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Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic
mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in
cranial and somitic mesoderm, but the same core regulatory network - MyoD, Myf5 and Mrf4 - executes
the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as
well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has
been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle
of DII1*%/Xi mutant mice is depleted in early fetal development, which is accompanied by a major deficit
in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear
transiently and these express MyoD. The progenitor pool in craniofacial muscle of DII1:%%* mutants is
largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive
role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously
observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial
mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little
on the homing of satellite cells. Thus, DII1 functions in satellite cell homing and Pax7 expression diverge
in cranial- and somite-derived muscle.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Approximately 60 skeletal muscle groups in the head are
necessary for swallowing, eye movement and facial expression.
Muscles of the head, the craniofacial muscles, are evolutionarily
and developmentally distinct from trunk muscles (Noden and
Francis-West, 2006; Sambasivan et al., 2011). Muscle of the trunk
and limbs derive from somites that in turn are generated from the
paraxial mesoderm of the trunk. Anterior paraxial mesoderm, also
called cranial mesoderm, gives rise to head muscles, for instance
extraocular muscles (EOM) and branchiomeric muscles (masseter
and buccinator) (Grifone and Kelly, 2007; Harel et al., 2009;
Nathan et al., 2008; Tzahor, 2009). Tongue and neck muscles are
of mixed origin, and cells from occipital somites and cranial
paraxial mesoderm contribute to their formation (Harel et al.,
2009; Theis et al., 2010). In particular, the tongue muscle is in
part derived from myogenic progenitor cells that delaminate from
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occipital somites. The delaminated cells form the hypoglossal cord,
which represents a transient chain of cells that migrate to the
anlage of the tongue (Hazelton, 1970; Huang et al., 1999; Noden,
1983).

The myogenic regulatory factors MyoD, Myf5 and Mrf4 coop-
erate to control the entry into the myogenic differentiation
program, and mutants that lack the expression of all three factors
fail to form muscle in the head and trunk (Kassar-Duchossoy et al.,
2004; Rudnicki et al., 1993). However, different transcriptional
mechanisms control expression of myogenic regulatory factors in
trunk and craniofacial muscle. In particular, Pax3/7 and transcrip-
tion factors of the Six family act upstream of myogenic regulatory
factors during development of trunk and limb muscle (Gros et al.,
2005; Kassar-Duchossoy et al., 2005; Relaix et al., 2005, 2013),
whereas Pitx2 and Tbx1 take over this role in craniofacial muscle
(Dong et al., 2006; Kelly et al, 2004; Kitamura et al., 1999;
Sambasivan et al., 2009). In addition, cranial mesoderm does not
undergo myogenesis when grafted into trunk regions, indicating
that signaling pathways that control myogenic differentiation of
somitic and cranial mesoderm are distinct (Mootoosamy and
Dietrich, 2002). Thus, regulatory hierarchies that act upstream of
the myogenic factors are different in somitic and cranial mesoderm,
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but the core transcriptional network consisting of MyoD, Myf5 and
Mrf4 is used in all skeletal muscles to execute the myogenic
differentiation program.

Satellite cells are the stem cells of the adult skeletal muscle and
are found in muscle of the trunk and head. Satellite cells can be
defined by their anatomical location between the basal lamina of
the myofiber and the fiber membrane (Mauro, 1961). A Pax7-
expressing progenitor population emerges in all muscle groups,
and Pax7 expression marks satellite cells in the head and trunk
(Gros et al., 2005; Horst et al., 2006; Kassar-Duchossoy et al., 2005;
Nathan et al., 2008; Relaix et al., 2005, 2013). Like the muscle they
associate with, satellite cells derive from different mesodermal
lineages: the Pax3* lineage of the trunk mesoderm gives rise to
satellite cells in the trunk, the Mesp1™ cranial mesodermal lineage
generates satellite cells in extraocular and branchiomeric muscle,
and the Isl1* lineage from the anterior splanchnic lateral meso-
derm generates satellite cells of branchiomeric muscles. Pax3™"
and Mesp1* lineages contribute to the satellite cells of tongue and
neck muscle (Harel et al., 2009). Satellite cells in trunk and head
muscle are also functionally different. For instance, satellite cells of
jaw muscle (musculus masseter) display delayed differentiation
and increased proliferation compared to satellite cells from leg
muscle (extensor digitorum longus) (Ono et al, 2010). When
satellite cells from extraocular muscles are transplanted into the
tibialis anterior, they form fibers and also self-renew to generate
new satellite cells. However, the new fibers produced by trans-
planted satellite cells no longer express markers specific to the
extraocular lineage (Sambasivan et al., 2009).

