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Abstract

Introduction: The diagnostic potential of optical coherence tomography (OCT) in neurological diseases is intensively
discussed. Besides the sectional view of the retina, modern OCT scanners produce a simultaneous top-view confocal
scanning laser ophthalmoscopy (cSLO) image including the option to evaluate retinal vessels. A correct discrimination
between arteries and veins (labeling) is vital for detecting vascular differences between healthy subjects and patients. Up to
now, criteria for labeling (cSLO) images generated by OCT scanners do not exist.

Objective: This study reviewed labeling criteria originally developed for color fundus photography (CFP) images.

Methods: The criteria were modified to reflect the cSLO technique, followed by development of a protocol for labeling
blood vessels. These criteria were based on main aspects such as central light reflex, brightness, and vessel thickness, as well
as on some additional criteria such as vascular crossing patterns and the context of the vessel tree.

Results and Conclusion: They demonstrated excellent inter-rater agreement and validity, which seems to indicate that
labeling of images might no longer require more than one rater. This algorithm extends the diagnostic possibilities offered
by OCT investigations.
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Introduction

Optical coherence tomography (OCT) has come to be used

increasingly to evaluate retinal degenerative changes involved in

neurological diseases. Developed in the 1980s [1], today’s modern

spectral domain (SD) OCT scanners produce detailed cross-

sectional and 3D-images of the eye. Thinning of the retinal nerve

fiber layer (RNFL) measured by OCT has been widely described

in patients with multiple sclerosis (MS) and MS-related optic

neuritis [2–5]. Furthermore, some other neurodegenerative

diseases, such as dementia, spinocerebellar ataxia or Parkinson’s

disease, were found to be associated with reduced thickness of the

RNFL in SD-OCT scans [6–8], while others, such as amyotrophic

lateral sclerosis, were not [9].

It is under discussion whether OCT has the potential to become

a noninvasive, reproducible test for assessing axonal degeneration

and whether it might be used as a valuable tool for measuring the

therapeutic efficacy of potential neuroprotective agents [10]. This

suggestion is based on the observation that retinal and cerebral

atrophy are correlated [11–13].

In addition to RNFL thickness parameters, modern SD-OCT

scanners provide additional information like confocal scanning

laser ophthalmoscopy (cSLO) with infrared (IR) imaging. Addi-

tionally, the development of the eye tracker, which allows

simultaneous investigation of the eye with two laser beams,

ensures less eye-motion artifacts and highly comparable longitu-

dinal examinations with reduced error rates.

Developments such as the ones outlined above enable us to

collect a large number of data in a single examination, thus

opening the door for multimodal examination of many neurolog-

ical diseases.
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Combining different technical approaches in a single investiga-

tion has numerous advantages:

– From the viewpoint of patients: combined confocal scanning

laser ophthalmoscopy and optical coherence tomography is

a non-radioactive examination that can be performed in less

than 20 minutes. In this context, papillary dilation is no

longer required to ensure high-quality results. The burden of

OCT investigations on the patient is low, resulting in a high

acceptance rate for longitudinal investigations.

– From the economic viewpoint: Compared to MRI scans,

this approach can be handled with much less costly

equipment and staff while also being faster.

– From the viewpoint of research, in particular: multi-

modality imaging opens the research spectrum and links

different views on a particular disease.

Recently, consensus criteria for retinal OCT quality assessment

(OSCAR-IB) have been published to increase the comparability

and improve the quality management of OCT-images [14].

The main parameter analyzed in most studies is RNFL

thickness, whereas lesser attention is paid to the retinal blood

vessels. cSLO IR-imaging, however, is always combined with a

OCT scan, which facilitates collection of additional information

not only in patients with vasculopathy.

So far, there are no reliable and valid criteria for labeling blood

vessels in cSLO IR-images recorded by OCT-scanners. Up to

now, studies which describe labeling of retinal blood vessels refer

to classical color fundus photography (CFP) images only.

A review of the ophthalmological literature yielded criteria

originally developed for automatic analysis of CFP [15,16]. As a

result of their shared embryology, cerebral and retinal blood

vessels share similar anatomical and physiological properties. In

the recent past, the eye, the ‘‘window to the brain’’, was used to

investigate different neurological diseases. Changes in retinal

vessels were detected in the context of many neurological diseases

such as Alzheimer’s disease or neuromyelitis optica [17,18].

Especially for Alzheimer’s disease, retinal vascular image analysis

was described as a potential screening tool. These examples

demonstrate the huge potential of retinal blood vessels examina-

tion for detecting preclinical diseases and for evaluating clinical

courses.

