithm fre-
quently split the foreground footprint signal into two sep-
arate footprints, one with a stronger DNase-seq signal up-
stream of the motif and another with stronger DNase-seq
signal downstream of the motif (Supplementary Figure S5).
In these cases, we combined the two separate de novo fore-
ground footprint components, and learned a distinct de
novo background model from the third component (as ex-
plained in materials and methods section).

We next compared both de novo foreground footprint and
background model components to the previously described
intrinsic sequence bias background model. For most of the
TFs analyzed, the de novo background model had a higher
Pearson correlation to intrinsic sequence bias background
model than foreground footprint model (Figure 8A). The
foreground footprint model largely correlated negatively or
very weakly with the sequence bias background, indicat-
ing that EM was able to identify a distinct, nonbackground
subset of footprints that is clearly not due to sequence bias
(Figure 8A, upper left quadrant). However, some factors
did not allow for a clear separation between the foreground
footprint and de novo background model, with respect the
intrinsic sequence bias (Figure 8A, upper right quadrant).
This may be due to these TFs either leaving weak footprints,
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Figure 7. Cell type specific footprints in shared DHS sites. (A) Representative example of DNase-seq data from GM12878 and Medulloblastoma (D721)
cell lines. This DHS site is present in both cell types, but a clear footprint for NRSF is only detected in GM12878 at the sequence motif match (B) Aggregate
DNase-seq signal around NRSF motifs in GM12878 (left) and medulloblastoma (right) cell lines indicate that NRSF does not leave a footprint in the
medulloblastoma cell line. (C) Boxplots showing distribution of FLR and D-s scores in GM12878 and Medulloblastoma cell lines for the NRSF motif
in DHS sites that are present in both cell types. Distribution of FLR scores displays a difference between GM12878 and Medulloblastoma, whereas D-s
scores displays no difference. (D) Similar boxplots showing distributions of FLR and D-s to identify differential footprint scores between skin fibroblasts
and iPSc cells for OCT4, Sox2, C-Myc and KLF4 Yamanaka factors. FLR scores were more sensitive to changes in TF binding between two cell types,
reflected by smaller P values indicated in each box and Supplementary Table S4.

or that binding sites for these TFs strongly resemble the
cutting bias preferences of DNaseI. Furthermore, using de
novo background instead of intrinsic sequence bias back-
ground yields a slightly better performance for the classifi-
cation pipeline on the average, suggesting that de novo back-
ground is a better estimation of the true background signal
than using the intrinsic sequence bias background (Supple-
mentary Table S5).

DNase footprints can identify variants of the main sequence
motif

While the two foreground footprint components were sym-
metric for most TFs, we found that this was not the case for
CTCF and ZNF143. For these factors, we detected some
foreground components that exhibited an extended foot-
print profile beyond the core motif (Figure 8B and C). These
extended footprints suggest additional interactions within

a subset of the TF-binding sites. Building extended PWMs
on the sets of sequence motifs that make up each footprint
component, we found a variant of the main CTCF motif
(Figure 8B) that has been reported by previous footprint
studies (18), ChIP-seq (51) and ChIP-exo experiments (52).
We detected a similar extended motif for ZNF143 that has
not been previously characterized (Figure 8C). As these fac-
tors are members of the zinc finger family, it is not surpris-
ing to find extended variants of the main motif, which can
be bound by additional domains that do not make contact
with the core sequence motif. This finding demonstrates the
usefulness of unsupervised mixture models in which foot-
print model components reflect different modes of binding
and can detect ways that certain TFs interacts with either
the core or extended consensus motif.
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Figure 8. EM footprint components distinguish background bias and footprints, as well as alternate motif usage. (A) Correlation of intrinsic DNase-seq
sequence bias profile (generated from deproteinized naked DNA DNase-seq) compared to the de novo foreground footprint component (X axis) and de
novo background component (Y axis) of multinomial mixture model. For 19 TFs the de novo background component learned by mixture model correlates
more with intrinsic sequence bias model. The majority of de novo foreground footprint models correlate negatively with intrinsic sequence bias model. (B)
Combined footprint model for CTCF against the de novo background component in the upper panel and the two footprint components (C1 and C2) that
make up the footprint in the lower two panels, with the sequence logo associated with each component for CTCF. Vertical lines delimit the PWM we used
for this factor. An additional motif associated with the depletion in second footprint component can be seen upstream of the main motif. (C) Similarly for
ZNF143, extended motif corresponds to a bigger footprint for the second component.