The Notch signaling cascade is evolutionarily highly conserved
in vertebrates and invertebrates (Artavanis-Tsakonas et al., 1999;
Kimble and Simpson, 1997; Lewis, 1998). Canonical Notch signal-
ing is activated after binding of the ligand (DII1, DII3, Jagl, Jag2
in mice) to the receptor (Notch 1-4 in mice), which results
in receptor cleavage, release of the Notch intracellular domain
(NICD) and its translocation to the nucleus. Nuclear NICD directly
interacts with the transcription factor Rbpj, and the interaction is
required to activate target genes like Hey1 and Hes1 (Jarriault et al.,
1995). Ectopic activation of Notch signaling has long been known
to suppress myogenic differentiation in cultured C2C12 cells,
primary satellite cells, and developing chick embryos (Conboy
and Rando, 2002; Delfini et al., 2000; Hirsinger et al., 2001; Kopan
et al,, 1994; Kuroda et al., 1999; Shawber et al., 1996). In particular,
Notch signaling is known to repress MyoD and induce MyoR
expression in C2C12 cells (Buas et al., 2009; Kopan et al., 1994;
Kuroda et al., 1999).

In normal muscle development, a resident pool of myogenic
progenitor cells is established in the fetal muscle, and this pool is
constantly replenished and maintained into adulthood. When
Notch signaling is ablated in mice, the progenitor pool is lost
due to uncontrolled myogenic differentiation. In particular, the
pool of myogenic progenitor cells begins to decline early in fetal
development, which is accompanied by a transient boost of
MyoD ™ myoblasts. The loss of progenitors results in formation of
tiny trunk muscle (Schuster-Gossler et al., 2007; Vasyutina et al.,
2007). Dominant-negative Maml (DnMaml) downregulates Notch
signaling by forming an inactive Rbpj complex, and expression of
DnMaml impairs fetal and adult muscle growth (Brohl et al., 2012;
Lin et al, 2013). Furthermore, in the adult mutation of Rbpj
interferes with the maintenance of quiescent satellite cells
(Bjornson et al., 2012; Mourikis et al., 2012b). We recently showed
that in trunk muscle, premature differentiation and progenitor
depletion caused by mutation of DII1, Rbpj or by DnMaml expres-
sion are rescued by an ablation of MyoD. Thus, during fetal
myogenesis a major role of Notch is to repress MyoD expression
and/or function, thereby ensuring that the progenitor pool is
appropriately maintained. Such double mutant mice can be used

as a tool to assess roles of Notch in late myogenesis. Interestingly,
rescued myogenic progenitors in the trunk are unable to assume a
satellite cell position in MyoD-rescued DII1, Rbpj or DnMaml
mutant mice. In addition, Pax7 expression is impaired in DII1;
MyoD~/~ and Rbpj;:MyoD~/~ mutants but remains unaffected in
DnMaml;MyoD~/~ animals. Expression of DnMaml attenuates
Notch signals, whereas mutation of DII1 and Rbpj strongly reduces
or eliminates it. This indicates that Pax7 expression and satellite
cell homing require different thresholds of Notch signals (Brohl
et al., 2012). Together, these data show that Notch signals do
suppress myogenic differentiation, control the colonization of the
stem cell niche and Pax7 expression in satellite cells derived from
somites.