The aim of this study was:

1. to develop reliable and valid criteria for labeling retinal blood

vessels in cSLO IR-images,

2. to investigate whether the criteria defined for automatic

analysis of CFP can also be applied for cSLO IR-images,

3. to propose standard operating procedures for further studies in

neurological diseases.

The study was comprised of three portions:

(1) an exploratory part, (2) an adaptation of the criteria based on

the initial results, and (3) a validation study comparing the results

with CFP.

Exploratory Study

Subjects
273 blood vessels in both (14) eyes of 7 healthy volunteers (6

males, mean age 50.9613.9 years) were labeled by two

independent raters (CE, JM).

All subjects had normal visual acuity (20/20), normal visual

fields and no ocular, metabolic or neurological diseases. The whole

study was conducted according to the principles expressed in the

Declaration of Helsinki. The institutional review board of the

ethics committee of the University of Berlin, Charite, approved the

study with volunteers. Participants provide their written informed

consent on a standardized informed consent form approved by

ethics committee.

Methods
Retinal images were obtained using combined cSLO and SD-

OCT imaging (Spectralis, Heidelberg Engineering, Software:

Heidelberg EyeExplorer version 1.7.0.0) with the eye tracking

function enabled.

Using automated eye tracking and image alignment based on

cSLO images, the integrated software can be used to average a

variable number of single images in real time (Automatic Real

Time [ART] Module; Heidelberg Engineering), which signifi-

cantly improves image quality. Furthermore, this technique

ensures reliable follow-up measurements, as scans are recorded

at exactly the same position as the baseline scan.

The IR-images were pseudonymized, exported by Heidelberg

EyeExplorer, and uploaded to an ImagJ-Plugin for measuring

vessel diameter (http://neurodial.de). Afterwards, blood vessels

were labeled in cSLO images.

The inter-rater agreement between the two raters was measured

using Cohen’s kappa coefficient. According to Landis and Koch,

strength of agreement was rated as poor (,0.00), slight (0.00–

0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–

0.80), or almost perfect (0.81–1.00) [19,20].

Test criteria
Criteria formerly reported in the literature, which had been

developed for an automatic analysis of fundus images, were

reviewed and eight criteria were selected for the exploratory

analysis of the vessels and weighted equally to each other:

1. The central light reflex is wider in arteries and smaller in veins

[15,16].

2. Arteries are brighter than veins [15], veins appear darker and

deeper than arteries [16].

3. Arteries and veins alternate near the optic disc [15,16].

4. Arteries are 30% thinner than neighboring veins [15].

5. Arteries never cross arteries and veins never cross veins [16].

6. The angle between crossing vessels is almost 90u, and angles

between outgoing vessels are between 30u and 45u [16].

7. Vessels should be seen in the context of the vessel tree [15].

8. Arteries take a straighter course than veins [16].

The raters labeled vessels with ‘‘A’’ for artery, ‘‘V’’ for vein and

‘‘U’’ for unknown.

Results
The inter-rater agreement of the exploratory study showed a

kappa of 0.602. The two raters marked 20.5% or 38.8% of 273

vessels as unknown. The disagreement-rate was 27.5%.

Interpretation
The exploratory study showed a high rate of unknown vessels

and substantial inter-rater agreement (k= 0.602). There was a

strikingly high difference between the raters for vessels labeled

‘‘unknown’’.

On the one hand, the main branches and bigger vessels were

clearly labeled and the labeling left no space for interpretation. On

the other hand, there are many vessels which leave some leeway

Vessel Labeling in OCT: Criteria for Blood Vessel Discrimination

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e102034

http://neurodial.de


for interpretation. The smaller the vessels were, the harder clear

labeling became (figure 1).

The results of this pre-test demonstrated the need to rate the

criteria and to modify them. Originally, the criteria had been

established for an automatic analysis of CFP images. Consequent-

ly, they needed to be adapted to the nature of cSLO IR-images.

The images generated by OCT scanners are black and white

pictures, and the relevant criteria did not seem to be transferable

on a 1:1 basis.

Test Modification
In view of the above, our next step was to develop an algorithm

for labeling blood vessels which could not be identified clearly. A

non-hierarchical application of the criteria in the exploratory study

was followed by a weighting of the criteria in a consensus meeting

which included all authors from Münster. Decisions were based on

the initial results, on anatomical and physiological facts, and on

the different technical features of the OCT and cSLO IR-Images.

Main criteria
We defined two categories of criteria: main and additional

criteria. Main criteria were based on anatomical or physiological

correlates.

1. ‘‘The central light reflex is wider in arteries and smaller in

veins.’’

1. Originally, this criterion was based on fundus images produced

via the red channel mode, a special mode with colored filters in

which veins show larger vessel edges and bigger color

differences between the edge and the reflection zone in the

middle of the vessel. In contrast, arteries appear lighter than

veins (figure 2) [15].