DISCUSSION

Since the advent of next generation sequencing as-
says, DNase hypersensitivity and DNase footprinting via
DNase-seq has been widely used as predictors of TF-
binding locations in various organisms and cell types. A va-
riety of approaches for sequence motif-based or de novo dis-
covery of DNase footprints have been developed with differ-
ences in their definition of a DNase footprint (16,18,20,21).
However, since some of these methods incorporate data that
are independent of the footprint, the extent of how well
footprinting alone predicts TF–DNA interactions has been
unclear. Furthermore, sequence bias in DNase-seq data has
recently been documented in multiple studies (23,25), and
has even called into question the overall ability to identify
footprints in DNase data (24).

In this study, we have modeled and thoroughly assessed
the predictive performance of DNase-seq footprints for 21
TFs using models that learn distinct- and factor-specific
footprint shapes with signal depletion centered on sequence
motif matches, and include a background model to account
for DNase sequence bias. We have shown that sequence
motif centered footprints are not always present when the
TFs are cross-linked to DNA, indicating weaker or indirect
TF/DNA binding. Aggregate DNase-seq profiles at motif
matches are therefore a mixture of background and foot-
print profiles, which likely explains the imperfect predictive
performance of footprinting. Finally, we have shown that
the overall footprint shape is generally not dependent on the
bias of DNase enzymatic cleavage and is more likely caused
by direct TF binding. Following the findings of (17), raw
DNase accessibility is a comparable predictor for genome-
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wide TF binding and is able to generally discern bound mo-
tifs from unbound ones. However, we show a class of regu-
latory elements where overall DNase accessibility does not
accurately reflect changes in binding to specific factors, indi-
cating that single-nucleotide resolution footprint models are
needed to accurately identify these types of binding events.

Although ChIP-seq is a well-established method to query
protein–DNA interaction in a genome-wide manner, the ex-
tent to which ChIP-seq peaks result from direct binding or
are confounded by indirect binding or noise is unknown
(39–41,53). Here, characterizing ChIP-seq peaks based on
the presence/absence of a footprint, we were able to resolve
functional differences within the ChIP-seq data, such as in-
direct binding events in the vicinity of sequence match that
may result from active transcription around the candidate-
binding site (40,41). Another possible explanation for ChIP
peaks without footprints may be the spatial closeness of
two ChIP-seq peaks due to 3D conformation of the genome
(39). In the current state, footprint models may not yet be
advanced enough to replace specific ChIP data, but given
the complexity of binding landscape and architecture of
the genome, we propose that DNase-seq footprints may be
used in combination with ChIP-seq to distinguish high con-
fidence direct binding events at high resolution.

Finally, for two of the TFs evaluated here, the mixture
modeling detected more than one distinct footprint profile,
coinciding with differences in sequence motifs and suggest-
ing the effect of different binding modes. While we used
traditional PWMs that represent all binding sites of a TF
in unison, motif variations and differential binding modes
may exist, backed by in vitro PBM experiments (28) and
ChIP-seq experiments (51,52). Further, we show that pre-
dictive performance of footprinting is higher for TFs with
highly specific sequence motifs and we show a case where
PWM model fails to accurately pinpoint candidate-binding
sites associated with the factor, confounding our high-
resolution footprint model. These findings suggest joint
learning of DNA sequence and DNase-seq footprint is a
promising next step to more accurately detect and charac-
terize TF–DNA interactions in vivo.
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Supplementary Data are available at NAR Online.
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