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Abstract

Characterizing the activating and inhibiting effect of protein-protein interactions (PPI) is fundamental to gain insight into
the complex signaling system of a human cell. A plethora of methods has been suggested to infer PPI from data on a large
scale, but none of them is able to characterize the effect of this interaction. Here, we present a novel computational
development that employs mitotic phenotypes of a genome-wide RNAi knockdown screen and enables identifying the
activating and inhibiting effects of PPIs. Exemplarily, we applied our technique to a knockdown screen of HeLa cells
cultivated at standard conditions. Using a machine learning approach, we obtained high accuracy (82% AUC of the receiver
operating characteristics) by cross-validation using 6,870 known activating and inhibiting PPIs as gold standard. We
predicted de novo unknown activating and inhibiting effects for 1,954 PPIs in HeLa cells covering the ten major signaling
pathways of the Kyoto Encyclopedia of Genes and Genomes, and made these predictions publicly available in a database.
We finally demonstrate that the predicted effects can be used to cluster knockdown genes of similar biological processes in
coherent subgroups. The characterization of the activating or inhibiting effect of individual PPIs opens up new perspectives
for the interpretation of large datasets of PPIs and thus considerably increases the value of PPIs as an integrated resource for
studying the detailed function of signaling pathways of the cellular system of interest.
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Introduction

Accurately reconstructing signal transduction pathways is

central to elucidate cellular mechanisms. For a true model of a

living system, one would ultimately need to represent thousands

of individual reactions each requiring several parameters to

describe them. Efforts such as Reactome (www.reactome.org)

[1] attempt to capture the correct relationships in a System

Biology ready format, though it will clearly be decades before

sufficient data are available to model pathways systematically

using (for example) ordinary differential equations. There are

currently few efforts aimed at completing the parameter space

for such modelling exercises. Such efforts are limited by a lack of

high-throughput techniques for biochemical experiments, as

these would require isolation of molecules on a scale that is

currently unimaginable. There are, however, many high-

throughput experiments to study gene function, protein-protein

interactions and the phenotypic consequences of interfering

with genes or proteins within biological systems. Information

about protein-protein interactions (PPIs) may serve as the basis

to assemble signal transduction pathways on a large scale [2,3].

With the help of manual curators, experimentally validated

information about direct PPIs and functional relations have

been extracted from literature and collected in well-established

databases [4–7]. In addition, RNA interference (RNAi) tech-
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nology has been established to study the function of single

human genes and the proteins they encode. This technology was

scaled up to genome-wide screens [8]. Notably, RNAi technol-

ogy is very general and allows analyzing a large variety of

different treatments and cell lines making it a desirable

approach for large-scale inference of protein function [9,10]

[11] [12]. Low throughput experiments studying individual

molecular perturbations (e.g. RNAi, gene over-expression, or

chemical modulators) have allowed molecular biologists grad-

ually (often over decades) to build up pictures of biological

processes commonly termed pathways. Within pathways,

interactions between molecules are typically represented as a

series of activation or inhibition events, which have typically

been inferred over years on the basis of painstaking over-

expression or deletion studies of individual molecules. While

over-simplistic, these pathways serve as an extremely useful,

tried-and-tested framework to display the sum of information

known and to test hypotheses about new molecules or

relationships.

In this work we have attempted, in part, to deduce pathway

relationships in a similar fashion though by using high-throughput

datasets. Specifically, we studied phenotypes observed in HeLa cell

cultures in which single genes were knocked down covering a large

portion of the genome. The aim of our study was to elucidate if

two interacting proteins either positively propagated a signal

(activating signal) or if their interaction led to an inhibition of the

signal. Hereto, we developed a new approach based on the idea

that activating signals should lead to very similar RNAi

knockdown phenotypes of the respective interacting proteins,

whereas inhibiting signals should lead to dissimilar phenotypes.

Just recently, a study on Drosophila came out which follows a

similar concept [13]. Comparing our approach to this method

showed that our method suits distinctively better for the data we

analyzed (see below, Results). We used a large range of phenotype

descriptors. These descriptors included features from a novel

concept that employs a performance criterion of a machine

learning method to estimate the similarity of pairs of individually

knocked down genes. We applied this approach to cellular images

of HeLa cells at standard cultivation conditions which were

collected in the Mitocheck genome-wide RNAi knockdown screen

[10].

Results

Assembling known activating, inhibiting and undefined
interactions

Three non-overlapping sets of interactions were defined. The

first set consisted of 5,864 known interactions that were described

to be activating. They were taken from literature based data

repositories and used as a reference or gold standard for activating

PPIs (Act-PPIs). The second set comprised 1,006 interactions that

have been reported to be inhibiting (Inh-PPIs). The third set

consisted of 9,652 high-confidence PPIs supported by multiple

types of evidence (see Methods) and for which no knowledge on

activation or inhibition was available (Undef-PPIs, undefined

PPIs). We used the latter dataset to characterize their effects

(activation/inhibition). It was not part of this study to infer novel

PPIs but rather the effect of a known interaction.

General concept and workflow
An overview of the entire workflow of our methodology is given

in Figure 1. Our aim was to infer an activating effect between two

protein partners of a PPI (Act-PPI) if knockdown of the

corresponding genes results in a similar phenotype and to infer

an inhibitory effect (Inh-PPI) if the resulting knockdown pheno-

types are dissimilar. To distinguish similar from dissimilar

phenotypes, we calculated a large set of different features for

each of these phenotype pairs (Supplementary Table S1 lists all

features):

(i) One feature was derived from our novel concept employing

Linear Discriminant Analyses (LDAs). For each gene pair,

the task of the classifier (LDA) was to distinguish images of

cells with a knockdown of these genes. Good performance

resulted in high accuracy indicating that the phenotypes of

the two knockdowns were dissimilar (pointing to an

inhibiting interaction). In contrast, weak performance

indicated similar phenotypes (pointing to an activating

interaction). The performance of the LDAs served as a

similarity criterion and was used as the first feature (LDA-
performance-feature).