Cranial and somitic mesodermal cells enter myogenesis and
initiate expression of myogenic regulatory factors by distinct
mechanisms. The role of Notch has been extensively analyzed in
trunk muscle development in mice, and is known to suppress
myogenic differentiation in craniofacial muscle (Mourikis et al.,
2012a; Schuster-Gossler et al., 2007; Vasyutina et al., 2007). Here
we use mouse genetics to show that in DIl mutant mice,
craniofacial myogenesis is severely perturbed. In normal develop-
ment of craniofacial muscle, a Pax7 " progenitor pool is estab-
lished and maintained. In head muscle of DII1 mutants, the Pax7*
myogenic progenitor pool is depleted in early fetal development
which is accompanied by a transient appearance of supernumer-
ary MyoD™ myoblasts. This indicates that progenitor cells differ-
entiate in an uncontrolled manner. The loss of the progenitor pool
leads to major deficits in muscle growth in late fetal development.
The additional mutation of MyoD largely rescues cranial myogen-
esis and the depletion of Pax7* progenitors. Emerging satellite
cells in cranial mesoderm-derived muscles of such DII1:<%/X;
MyoD~/~ double mutants express Pax7 and colonize the stem cell
niche. Thus, the Notch-dependent suppression of differentiation
via MyoD regulation is conserved in development of head and
trunk skeletal muscles. However, in cranial mesoderm-derived
progenitors, DII1 signaling is neither required for satellite cell
homing nor for Pax7 expression.

Material and methods
Mouse strains

The MyoD~/—, DII1**Z?, DII1® Met~/~, Rosa26"*%, Lbx1 and
Mesp1°™ strains have been described previously (Bladt et al., 1995;
Hrabe de Angelis et al., 1997; Rudnicki et al., 1992; Saga et al,,
1999; Schuster-Gossler et al., 2007; Sieber et al., 2007; Soriano,
1999). As controls, we used either heterozygous DII1%/+, MyoD*/~
or double heterozygous DIIT*/* :MyoD*/~ littermates. For lineage
tracing experiments Lbx1"¢;Rosa26%% or Mesp1<™;Rosa26 mice
on a heterozygous or homozygous Met mutant background
were used.

Immunohistochemistry, FACS and in situ hybridization

Immunohistology was performed on 12 pm cryosections of tissues
fixed in Zamboni’s fixative for 2 h. To assess muscle size, 3-6
consecutive sections of at least 3 animals/genotype/age were exam-
ined. For quantification of MyoD™ cells, at least 6 consecutive sections
of at least 3 animals/genotype/age were examined. For counting of
MyoD ™ cells, the desmin-positive area of a particular muscle group
was outlined, cells in this area were counted, and the numbers of cells/
area were determined using Image]. Variance was assessed by
determining the standard error of the mean (SEM) by using the two
sample t-test. The following antibodies were used: mouse anti-skeletal
fast myosin and rabbit anti-laminin (Sigma-Aldrich, St. Louis, USA),
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goat anti-desmin and rabbit anti-MyoD (Santa Cruz Biotechnology,
Santa Cruz, USA), rabbit anti--galactosidase (MP Biomedicals,
Santa Ana, USA) guinea-pig anti-Pax7 (Brohl et al., 2012) as well as
secondary antibodies conjugated with Cy2, Cy3, Cy5 (Dianova,
Hamburg, Germany) or with Alexa Fluor 488 and 555 (Invitrogen,
Karlsruhe, Germany). DAPI (4/,6-diamidino-2-phenylindole) (Sigma-
Aldrich) was used as a nuclear counterstain. Satellite cells were
isolated from P21 wild type mice by FACS as described (Brohl et al.,
2012).

In situ hybridization was performed essentially as described
(Brohmann et al., 2000). Tissue was either embedded into OCT
compound (Sakura Finetek, Torrance, USA) and cryosectioned, or
the embryos were fixed with 4% paraformaldehyde over night for
whole-mount in situ hybridization (Wilkinson, 1992). At least
3 animals/genotype/age were examined. Fragments amplified
from cDNA were used to generate DIG-labeled riboprobes.

gRT-PCR

Total RNA was isolated from FACS-isolated satellite cells in
three independent experiments. cDNA was synthesized using
SuperScript Il Reverse Transcriptase (Invitrogen) and PCR was
performed using Absolute qPCR SYBR Green Mix (Thermo Scien-
tific, Waltham, USA). PCR primers:

Notch1 (fw caagaggcttgagatgctcc, rev aaggattggagtcctggceat),
Notch3 (fw actgcagtgctggcgtctcttcaa, rev catcccagecgeattectca-
gtgtt),

Rbpj (fw ctcagcaagcggataaaggtca, rev gatgtaaaatgctccccactgttg),
Hey1 (fw gccgacgagaccgaatcaataaca, rev tcccgaaaccccaaactccg-
atag),

DII1 (fw gatacacacagcaaacgtgacacc, rev ttccatcttacacctcagtcgceta),
Hes1 (fw cagacattctggaaatgactgtgaa, rev cgcggtatttccccaacac),
Pax7 (fw agcaatggcctgtctcctc, rev acgtgggcaagcetgtctectg),
[-actin (fw gtccacacccgecaccagttc, rev ggectcgtcacccacatag).