1. The reason for the varying size of the light reflex is the

difference of the vessel walls of arteries and veins. The central

light reflex (CLR), which is caused by light reflection from

vessel surfaces, is a phenomenon which was first observed in

images produced by light of a 600 nm wavelength [21,22], but

is also seen in 820 nm cSLO IR-images.

1. Moreover, arteries have solid walls built by the tunica media,

the middle layer of an artery wall. They are rich in muscle

fibers and reveal more reflection compared to the vessel wall of

veins. Veins show loosely packed vessel walls and the three

layers of the wall, tunica intima, tunica media and tunica

externa, merge with each other [23].

2. ‘‘Arteries are brighter than veins.’’

2. The brightness of arteries is also caused by the oxygen-enriched

blood transported by them [15,21]. This effect also shows in IR

images [21].

2. In contrast, the lumen of veins appears darker due to the

circulation of deoxygenated blood (figure 3). In contrast to the

first criterion, this criterion describes the brightness of the reflex

rather than of its expansion (wider versus smaller).

3. ‘‘Arteries are up to 30% thinner than veins.’’

3. Because of the lower blood pressure, veins have bigger cross

sections than their corresponding arteries. This is explained by

the Hagen-Poiseuille equation (DP = 8mLQ/pr4). The volu-

metric flow rate (Q), the length of the pipe (L) and the dynamic

viscosity (m) do not change, which means that the cross section

(r) will increase along with a decreasing blood pressure

(figure 4).

3. In this context, it should be noted that the main criteria apply

for vessels on the same level only and that comparing vessels in

the periphery of a 30u image with vessels in the center close to

the optic disc, or vessels leaving the upper half of the optic disc

with vessels in the lower half is not acceptable in view of the

fact that the vessels change their morphology in their course

(becoming smaller or bigger) and because the illumination

differs depending on the various parts of the image. In the

cSLO image, three rings around the optic disc ensure

consistent eccentricity for each vessel when grading it (figure 5).

Furthermore, the three rings were created to be used by an

upcoming automatic vessel analyzing software.

Additional criteria
Additional criteria are based on the experience of ophthalmol-

ogists and the raters’ assessment. Their anatomical or physiological

correlations are not as clear as for the main criteria.

1. ‘‘Arteries and veins alternate near the optic disc.’’

1. Near the optic disc, an artery runs next to a vein and vice versa.

This means that an artery is surrounded by two veins and that

a vein is surrounded by two arteries. It seems to be a very

efficient differentiation criterion, because one labeled vessel is

enough to specify the neighboring vessels.

1. The blood vessels in the periphery, however, do not strictly

follow this rule—it only applies before blood vessels begin to

branch out. In cSLO IR-images, the center of the optic disc is

often outshined. Consequently, the blood vessels are indistin-

guishable. Furthermore, very small blood vessels do not show

the typical CLR or variance of thickness and brightness

(figure 6). Using this criterion alone could therefore lead to

errors comparable to those produced by a frameshift mutation:

all subsequent vessels would be labeled incorrectly.

2. ‘‘Arteries never cross arteries and veins never cross veins.’’

2. This criterion underlines that if two blood vessels cross each

other, the darker one must be the vein and the lighter one the

artery [16].

Figure 1. Vessels 1 (v1) and 2 (v2) are larger than vessel 3 (v3)
and 4 (v4). V1 is an artery, v2 is a vein, v3 and v4 cannot be allocated
clearly.
doi:10.1371/journal.pone.0102034.g001
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3. ‘‘Vessels should be seen in the context of the vessel tree.’’

3. The idea of this criterion is to follow the course of vessels and

find branchings. If a vessel can be labeled before the branching,

it helps to determine the vessel parts after the branching;

therefore unequivocal labeling of the part before the branching is

absolutely necessary.

4. ‘‘Arteries take a straighter course than veins.’’

4. This observation is frequently cited and plausible in view of the

physiological function of the arteries and veins. Veins drain the blood

from wide tissue areas and a winding course will support this function.

4. For the rater, the aforestated rule leaves room for interpretation and

therefore does not seem very reliable. Moreover, blood vessels near

the optic disc, whether veins or arteries, generally tend to have a

straight course. This is why the difference in straightness between

arteries and veins might not be very pronounced in this region.

5. ‘‘The angles between crossing vessels are almost 90u, whereas the

angles between outgoing vessels range between 30u and 45u.’’

5. Although this rule is found in the literature [16] and although

examples for this case could be observed, our exploratory study

often yielded deviation from this rule.