(ii) As further features, we employed cell counts in different

states of interphase, mitosis and apoptosis and the overall

cellular proliferation rates. We used the time-points and

heights of the maximal counts in each class for each knocked

down gene from the Mitocheck study [10] and calculated

their differences between each gene of a gene-pair to derive

the features for the gene pairs.

(iii) Finally, we calculated features from phenotype similarities

(employing LDA-performance from (i) and maximal counts

from (ii)) to the same set of gene pairs.

All features were used to train a second set of classifiers (Support

Vector Machines, SVMs) to classify gene-pairs of the set of known

Act-PPIs and Inh-PPIs. Their performance was assessed employ-

ing a cross-validation procedure. The trained classifiers were

subsequently used to predict the effect of undefined interactions.

These predictions on the effect of the interactions were uploaded

to the database HIPPIE [14]. Furthermore, the trained classifiers

Author Summary

Mathematical models which aim to describe cellular
signaling start from constructing an interaction network
of effectors, mediators and their effected target proteins.
Several developments came up making it easier to put
these links together. Besides tediously assembling knowl-
edge from textbooks and research articles, experimental
high-throughput methods were established like Yeast-2-
Hybrid assays or Fluorescence Emission Resonance Trans-
fer. However, these methods do not elucidate the effect of
such interactions. We aimed inferring if an interaction in a
specific cellular context is rather activating or inhibiting.
We used cellular phenotypes of a genome-wide RNAi
knockdown screen of live cells to identify such activating
and inhibiting effects of protein interactions. The rationale
behind it is that activating protein interactions should lead
to similar phenotypes when their respective genes are
knocked down, whereas an inhibiting protein interaction
should lead to dissimilar phenotypes. Exemplarily, we
applied our method to a phenotype screen of perturbed
HeLa cells. Our predictions effectively reproduced text-
book relationships between proteins or domains when
comparing the predicted effects with pairs of effectors,
receptors, kinases, phosphatases and of general signalling
modules. The presented computational approach is
generic and may enable elucidating the effects of studied
interactions also of other cellular systems under more
specific conditions.
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were used to define a similarity score (Effect Similarity Rate, ESR)

indicating the prediction-concordance to other proteins in the

network. ESR was high for a pair of proteins if their effects on

other proteins were similar or low otherwise. As a case study, ESR

was used for a clustering analysis of chemokine signaling.

Characterizing phenotypic similarity and dissimilarity of
cells using LDAs

PPIs were investigated by analyzing cell images of knockdowns

of their corresponding genes. For each gene of the investigated

PPIs, we took images from live HeLa cells with GFP-tagged

histones for chromatin staining after knockdown of the gene. The

use of LDAs for describing phenotypic similarity is exemplarily

described for three sample knockdowns illustrated in Figure 2.

Two of the genes, frizzled family receptor 7 (FZD7) and

dishevelled 2 (DVL2), are functionally tightly related. DVL2 is

activated by FZD7 in the Wnt signaling cascade [15]. Thus,

cellular images after individual knockdown of those two genes

should show a phenotypic similarity. In contrast, SFRP1 (secreted

frizzled-related protein 1) forms an inhibitory complex with the

frizzled receptor and down-regulates Wnt signaling [16]. Hence,

SFRP1 and DVL2 (or FZD7) should show dissimilar cellular

phenotypes after knockdown. Indeed, cells after knockdown of

FZD7 and DVL2 displayed considerably irregular nuclei mem-

branes (Figures 2b and c). In contrast, cells after knockdown of

SFRP1 did not show these irregular patterns (Figure 2a) and were

therefore better distinguishable from cells after FZD7 and DVL2
knockdown.

We segmented the cells of all images and calculated a broad

range of texture, morphological and shape features for each cell.

Figure 1. Workflow. Images of a genome-wide cellular RNAi knockdown screen (the screening data was derived from the Mitocheck project, www.

descriptors were used to train a machine learning system to discriminate activating and inhibiting PPIs taken from a reference. The performance was
evaluated using cross-validation. The trained SVM models were used to predict the effects of uncharacterized PPIs. In addition, the SVM models were
used to estimate similarity of the effects of proteins for all combinations of protein pairs in the network. Subsequently, this Effect Similarity Rate (ESR)
was exemplarily used for clustering of functionally related protein sub-networks.
doi:10.1371/journal.pcbi.1003814.g001
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Feature vectors were compared for cells with knockdown of

SFRP1 and DVL2 (dissimilar images), and for cells with

knockdown of DVL2 and FZD7 (similar images). Figures 2d and

2e show the results for the first two principal components

(containing the highest variance of the data in the feature space).

Cells with knockdown of SFRP1 were better separable from cells

with knockdown of DVL2 than cells with knockdown of FZD7
(LDA accuracy of 89.8% and 70.6%, respectively). This shows that

activating effects (FZD7 activates DVL2) can lead to similar

images whereas inhibiting effects (DVL2, SFRP1) can lead to

dissimilar effects and this can be captured by LDA performance.

Figure S1 in the supplement shows all three datasets in one

principal component plot.

Learning to distinguish activating from inhibiting PPIs
We trained 1000 Support Vector Machines to distinguish the set

of Act-PPIs from the set of Inh-PPIs. Training and validation was

done by cross-validation. To obtain different levels of stringency, a

voting scheme was applied: a positive vote was contributed for

each classifier that predicted an activating interaction. Votes from

all trained SVM-classifiers were summed up to yield the predicted

interaction effect and the number of votes was used to define

stringency. Applying this method to all genes of all investigated

signaling pathways, we yielded a receiver operating characteristic

(ROC-curve) with an area under the curve (AUC) of 0.75 with

respect to the activating interactions (dashed line in Figure 3a).