RT-PCR was quantified by duplicate analysis of samples from
three animals. Relative transcript levels were normalized to
transcript levels in satellite cells of the leg. Variance was assessed
by determining the standard error of the mean (SEM) by using the
two sample t-test.

Results

Genetic analysis in mice show that myogenesis in the trunk is
repressed by Notch signaling through repression of MyoD (Brohl
et al., 2012). To analyze the role of Notch signaling during head
myogenesis, we examined components of the Notch signaling
cascade in craniofacial muscles. DII1 was strongly expressed in
developing muscle of the tongue, the cheek, and in extraocular
muscle at E11.5 (Fig. 1A and B). DIIT was also present in E18 and
P21 head muscle, as determined by qRT-PCR (Fig. 1C). We isolated
satellite cells from craniofacial muscles at P21 by FACS to further
define expression of Notch signaling components (Fig. 1D). Cytos-
pin analysis indicated that 85-90% of the isolated cells were
myogenic progenitor cells as defined by the expression of Pax7.
A small subpopulation co-expressed Pax7 and MyoD (shown for
cells from the masseter in Fig. 1E and F). Comparison of satellite
cells isolated from limbs, masseter, tongue and extraocular muscle
indicated that Notch1/3, Rbpj and Hey1 were expressed at compar-
able levels in satellite cells independent of their origin. DII1 and
Hes1 were expressed at higher levels in satellite cells from
masseter and tongue than in satellite cells from leg and extrao-
cular muscle (Fig. 1G).

We analyzed craniofacial muscle mass in DII1"*%Xi mice at E12

and E13. We observed little difference in the size and shape of
emerging craniofacial muscle groups at E12, but at E13 their
overall size was clearly reduced (Fig. 2A and B and data not
shown). The size of the masseter was strongly affected, whereas in
comparison tongue and extraocular muscles appeared little chan-
ged at this stage (Fig. 2A and B). At E18, all muscle groups were
severely reduced in size in DII1"%?X! compared to control mice
(Fig. 2C and D). In particular, masseter, buccinator and extraocular
muscles were tiny in DII1"“X mutant animals (Fig. 2D). The
tongue muscle was considerably smaller but appeared less
strongly affected than other craniofacial muscle groups (Fig. 2D).

We noted that Pax7" progenitor cells were detectable in
craniofacial muscles of control mice at E13 and E18, but they were
absent in DII71'*%X mutants (Fig. 2A-D and E-H for higher
magnifications). In addition, the number of differentiating myo-
blasts defined by expression of MyoD was transiently increased in
craniofacial muscle, but this became apparent at distinct stages in
different muscle groups. In particular, in branchiomeric muscle
MyoD " myoblasts were observable in control mice at E10.5, and
they were increased in number in DII1"*%X mutants (Fig. 3A and
B; see C for a quantification). At E11.5, similar numbers of MyoD™*
cells were present in branchiomeric muscle of control and mutant
mice (Fig. 3D and E; see F for a quantification). At E15, MyoD ™ cells
were absent in branchiomeric muscles of DII1*%*! mutants but
not in control mice (Fig. 3G and H; see I for a quantification). In
addition, the mutant branchiomeric muscle was small (Fig. 3G and
H). In the anlage of the tongue, MyoD ™" cells were absent at E10.5
in control and DII1-*%Xi mutant mice. At E11.5, MyoD* cells were
observable in control mice, and their number was increased in
DIIT*<?/Ki mutant tongues. At E15, MyoD™ cell numbers were
significantly reduced in the tongue of mutant compared to control
mice, and the size of the muscle was reduced (Fig. 3D-I). Thus,
supernumerary myoblasts appeared transiently at the expense of
progenitor cells in craniofacial muscle of DII1%X" mice. This is
very similar to the phenotype observed previously in the devel-
oping trunk muscle (Schuster-Gossler et al., 2007; Vasyutina et al.,
2007). The transcription factor MyoR participates in the control of
craniofacial myogenesis, and its expression is controlled by Notch
in C2C12 cells (Buas et al,, 2009; Lu et al., 2002). We examined
MyoR expression in DII1"?*i mutant animals by in situ hybridiza-
tion. MyoR was expressed in somites and branchial arches of
control animals and was strongly downregulated in DIl1t#/ki
mutants at E11 and E11.5 (Fig. 3]-M). MyoR expression in the
limbs and Thx1, Myf5 and Pitx2 expression in the head were
unchanged (Fig. 3]J-M, Fig. S1). We conclude that mutation of
DIIT results in an early differentiation of craniofacial progenitor
cells, i.e. a transient appearance of supernumerary MyoD* myo-
blasts at the expense of Pax7* progenitor cells. In addition, MyoR
expression was downregulated.