The same performance was achieved with respect to the

predictions of inhibiting interactions (Supplementary Figure S2).

We considerably improved the performance using classifiers that

were separately trained and validated on each of the major sets of

pathways and yielded an AUC of 0.82 (solid line in Figure 3a and

Supplementary Figure S2).

Figure 3b illustrates the distribution of the votes for the

training data. We were particularly interested in classifiers with

high stringency. At highest stringency, we yielded remarkably

good precision for the interactions predicted unequivocally by

all classifiers (precision: 92.9%; accuracy: 55.4%, sensitivity:

11.6%, specificity: 99.1%). Using a minimum of 90% of the

votes for stringency yielded a high precision (87.8%) with

considerably high specificity (94.8%), and sensitivity of 37.8%.

A list of results for all investigated cutoffs is given in

Supplementary Table S2.

Comparing our method with a study published recently
We compared our approach to the method of Vinayagam and

coworkers published recently [13]. They constructed a protein

interaction network for Drosophila melanogaster using siRNA

image data of other studies and predicted 6,125 effects to identify

positive and negative regulators of signaling pathways and protein

complexes connecting 3,352 genes. We used our sets of features

(Phenotype fraction, Maxima, and Proximity features, LDA

performance features), normalized the feature values and applied

their correlation method on qualitative features as reported by

Vinayagam et al. Performing a stringent filtering procedure (see

Figure 2. Characterization of phenotypic similarity by linear discrimination. (a-c) Images of cells in which sfrp1, dvl2 or fzd7 were knocked
down, respectively. (d) First two principal components (PC 1 and PC 2) of the features for cells with knockdown of sfrp1 and dvl2. (e) First two
principal components of the features for cells with knockdown of dvl2 and fzd7. Dotted lines sketch a linear separation.
doi:10.1371/journal.pcbi.1003814.g002
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Methods), we found a precision of 0.78 and a recall of 0.51 for 93

interacting pairs.

Predicting the effect of undefined PPIs
We applied all trained SVMs (of all cross-validations) on the

features of the interactions not defined as activating or inhibiting

(Undef-PPIs) to predict their previously unknown effects. We

obtained 508 predictions for activation and 125 predictions for

inhibition with high confidence ($90%, see Methods for details).

With good confidence ($80%), we obtained 1,548 predictions for

activation and and 406 for inhibition. The results for all

predictions are given in the Supplementary Table S3 and are

provided in the database HIPPIE (see below).

Functional validation using domain annotations of the
interacting proteins domains

To test the ability of our approach to accurately identify true

activation or inhibition events, we sought for combinations of

domains in pairs of interacting proteins that were, in a textbook

fashion, likely to indicate activation or inhibition events. To do this

we first classified proteins according to the Pfam (pfam.sanger.-

ac.uk) [17] domains they contained as effectors, receptors, kinases,

phosphatases and of general signalling modules (Supplementary

Table S4 lists the investigated Pfam domains and their according

classes) permitting proteins to belong to more than one class and

also considering domains independently. For each pair of classes

we then computed the fraction of predicted activating or inhibiting

interactions that contained the pair, computed the ratio and a Chi-

Square P-value to assess the statistical significance of the

difference.

Reassuringly, significant pairs enriched in activators relative to

inhibitors correspond to several text-book interactions between

domains that are generally considered to be activating in nature.

The pairs most enriched in activators are all indicative of

activation relationships (e.g. kinase-receptor P = 9.0e-05, kinase-

kinase, P = 7.7e-05) in contrast to those enriched in inhibitors

which predominantly involve phosphatases, and which in pathway

terms are most often inhibitory (Table 1). Applying the same test

to the training set finds similar preferences (Supplementary Table

S5), though also additional relationships that are not significant in

the predictions (p.0.1). Notably the textbook effector-receptor,

receptor-kinase and kinase-kinase relationships are also favoured

among the positives and interactions with phosphatases among the

negatives. In addition, we investigated statistical enrichment using

protein annotation from Gene Ontology (www.geneontology.org).

In line, we found considerably higher significance in enrichment of

kinases for predictions of activating interactions (Act-PPIs: kinase

activity: P = 3.0E-08; Inh-PPIs: kinase activity: P = 7.8E-04). We

also tested for enrichment of phosphatase activities and found

significance only for the predictions of inhibiting activations (Inh-

PPIs: phosphatase activity: P = 1.9E-04).

Interactions with receptors give the best predictions
Because the interactions represent a broad functional survey,

we investigated the performance of our predictions for specific

subsets of the signaling pathways. Hereto, we assigned three

major (non-overlapping) sets comprising 1) receptors which are

initiating the signaling processes in the cell, 2) further, central

(highly connected) proteins in the pathways, and 3) transcription

factors as the signals’ destinations. For each of these subsets, we

selected interactions containing at least one node of these sets.

We yielded highest performance for the receptors (AUC

= 0.89). Performance was average for the set of highly

connected proteins (AUC = 0.78), and lowest for the transcrip-

tion factors (AUC = 0.59), which may reflect their promiscuous

functions.

Figure 3. a) Receiver Operating Characteristics curves for the predictions of activation. Cross-validation results for all pathways combined
(AUC = 0.75, dashed line) and when training and validation was done for each set of pathways separately (AUC = 0.82, solid line). b) Histogram of the
votes for activating PPIs (green) and inhibiting PPIs (blue) when training and validation was done for each set of major signaling pathways separately.
The thresholds for 80% confidence were set at 920 and 88 votes for activation and inhibition, respectively (dashed lines).
doi:10.1371/journal.pcbi.1003814.g003
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A clustering analysis reveals a functional similarity of a
subset of chemokine receptors

The complex network of interactions contains functional

information at multiple levels of resolution. We investigated

this network through clustering of similar effects to reveal

functional similarity of coherent subgroups. For this, the Effect

Similarity Rate (ESR) was defined estimating the concordance

of the votes of the genes in a particular interaction to other

connected proteins in the network. A high ESR score indicated

a high number of other genes that show the same activation/

inhibition predictions to both genes of the pair (for details see

Methods).

More specifically, we investigated chemokine receptors and

their signaling interactions. Chemokine receptors are cytokine

receptors and they initiate signaling to regulate the response of

a cell in diverse cellular processes including inflammation and

immune surveillance. In cancer cells, this response is often

crucially disturbed leading to aberrant signaling and finally

induced proliferation [18]. Therefore chemokine receptors

have been widely studied as potential drug targets. Chemokine

receptor signaling has mainly been described for leukocytes,

but it is also observed in epithelial cells [19] (we investigated

HeLa cells which originate from an epithelial tumour).

To elucidate the functional interplay between chemokine

receptors and their direct downstream interactors, we selected a

set of genes coding for the chemokine receptors themselves, JAK1,

JAK2, JAK3 (JAKs) and TYK2 as the receptors’ direct

downstream signaling targets activating the JAK/STAT signaling

cascade [20], G-proteins mediating PI3-kinase/AKT signaling of

chemokines (chemokine receptors are G-protein coupled recep-

tors[21]), and the SOCS family inhibiting cytokine signaling [22].

Indeed, genes with functional similarity clustered into subgroups

based on their ESR scores (Figure 4). Such a clustering was not

evident when not using our predictions (see Supplementary Figure

S3). As expected, protein pairs between SOCS and their target

groups had very low ESR reflecting their inhibiting effects. In

particular, the set of SOCS showed very high dissimilarity to JAKs

and TYK2 confirming their inhibitory role for these signaling

cascades. In contrast, genes among the set of SOCS themselves

showed very high similarity and clustered tightly together.

A subset of CCRs consisting of CCR1, CCR4, CCR8,

CXCR4 and CXCR6 (denoted as CCR-subset in the following)

showed high similarity among itself, high similarity to their

downstream interactors of JAKs and high dissimilarity to their

inhibitors of the SOCS subset. Based on the clustering in

Figure 4, we divided the set of CCRs into two subsets: the CCR-

subset and the rest of investigated CCRs (CCR2, CCR3, CCR7,

CCR9, CCR10, CX3CR1). The ESR scores of pairs within the

CCR-subset were significantly higher than the ESRs of pairs

within the other CCRs (P = 3.56E-04). Moreover, the ESR

scores of the pairs within the CCR-subset were significantly

higher than ESR scores of the pairs between the CCR-subset

and the other CCRs (P = 7.93E-04). We further validated that

that these five CCR genes form a subgroup by co-expression

analysis. We used a large set of 5,896 gene expression profiles

from microarrays (76 different studies from the CAMDA

competition, www.ebi.ac.uk/arrayexpress, accession E-

TABM-185) and compared the expression correlation of pairs

within the CCR-subset with the correlation of pairs within the

set of the other CCRs. We found a significantly higher

correlation of expression in the CCR-subset compared with

the other investigated CCRs (P = 6.08E-05) evidencing higher

functional relatedness of the CCRs in the subset. A functional

interpretation of the association between the CCR1, CCR4,

CXCR4 and CXCR6 proteins included in the identified subset

is given in Supplementary Text S1.

Availability of the data and integration into a database
We made our predictions of the interaction effects available

via the web based database HIPPIE [14]. HIPPIE collects

human PPIs from the major public PPI databases and associates

them with confidence scores reflecting their experimental

reliability. Several analysis and visualization features allow to

generate functional- and expression-specific networks and to

highlight pathway information within these networks. In

addition to the initial effect predictions on the high confidence

set of PPIs, we extended our predictions to all PPIs from

HIPPIE and added the effects of previously undefined interac-

tions to the HIPPIE database. In total we annotated 10,960 of

the 115,189 interactions currently stored in HIPPIE (version

1.5) with our effect predictions. These data can be accessed in

different ways. When the graphical output mode of HIPPIE is

chosen, the effect prediction is visually encoded by edges

terminating in either arrows (activation) or bars (inhibition)

Table 1. Pairs of Pfam domain sets showing significant* enrichment of predicted interactions.

Protein A class Protein B Class
Number of activating
interactions (of 1549)

Number of inhibiting
interactions (of 407) Enrichment P-value

effector effector 70 2 9.2 0.00012

effector kinase 44 2 5.8 0.0054

kinase kinase 158 16 2.6 7.7e-05

effector receptor 74 8 2.4 0.012

kinase receptor 178 20 2.3 9.0e-05

effector signalling 56 8 1.8 0.096

receptor receptor 134 20 1.8 0.013

signalling signalling 432 142 0.8 0.0058

kinase phosphatase 36 26 0.4 3.1e-05

phosphatase signalling 42 36 0.3 1.8e-08

phosphatase receptor 12 22 0.1 2.0e-10

*p#0.1 only; t$1 for both pos/neg - no zeroes.
doi:10.1371/journal.pcbi.1003814.t001
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(making use of Cytoscape web [23]). Alternatively, the

generated effect-associated networks can be exported into

different formats. Figure 5 gives two examples (Figure 5b

without background coloring) illustrating how to explore the

set of predicted PPIs with HIPPIE. HIPPIE can be used at

http://cbdm.mdc-berlin.de/tools/hippie (specifically, to query

the effect of a single gene pair: selecting ‘‘network query’’,

typing the two gene symbols into the empty box, selecting

‘‘show in browser – text’’, ‘‘Layers: 0’’ and ‘‘show predicted

effect’’ at ‘‘Inhibitory or activating effect’’).