We noted that the tongue muscle was least affected by mutation
of DIl1. Tongue muscle derives from cranial as well as somitic
mesoderm, and we aimed to define the relative contribution of the
two lineages to assess whether the DIIT mutation might interfere
with only one lineage. To analyze this, we used lineage tracing, i.e. an
indicator strain (Rosa26 ) that expresses [3-galactosidase after Cre-
meditated recombination, as well as Lbx1 and Mesp1<™ expressed
in muscle progenitors derived from somitic and cranial mesoderm,
respectively. This analysis showed that progenitor cells from somites
and cranial mesoderm contribute to extrinsic and intrinsic tongue
muscle (Fig. 4A and B). The tyrosine kinase receptor Met is required
for delamination of muscle progenitor cells from somites (Bladt et al.,
1995; Dietrich et al., 1999). Lbx1“*-dependent lineage tracing on a
Met~/~ mutant background demonstrated a complete absence of
B-gal*t cells in the tongue (Fig. 4C), verifying that Lbx1"® marks the
somitic lineage that depends on Met for migration. In addition, the
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Fig. 1. Notch signaling in craniofacial muscle satellite cells. (A) In situ hybridization using a DII1 probe demonstrates the expression of DII1 in the developing craniofacial
muscle at E11.5. (B) Anti-desmin immunohistology was used to define the exact location of craniofacial muscle groups. Branchiomeric muscle (arrow), extraocular muscle
(arrow head), and tongue muscle (asterisk) are indicated. (C) Quantification of DIIT mRNA isolated from tibialis anterior (black), masseter (grey), tongue (blue) and extraocular
muscle (green) at E18 and P21 by qRT-PCR. mRNA isolated from P21 pancreas was used as a negative control. (D) FACS analysis of muscle cells using antibodies directed
against Vcam-1, CD31, CD45, and Scal. The gate used to isolate cells is indicated. (E,F) Immunohistological analysis of sorted satellite cells that were cytospun after isolation
and stained using anti-Pax7 and anti-MyoD antibodies as indicated. Nuclei were counterstained with DAPI. (G) qRT-PCR analysis of various components of the Notch
signaling pathway in FACS-isolated satellite cells from different muscle groups. Relative gene expression levels in satellite cells from leg (black), masseter (grey), tongue
(blue) and extraocular muscle (green) are shown. Error bars, SEM. Statistical significance is indicated (*p < 0.05; **p < 0.01; **p < 0.001). Scale bars: 300 um in (B), 50 pm

in (F).

extrinsic tongue muscle was present and was little changed in size,
indicating that somite-derived cells contribute a minor proportion of
cells to this muscle. Mesp1“-dependent lineage tracing on the Met
mutant background demonstrated that residual muscle and myo-
genic progenitors in the tongue of Met mutants indeed derive from
cranial mesoderm (Fig. 4D). In summary, cranial- and somite-derived
mesoderm contributes to both, intrinsic and extrinsic tongue muscle.
However, the majority of the extrinsic tongue muscle derives from
cranial mesoderm, whereas the hypoglossal cord contributes most
precursors to the intrinsic tongue muscle. The DIIT mutation affects
both, ex- and intrinsic tongue muscle groups, and impinges thus on
development of progenitor cells that derive from somitic and
craniofacial mesoderm (cf. Fig. 2C and D).