Software implementation and availability
The method is implemented in a software package for R (www.

r-project.org, version 2.15.0 or higher) which runs on a Linux

machine. It is freely available at http://www.ichip.de/software/

InteractionAnalyzer.html.

Discussion

Accurately reconstructing signal transduction cascades is

fundamental for understanding the regulatory mechanisms of a

cell. In contrast to former large-scale investigations aiming at

discovery of new signal transduction interactions, our goal was to

improve the characterization of the effect of such interactions. We

investigated changes in cellular phenotypes of HeLa cells after

gene knockdown. We observed images of all possible pairs of genes

(images of single gene knockdowns) encoding the corresponding

protein partners of a PPI and predicted activating and inhibiting

effects of such a PPI by similarity and dissimilarity of the cells after

gene knockdown. For this, we set up a similarity criterion derived

from a novel concept that employs a performance feature of a

classifier (LDA) to distinguish cells of similar and dissimilar

phenotypes. Similar or dissimilar phenotypes of knocked down

Figure 4. Clustering of the chemokine receptors and their interactors.
doi:10.1371/journal.pcbi.1003814.g004
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Figure 5. Querying and visualizing inhibitory and activating interactions with HIPPIE. a) Querying HIPPIE with the IL2RB, a receptor that
transduces IL2 signals in immune response, reveals 35 interaction partners from which 24 are associated with an effect prediction (HIPPIE indicates
activations by arrows and inhibitions by bars). 11 of these effects are also found in KEGG and are correctly reproduced by our approach. 2 interactions
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gene pairs resulted in low or high performance of this classifier,

respectively. This performance feature was employed together

with an elaborated set of further features by a second set of

classifiers (SVMs) distinguishing activating from inhibiting effects.

Cross-validation showed that our approach was well suited for this

task. Applying all trained classifiers to yet uncharacterized protein

interactions, we inferred 1,954 new predictions with good

confidence ($80%) of activating (1,548) and inhibiting (406)

effects in the signaling cascades. Investigating domain-domain

interactions of these predictions showed that the textbook effector-

receptor, receptor-kinase and kinase-kinase relationships were

favoured among the interactions predicted as activating and

interactions with phosphatases among the interactions predicted as

inhibiting. These results provide strong support that the method

proposed here is effective in identifying true activation and

inhibition events. No information about protein function or

domain composition was incorporated in the predictions in any

way, but nevertheless, the approach has apparently reproduced

general textbook relationships between proteins or domains

effectively. It is highly encouraging that such relationships can

be rediscovered using information only about the cellular

phenotype and we expect that this suggests a great potential use

for this technique as more large RNAi databases become available.

For example, when using our approach for a clustering analysis of

chemokine receptors, we identified high similarity for a subset of

five chemokines including CCR4 and CXCR4 (CCR1, CCR4,

CCR8, CXCR4 and CXCR6). Interestingly, in HeLa cells, it was

shown that CXCR4 was cross-desensitized by a ligand for CCR4.

In chemotaxis, CKLF1 is an activator of CCR4, and SDF1 is an

activator of CXCR4. CKLF1 inhibits the effect of SDF1, which is

mediated by CCR4, as SDF1 can be rescued, acting as an

activator of chemotaxis after blocking CCR4 [24]. Together with

our findings of similar knockdown phenotypes of these receptors,

we suggest that both receptors may signal through very similar

downstream cascades. It would be intriguing to follow up

experimentally on this by e.g. testing such cross-desensitization

also for CCR1, CCR8 and CXCR6 employing their specific

ligands and following their signaling cascades. Further, one can

expect interesting differences when compared for different cell

types, e.g. originating from monocytes, T-cells, stern cells and

epithelial cells (as HeLa cells).

Using the ESR score yielded clustering of well defined gene

groups like JAKs/TYK, CCR, SOCS, G-proteins, and the

functional interplay of chemokine receptors to their direct

downstream interactors. The idea of ESR is that we did not

compare two sets directly but followed a guilt-by-association

concept before comparing the gene pairs. Knockdown pheno-

types just being dissimilar may not necessarily have resulted

from an inhibitory effect, but may also have resulted from loss of

rather distinct functions of the two proteins, in particular if the

proteins are involved in a complex inter-connected network with

several other proteins participating in multiple functions. This

may explain the false positives we got. In addition, an activating

or inhibiting role of a protein may be context-specific and also

rewiring of protein interaction networks can be observed under

different conditions and in different cell types. To address this,

the here described approach can be readily applied to images

obtained on different cell lines and pathological states (e.g.

cancer types), which might shape out more fine grained and

distinctive effects of disease and tissue specific protein interac-

tions. It is to note that we inferred activation and inhibition

effects leading to causal relationships, such as protein "A"

activates "B" or "A" inhibits "B". The proposed approach did

not infer directionality of the interactions. Such directionality

inference may be done using e.g. the approach of Vinayagam et
al. [25]. We used images of siRNA induced knockdown genes.

To reduce off-target effects we used data consisting of siRNA

knockdowns with two different siRNA constructs. Still, off-target

effects cannot entirely be ruled out. We compared our method

with the method by Vinayagam and coworkers published

recently [13]. Our method was superior on the data we

analyzed, in respect to the prediction performance (us: 82%

AUC, e.g. 79% precision comes along with 61% recall, in

comparison to Vinayagam et al.: 78% precision, 51% recall),

but also to the exploitation of the data (us: 100%, them: 5%). To

note, Vinayagam and coworkers’ method worked very well on

the datasets they analyzed. We plan to elaborate on the data of

the Drosophila phenotypes in a future project.

Our method is generic, in particular with respect to

characterizing the effect of protein interactions, and annotated

the activating and inhibiting effect of protein interactions for a

large set of to date non-characterized interactions. The

approach may enable to yield cell type specific effects when

applied to the specific cellular system under study. The software

and new predictions are available online at http://www.ichip.

de/software/InteractionAnalyzer.html and http://cbdm.mdc-

berlin.de/tools/hippie, respectively and are likely to reveal

interesting insights across a wide variety of datasets.

Materials and Methods

Defining the gold standard, the PPI repository for new
predictions and the sets of signaling pathways

Three (non-overlapping) sets of interactions were defined: 1)

Activation PPIs (Act-PPIs) consisted of well-known interactions

that have been described as activating. They were taken from the

literature-based data repositories of the Kyoto Encyclopedia of

Genes and Genomes (KEGG [4]), Biocarta (from Biocarta Inc.,

PPIs were retrieved from the R-package Graphite [26]) and

MetaCore (from GeneGo Inc.). 2) Inhibitory PPIs (Inh-PPIs)

comprised PPIs for which an inhibiting interaction has been

reported in the same databases. 3) Undefined PPIs (Undef-PPIs)

for which we predict an effect are listed in KEGG but have no effect assigned there (IL2, SOS1). 11 predicted effects are not annotated at all as
interactions in KEGG (FYN, HGS, IL15, IL2RG, IRS1, LCK, PIK3R1, RAF1, STAT1, STAT5A, SYK). Many of these interaction partners are, however, organized
in cytokine-related pathways and, thus, demonstrate the potential of our approach to not just reproduce KEGG annotations but also to detect novel
and meaningful interaction effects. b) We uploaded interactions for which we could predict an activating or inhibiting effect within the CCR-subset
and its direct interactors to HIPPIE (blue edges). Using the default HIPPIE output-options, HIPPIE extended the query set of interactions with
additional interactions between the input proteins. The newly added interactions are colored in grey. We also enabled the option from the HIPPIE
menu to display interaction directions as defined by KEGG. Arrows are unidirectional if the directions were known (from KEGG) and bidirectional
otherwise. HIPPIE uses diamond-shaped (grey) arrows to indicate that an interaction has associated a direction but no effect. We manually
highlighted CCRs in pink, JAKs in blue, SOCS in yellow and G-proteins in green. The depicted predictions for activation and inhibition are correct
(except for the interactions between GNGT1 and GNB3, and between SOCS1 and CXCR4): SOCS are inhibiting JAKS, CCRs, G-proteins, all other protein
pairs are activating. It is to note that in our representation, edges with two arrows (bidirectional edges) indicate that the direction of the effect is not
known. They do not indicate a bi-direction of an interaction of e.g. a simple feedback loop (in which A activates B which in turn activates A).
doi:10.1371/journal.pcbi.1003814.g005
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consisted of interactions for which there was no information in

these databases on activation or inhibition. These interactions

were taken from HIPPIE [14] and from the computationally

inferred data repository of the Search Tool for the Retrieval of

Interacting Genes and Proteins (STRING, version 9.0 [27]). We

selected putative PPIs with a STRING score $800. To select only

physically interacting protein pairs with high reliability, we

restricted the selection to protein pairs with domains predicted

to interact. For this, the corresponding genes were mapped to their

proteins for which their Pfam entries were collected using the

Sequence Retrieval System of HUSAR [28,29]. A gene pair was

added to our list of undefined PPIs if (in addition to STRING

score $800) the corresponding proteins had at least one

interacting domain as listed in the database DOMINE [30]. We

trained and validated our system with PPIs of ten major sets of

signaling pathways in KEGG: Signal Transduction, Transport

and Catabolism, Cell Motility, Cell Growth and Death, Cell

Communication, Immune System, Endocrine System, Circulatory

System, Nervous System and Development. The gene lists for

selecting the undefined PPIs were also taken from these pathways.

Segmenting the cell nuclei and calculating features for
the interaction classifiers

The analyzed knockdown images were obtained from the

Mitocheck Database (www.mitocheck.org). Generation of these

images is explained in detail elsewhere [10]. Briefly, morpho-

logical changes in the nuclei of HeLa cell clones, which were

stably transfected with the GFP-tagged histone 2B, were

tracked by fluorescence imaging after transient transfection of

siRNAs in a high-throughput screen. The cells were distributed

on cell microarrays (one well live cell imaging chambers with

coverslip bottoms) printed with transfection-ready siRNAs, and

the chromosome/nuclear morphology was visualized in real-

time. One image typically contains more than 100 nuclei with

an average diameter of approximately 30 pixels in G1 phase.

All images have a grey value depth of 16 bit and a spatial

resolution of 134461024 pixels. Each image sequence consists

of 96 time points over 48 hours. We performed segmentation

and feature extraction by using an automated image processing

system as described earlier [9]. Each single cell nucleus was

segmented by Otsu thresholding and characterized by mor-

phological descriptors, e.g. Haralick texture features, Zernike

moments, granularity features, object-and edge-related fea-

tures, grey-scale invariants, number of cells and pixels

calculated. Haralick texture features were computationally very

intensive and hence computed using Graphical Processing

Units (GPUs, see Supplementary Text S2). All features were

used to distinguish different phenotypes of cells. Each single cell

was classified into four morphological classes, consisting of

interphase, apoptosis, mitosis, and shape (cluster of cells) by

using Support Vector Machines (SVMs). The classifier was

trained to distinguish these four phenotype classes with a

training set of 621 manually annotated nuclei (details are given

in the supplement, Text S2).