We next tested whether craniofacial muscle development in
DII1*%%i mice is rescued by MyoD ablation. Compared to DII1-%%Xi
mice (Fig. 5A), the size of craniofacial muscle groups was markedly
increased in DII1'#Xi:MyoD~/~ mutants (Fig. 5B). Overall, cranio-
facial muscle size was indistinguishable in DII1**#%::MyoD~/~ and
MyoD~/~ mutants (Fig. 5C). Thus, the absence of MyoD rescued the
deficits in growth of craniofacial muscle caused by mutation of DIl1.
This indicates that a major role of Notch during fetal myogenesis is
to repress MyoD expression and/or function, thereby ensuring that
the progenitor pool is appropriately maintained. However, MyoR
expression was not restored (Fig. S2).

We also defined the number of Pax7" progenitor cells associated
with cranial mesoderm-derived muscles in DIl1“““%" and MyoD-rescued
DIIT“%% mice (Fig. 5D-H). Pax7* cells were detectable in all cranial
mesoderm-derived muscles groups of DI1¥#X:MyoD~/~ but not
DIIT““¥ mutants (Fig. 5E-E”, F=F"). It should be noted that craniofacial
muscles of MyoD*/ ~ mutants contain supernumerary Pax7* progenitor
cells compared to control mice, and we therefore compared in subse-
quent experiments DIlT*““Y:MyoD~/~ and MyoD~/~ mutants (Fig. 5G-G

"). In the masseter, numbers of Pax7* progenitor cells in the DII7“Z;
MyoD~/~ and MyoD~/~ mutants were similar (Fig. 5H). The overall size
of intrinsic and extrinsic tongue muscle was rescued in DIl1<“<:MyoD~/
~ mice. However, we detected only few Pax7" cells in the intrinsic
tongue muscle, ie. in the part of the muscle derived from the somite.
Pax7" cells were however abundant in the extrinsic tongue muscle, ie.
the part derived from cranial mesoderm (Fig. 5A-C; see 5H for a
quantification of Pax7* cells in the extrinsic tongue muscle). The rescue
of the progenitor pool in extraocular muscles was extensive but not
complete (Fig. 5H”). In conclusion, the loss of the muscle size and the
progenitor pool caused by mutation of DII1 in cranial mesoderm-derived
muscles is substantially rescued by MyoD ablation.

Satellite cells are defined by their anatomical position, i.e. they
locate between the basal lamina and the sarcolemma of muscle
fibers (Mauro, 1961). We quantified the proportion of Pax7™"
progenitor cells below the basal lamina and in the interstitial
space (Fig. 6). In control animals at E18, the majority of muscle
progenitor cells in cranial mesoderm-derived muscles are located
below the basal lamina (87%, 85%, 80% in the masseter, extrinsic
tongue muscle and EOM, respectively), and the remainder resides
in the interstitial space (Fig. 6A-A"). In DII1**?X mutants, Pax7*
cells were very rare (Fig. 6B-B”). In MyoD~/~ mutants, the overall
numbers of Pax7" cells were increased, and many of the super-
numerous cells located to the interstitial space (Fig. 6C-C"). In
particular, the proportion of cells below the lamina decreased
(63%, 65% and 69% in the masseter, extrinsic tongue muscle and
EOM, respectively; Fig. 6F). This indicates that interstitial myo-
genic progenitors are stabilized by the mutation of MyoD (cf. Brohl
et al,, 2012). In rescued DII1%Xi:MyoD~/~ mice, very moderate
changes in the proportion of cells located below the lamina were
observed (63%, 51% and 45% in the masseter, extrinsic tongue
muscle and EOM, respectively; Fig. 6F). This contrasts the severe
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Fig. 2. Disrupted muscle growth and loss of Pax7* progenitors in craniofacial
muscle of DIIT mutants. (A-D) Immunohistological analysis of control and DII1-%7Xi
mutant mice at E13 (A,B) and E18 (C,D) revealed a decrease in muscle size and a loss
of Pax7* progenitors; muscle and myogenic progenitor cells in the head are
visualized by anti-myosin (red) and anti-Pax7 (green) antibodies. DAPI (blue) was
used as a counterstain. (E-H) Higher magnification of the masseter at E13 (E,F) and
E18 (G,H). Arrow, arrowhead and asterisk indicate masseter, extraocular and tongue
muscle. Scale bars: 300 pm in (B), 500 ym in (D), 50 pm in (EH).

homing deficit of emerging satellite cells that we observed in
trunk muscle (Fig. 6G,H; cf. Brohl et al., 2012). We conclude that
DII1 signaling impinges little on satellite cell homing in cranial
mesoderm-derived muscles.