Counts of each of these classes for a gene knockdown served to

calculate the first set of features (fraction features) for classifying

the protein interactions. The fractions of each phenotype were

computed with respect to the number of cells in an image for each

knocked down gene. As well, overall cell counts, median and

standard deviation of grey level intensities of the cells, were

calculated. To obtain features for a pair of knocked down genes,

we calculated the absolute value of the differences of the features

between the genes of the respective pair.

A further set of features (maxima features) was derived from the

study by Neumann and co-workers [10]. We extracted the

phenotype scores of seven morphological phenotypes from the

Mitocheck database (www.mitocheck.org). They comprised the

features mitotic delay, binuclear, polylobed, grape, large, dynamic

change, and cell death. Their scores were derived from the time

point with the maximum difference of cell counts between the

negative controls and the cells of the respective class (of one of the

seven morphological phenotypes). In addition, also the time points

for these maxima were taken as features. To obtain features for a

pair of knocked down genes, we calculated the absolute value of

the differences between the features of each gene of the respective

pair.

The LDA-performance feature was calculated by using the

classification method of linear discriminant analysis (LDA).

This analysis tried to separate cells in which the two respective

genes were knocked down. The LDA was trained on 60% of the

images for each cell knockdown, and tested on the remaining

40%. To obtain expressed phenotype information and reduce

computational time, only the last 40 time points from the entire

time series of images were used. Testing resulted in true positive

(tp), true negative (tn), false positive (fp) and false negative (fn)

predictions. From these, the accuracy ((tp+tn)/(tp+tn+fp+fn))

was derived, which served as a further similarity criterion for

the interaction classifiers. As we calculated similarity features

for all gene pairs it was necessary to further reduce the

computational complexity. We reduced the texture features by

selecting the most discriminative features. LDAs were applied

to 89,925 randomly selected gene pairs, the features ranked

according to their regression coefficients, the ranks summed up

for each feature and the 50 features (see Table S9 in Text S2)

with the highest ranks selected as representing features with the

largest regression coefficients (the threshold was selected after

initial trials).

We calculated another set of features (we denoted these as

proximity features) basing on the LDA-performance feature

and the maxima features. For the proximity-features, we

compared the similarity of each of the knocked down genes of

the gene pair to a set of reference genes. The selection of the

reference genes is described in the supplement (Supplementary

Text S3). The rational of this was that similar phenotypes of

the knocked down gene pair should lead to similar phenotypes

of each of the knocked down gene with respect to the reference

genes. This similarity was estimated using the LDA-perfor-

mance-feature and the Euclidean distance of the set of maxima

features.

Training and validation of the interaction classifiers
Based on the pairwise phenotype descriptors, we trained a set of

1,000 classifiers with the interactions of the gold standard of

activating (Act-PPI) and inhibiting PPIs (Inh-PPI). This was done

for all genes of all investigated pathways. In addition, we

performed this training and validation also for each observed

major set of signaling pathways to improve the prediction

performance (by selecting interactions of genes for which both

genes belonged to the respective major set of signaling pathway of

KEGG). To assess the performance of the classifiers, a 10-times-

10-fold cross-validation was performed and this was repeated ten

times. In each cross-validation, activating and inhibiting PPIs were

randomly split into ten equally sized, non-overlapping subsets.

Nine subsets were concatenated and used to train the classifiers.

Testing was done with the remaining subset (test set). The

performance was measured on the test set by comparing the

predictions with the true class labels. In our dataset, the sizes of the
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two classes (Act-PPI and Inh-PPI) differed considerably. There-

fore, data stratification was performed. In each training subset, ten

SVM classifiers were trained with an equal number (between 80

and 400, depending on the number of training samples of the class

with the lower number of samples of each investigated pathway-

set) of randomly selected activating and inhibiting PPIs. To

optimize the parameters for the SVM-classifiers, an inner five fold

cross-validation was embedded for each training cycle. We used

SVMs with a radial basis kernel and optimized cost of false

classification (C) and kernel width (c) employing a grid search with

C = 2n and c= 2n for n {25, 24, … 4, 5}. Each pair of C and c
was tested and the pair with the lowest validation error (the

average number of misclassified samples) was chosen and used for

training an SVM on the complete training dataset. LIBSVM [31]

was used for all SVM calculations.

To obtain performance estimates for different stringency

settings, the classifiers were combined into an ensemble and a

voting scheme was applied. 100 repetitions of the cross-validation

procedure yielded 100 predictions for each PPI of the test sets and

these were used for defining stringency. Each SVM contributed

one vote. The highest stringency was derived for predictions for

which all classifiers voted for either activation or inhibition.

Several cutoffs on the number of votes were calculated yielding a

receiver operator characteristic (ROC) curve and its area under

the curve (AUC) was used as a performance criteria. This was

done for predictions of activation and inhibition separately

(yielding two ROC curves). To predict effects for uncharacterized

interactions, all 1,000 trained classifiers were employed as an

ensemble classifier and the same voting scheme was applied. For

the list of new predictions, we selected PPIs with a confidence level

$0.8 (predicted precision $0.8 using the stratification as for the

training data, see Supplementary Text S4). For new predictions for

which both genes belonged to one of the major sets of signaling

pathways, we took the confidence level of the classifiers, which

were trained and validated on the major sets of pathways

separately (yielding cutoffs of 920 and 88 votes for activation

and inhibition, respectively), see Supplementary Tables S2a and

S2b, votes were averaged for PPIs which were part of more than

one set of major pathways). For all other predictions we used the

classifiers trained and validated on the whole gene set ($995 and

#25 votes, see supplementary Tables S2c and S2d).