Discussion

Cranial and trunk muscles are evolutionarily distinct and for
instance they vary in the expression of skeletal muscle specific
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Quantification of MyoD* cells/1 mm? cells in branchiomeric (C,FI) and ;tongue muscle
(EI). Branchiomeric muscle was small at E15 and MyoD* cells were absent.
(J-M) Whole-mount in situ hybridization using a MyoR-specific probe on
control and DIT“?% mice at E11 (JK) and E11.5 (LM). Error bars, SEM.
Statistical significance is indicated (*p < 0.05; **p < 0.01; **p < 0.001; n.s., not signifi-
cant). Arrow and asterisk indicate branchiomeric muscle and tongue muscle. Scale bars:
200 pm in (A,D), 500 pm in (G), 1 mm in (J).

protein isoforms. This might account for the fact that myopathies
can differentially affect muscle groups in the head and trunk.
Furthermore, the regulatory network that governs expression of
myogenic regulatory factors differs in trunk and craniofacial
muscle (Dong et al., 2006; Kelly et al., 2004; Kitamura et al.,
1999; Rudnicki et al., 1993; Sambasivan et al.,, 2009; Tajbakhsh



312 M.T. Czajkowski et al. / Developmental Biology 395 (2014) 307-316
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Fig. 4. Mixed origin of tongue muscle progenitor cells. Lineage tracing using Lbx1¢;R0sa26"** and Mesp1<;Rosa26"*“ in a control (A,B) and Met/~ mutant background
(C,D). Cells in the tongue that derive from the hypoglossal cord express p-galactosidase in (A,C) and are shown in red. Cells that derive from cranial mesoderm express
p-galactosidase in (B,D) and are shown in red. Analysis was performed on E13 embryos, and anti-myosin antibodies were used to stain differentiated muscle (green).

In—intrinsic tongue muscle, Ex—extrinsic tongue muscle. Scale bar: 500 pm.

et al, 1997). Notch signaling suppresses the entry into the
myogenic program in trunk muscle, but the function of Notch in
craniofacial myogenesis has been little investigated. We show here
that the progenitor pool in craniofacial muscle of DII1%“%*i mutant
mice is depleted early, which is accompanied by a transient
appearance of supernumerary differentiating cells. The depletion
of the pool is largely rescued by the additional mutation of MyoD.
We conclude from this that Notch exerts a decisive role in
craniofacial myogenesis by suppressing progenitor cell differentia-
tion via regulation of MyoD. This function is similar to the one
observed previously in trunk myogenesis, and is thus conserved in
head and trunk muscle development. However, other Notch
functions differ. In particular, homing of emerging satellite cells
and Pax7 expression in progenitor cells do not depend on DII1
signaling in cranial mesoderm-derived muscle.

Notch signaling and MyoD

In DII1%?/Xi mice, masseter and extraocular muscles were very
small and lacked Pax7* progenitor cells at E13 or E18. The tongue
muscle, which originates from both, occipital somites and head
mesenchyme, lacked Pax7* cells and was reduced in size but was
less strongly affected than other craniofacial muscles. We conclude
that due to the lack of myogenic progenitor cells, fetal muscle
growth is severely impaired when DII1 is mutated.

Notch signaling suppresses myogenic differentiation both in vivo
and in vitro (Bjornson et al., 2012; Conboy and Rando, 2002; Kopan
et al,, 1994; Kuroda et al., 1999; Mourikis et al., 2012b; Schuster-

Gossler et al,, 2007; Shawber et al., 1996; Vasyutina et al., 2007).
Several molecular mechanisms by which Notch mediates this were
discussed (Buas and Kadesch, 2010). We found that ablation of
MyoD in DII1"%Xi mutants rescued the deficits in growth of all
craniofacial muscles, indicating that the major function of Notch in
craniofacial myogenesis is to repress MyoD. This mechanism is thus
conserved in head and trunk muscle (this work and (Brohl et al.,
2012).