Defining gene groups coding for transcription factors,
receptors and highly connected proteins

To analyze the performance on different subsets of the

signaling network, we selected genes from three different

groups: receptors, central proteins (highly connected) and

transcription factors. Receptors were selected if a gene

contained the GO term "receptor activity". After manual

refinement, we selected 256 genes coding for receptors. 38

central proteins were selected due to their highest betweenness

centrality and node degree higher than 20 of a network

constructed by the PPIs of HIPPIE [14] (version 1.5) of our

investigated gene-set. 58 human genes of the network coding for

transcription factors were assembled from Transfac and Jasper

as described in our recent study [32].

Calculating the Effect Similarity Rate
To define a similarity criterion for a clustering analysis, we

compared the effect of each of the knocked-down genes of a gene-

pair (gene i, gene j) to all other investigated knocked-down genes

(gene k). An effect was denoted similar if, for a gene pair i,j, the

votes of both gene i to gene k and gene j to gene k were in

concordance. More specifically, the threshold for a similar effect

was set to 80% confidence and therefore defined as $920 votes for

activation and #88 votes for inhibition from the classifiers that

were separately trained and validated on the major sets of

pathways; and as $995 votes for activation and #25 votes for

inhibition from the SVMs that were trained and validated on the

whole gene sets. Vice versa, if the votes from gene i to gene k

predicted activation and from gene j to gene k inhibition, the effect

was denoted dissimilar. This comparison was done for all genes k,

kM{all genes of the pathway set \ {i,j}, and the ratio of similar and

dissimilar effects was used to compute the Effect Similarity Rate

(ESR, high ESR = high number of other genes that show the

same activation/inhibition predictions to both genes of the pair).

ESR was computed from the difference of the percentage of

similar and dissimilar effects X by ESR = tanh(5X) bringing ESR

into a descriptive range between 21 and 1 (21: gene i and j are

dissimilar with respect to all other genes; +1: gene i and j are

similar with respect to all other genes).

Gene expression analysis
The gene expression data comprised datasets from the CAMDA

2007 competition (ArrayExpress, www.ebi.ac.uk/arrayexpress,

accession E-TABM-185) and was analyzed as described recently

[33]. Briefly, it contained expression values for 13,069 genes with

4,064 primary human tissue samples of 76 experimental conditions

collected from a wide range of human cancer types with normal

and disease tissue samples. The data was normalized using the

RMA method as implemented in the affy R-package (www-r-

project.org). Pearson’s correlation coefficients were computed for

each pair and condition. Finally, we used the average of

correlation coefficients of all 76 datasets as the correlation

coefficient for each pair of genes and this served to show the

similarity of these genes.

Comparing our method with a study published recently
We compared our approach to the approach of Vinayagam and

coworkers [13]. We used our sets of features (Phenotype fraction,

Maxima, and Proximity features; LDA performance feature: see

below) and employed a z-transformation to obtain significance

cuttoffs. As in Vinayagam et al., the cutoffs of 21.5 and 1.5 were

used. If z-scores were equal or larger than 1.5, the genes got the

feature ‘‘positive regulator’’, if z-scores were equal or less than 2

1.5, the genes got the feature ‘‘negative regulator’’. Positive and

negative regulators were annotated with the values +1 and 21,

respectively. Using these calculated features, a phenotype matrix

was constructed, with the genes in the rows and the phenotypes in

the columns. For an interacting protein, we classified for each

feature either a positive correlation (both +1 or both 21) or a

negative correlation (one feature value was +1 and the other one

was 21). As the LDA performance features were calculated for

pairs of genes and not single genes, they were directly transformed

into correlation features. LDA performance features were trans-

formed to z-scores and the same cutoffs used for negative and

positive regulators as for the other features. The number of positive

and negative correlations of each pair was counted. The sign score

of Vinayagam et al. was used to calculate the score of each

interacting pair. We used the same criterion as Vinayagam et al.
and selected only interacting pairs with two or more matching

features (positive and negative correlation) for validation.

Supporting Information

Figure S1 Characterization of phenotypic similarity by linear

discrimination. (a-c) Images of cells in which srfp1, dvl2 or fzd7
were knocked down, respectively. (d) First two principal compo-
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nents (PC 1 and PC 2) of the features for cells with knockdown of

sfrp1, fzd7 and dvl2. Dotted lines sketch a linear separation.

Separation of knockdown of dvl2 and fzd7 was more difficult for

the classifier (24 true predictions, 6 false predictions from the

example images shown here), compared to separating sfrp1 and

dvl2 (27 true predictions, 3 false predictions).

(EPS)

Figure S2 a) Receiver Operating Characteristics for the

predictions of inhibition. Cross-validation results for machines

that were trained and validated on all pathways combined (AUC

= 0.75, dashed line) and for machines that were trained and

validated on each set of pathways separately (AUC = 0.82, solid

line).

(EPS)

Figure S3 Clustering of the chemokine receptors and their

interactors without taking our predictions into account. The

clustering was performed as described in Methods of the main text

but using randomized predictions. To get this clustering, we

randomized the predictions and re-computed the ESR score again

using only the correct information of the annotation from the

training data.

(EPS)

Table S1 Phenotype features.

(DOC)

Table S2 Validation results of the predictions of activation and

inhibition for different thresholds.

(DOC)

Table S3 Predictions for activation and inhibition.

(XLS)

Table S4 Functional classes of the investigated domains from

Pfam.

(DOC)

Table S5 Pairs of Pfam domain sets showing significant

enrichment of interactions from the training set.

(DOC)

Text S1 Functional interpretation of the identified chemokine

subset.

(DOC)

Text S2 Segmentation, feature extraction and classification of

cell images.

(DOC)

Text S3 Identifying reference genes for the proximity features.

(DOC)

Text S4 Defining a confidence score for the new predictions.

(DOC)
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