Notch signals, Pax7 expression and homing of emerging satellite cells

In trunk muscle derived from the somites, myogenic progenitor
cells were rescued in DII1"%“Xi:MyoD~/~ mice, but these progeni-
tors no longer expressed Pax7 and their identification relied thus
on the use of other additional markers like Pax3 (Brohl et al.,
2012). Similarly, we observed only rare Pax7 " cells in the rescued
intrinsic tongue muscle, which is largely generated from somites.
In contrast, in other cranial muscle groups Pax7* cells were
abundant in DII1%%¥i:MyoD~/~ mice, indicating that Pax7 expres-
sion is Notch-independent in cranial mesoderm-derived progeni-
tor cells. We conclude that Pax7 expression is differentially
controlled by Notch in progenitor cells that derive from cranial
and trunk mesoderm.

Satellite cells locate below the basal lamina of muscle fibers.
The lamina starts to appear around E15.5, and emerging satellite
cells are first detectable at this stage (Brohl et al., 2012). We show
here that DIlI1 signals impinge little on homing of satellite cells in
head muscle. In trunk muscle of DI1%¥X:MyoD~/~ mutants,
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Fig. 5. Rescue of muscle progenitors in DIl1 mutant mice by additional mutation of MyoD. (A-C) Immunohistological analysis of craniofacial muscles in DII1:%%i (A), DIl1*<%/
Ki-MyoD~/~ (B) and MyoD~/~ (C) mice at E18 using DAPI (blue) and antibodies against myosin (red) and Pax7 (green). Note the marked increase in the size of the muscle in
DII1*<?/Xi-pMyoD~/~ compared to DII1"“?/Ki mice. In—intrinsic part of the tongue, Ex—extrinsic part of the tongue. (D-G) Analysis of Pax7* cells (green) in masseter (D-G),
extrinsic tongue (D’-G’) and extraocular (D"-G") muscle at E18 of control, DII1"*%Xi Dil1**ZXi-\fyoD~/~ and MyoD/~ mice. (H-H") Quantification of Pax7* cells/100
myofibers in masseter (H), extrinsic tongue (H’) and extraocular (H”) muscle. Error bars, SEM. Statistical significance is indicated (*p < 0.05; **p < 0.01; ***p < 0.001). Scale
bars: 500 pm in (A), 50 pm in (D).
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Fig. 6. Homing of emerging satellite cells in cranial mesoderm-derived muscles is independent of DII1. (A-D) Location of emerging satellite cells in their niche was analyzed
in different cranial mesoderm-derived muscle groups of control (A-A"), DII1:%/Xi (B-B"), MyoD~/~ (C-C”) and DII1"*%Xi:MyoD~/~(D-D") mice at E18. The analysis was
performed by immunohistology using anti-laminin (green) and anti-Pax7 (red) antibodies. Pax7 " cells located below the basal lamina (arrows) and in the interstitial space
(arrowheads) are indicated. (E-E”) The number of Pax7* progenitor cells located below the basal lamina was quantified in the different cranial mesoderm-derived muscle
groups as number of cells/100 myofibers. (F) Quantification of the proportion of Pax7* cells that locate below the basal lamina in cranial mesoderm-derived muscles. (G,H)
Location of emerging Pax3* satellite cells in back muscle of MyoD~/~ (G) and DIl1**%i:MyoD~/~ (H) mutant mice at E17.5. Arrows and arrowheads point toward emerging
satellite cells located below the basal lamina and in the interstitial space, respectively. Error bars, SEM. Statistical significance is indicated (*p < 0.05; **p < 0.01; **p < 0.001;
n.s., not significant). Scale bars: 5 pm.
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Fig. 7. Notch functions in craniofacial and trunk myogenesis. Distinct functions of DII1 signals in cranial mesoderm-derived (left) and somite- derived (right) muscle. DIl1-
dependent suppression of differentiation via MyoD regulation is conserved in all skeletal muscle groups. However, in cranial mesoderm-derived progenitors, DIl1-signaling is
neither required for satellite cell homing nor for Pax7 expression.
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progenitor cells fail to assume a satellite cell position (Brohl
et al,, 2012). We conclude that DIl1 signaling differentially affects
colonization of the satellite cell niche in head and trunk muscle
(see Fig. 7 for a summary of Notch functions in craniofacial and
trunk myogenesis).
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