Based on the results of our exploratory study and the

considerations indicated above, we reassessed the criteria in an

attempt to answer the following questions:

1) Are the main criteria correct? How much of them are

required for an unequivocal identification of a blood vessel?

2) How are the additional criteria to manage?

a. a. Are additional criteria helpful if the main criteria are not adequate?

b. b. Which additional criteria are correct and which are not?

c. c. How many of the additional criteria are required for correct

labeling without using the main criteria?

3) Is the validity of the test impacted by modifying the test

criteria?

To answer this questions, we developed a workflow for the main

study:

N All vessels were reviewed using all main criteria. These were

treated as equal.

N If unambiguous labeling based on the main criteria was

impossible or if the main criteria were not detectable, the

additional criteria were applied.

Main Study

Subjects
In the main study, 24 eyes from 12 healthy volunteers with 462

labeled vessels were investigated by two independent raters (JM,

CE) (7 males, mean age 41.25613.23).

The inclusion criteria for the subjects were: normal visual acuity

Figure 2. The artery shows a reflection-zone extending from
the optic disc to the periphery of the retina. The reflection of the
vein cannot be traced to the periphery. Compared to the venous cross
section, the reflection is smaller. The venous vessel wall appears thicker.
doi:10.1371/journal.pone.0102034.g002

Figure 3. The darker vessel is a vein, the brighter an artery.
doi:10.1371/journal.pone.0102034.g003

Figure 4. An example of the difference in size can be observed
between vessel 1 and vessel 2. V1 is an artery, v2 is a vein.
doi:10.1371/journal.pone.0102034.g004
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(20/20), normal visual field and no ocular, metabolic or

neurological diseases.

Methods
cSLO IR-Images were obtained and labeled as in the

exploratory part of the study. All volunteers were examined by

an ophthalmologist (FA). CFP imaging was performed using a 30u
lens focused on the macula (Visucam, Carl Zeiss Meditech, Berlin,

Germany). Photographs were viewed in the Zeiss Visupac 4.2.

software (Carl Zeiss Meditech, Berlin, Germany). The vessels in

these fundus images were labeled by the ophtalmologist and used

as reference for the labeling of the cSLO IR images. Hand-

labeling is an established method for finding a baseline [24].

The two cSLO-raters were blinded regarding the results of the

CFP.

The criteria were used in the sequence indicated above until

unequivocal labeling of the vessels became possible, starting with

the main criteria and then using additional criteria, if needed. The

number of criteria we applied ranged between one and eight. Each

vessel was evaluated applying all main criteria supposing an equal

status between the main criteria.

All steps of labeling were documented.

Moreover, using a two point system, we rated the image quality

of all vessels as excellent (two points), medium (one point) or

insufficient (zero points).

N picture sharpness: 1 point

N identifiability of the lumen of the vessel: 1 point

These ratings served to roughly reflect the cSLO picture quality.

Cohen’s kappa was used to measure ‘‘inter-rater agreement’’

between the two raters to assess test reliability.

In the next step, we compared labeled cSLO IR-images and

labeled CFP. If the two raters’ results were identical, we compared

them to the ophtalmologist’s as reference. Analysis was performed

by a fourfold table, chi-squared test and calculation of kappas to

obtain a ‘‘test reference agreement’’. The test-reference agreement

describes the agreement between our new test and the ophthal-

mologist’s as reference. If the two raters (CE, JM) results were not

identical, they were declared as a disagreement.

Cohen’s kappa was used to measure a test reference agreement

between the result of the test and the ophthalmologist’s.

Additionally, Pearsons’s chi-squared test and Fisher’s exact test

were used to recognize potential correlations.

Results
Inter-rater testing. In the first step, the reliability of our test

was determined. The test reached a kappa of k= 0.840 by labeling

462 vessels. In our control sample, the disagreement-rate between

the test and the ophthalmologist’s results was 8%. In 1.5% of the

cases, vessels were labeled as unknown.

Inter-rater agreement in the main study was better than inter-

rater agreement in the exploratory study (Kappa exploratory

study: 0.602).

Our exploratory study revealed the difficulties involved in

labeling smaller vessels in particular, since the three main criteria

often were not applicable for these vessels.

To analyze the quality and the newly established hierarchy of

the revised criteria, all vessels were subdivided into two groups to

which the following criteria apply:

N 1st choice: The vessel is labeled based on two or three main

criteria (MC). Complementary use of one to five additional

criteria (AC) is possible, but not mandatory. ($ 2MC + X AC)

N 2nd choice: The vessel is labeled based on one or less (zero)

main criteria. Complementary use of one to five additional

criteria is possible, but not mandatory. (# 1MC + X AC)

The above classification was selected based on the assumption

that the main criteria were the most important ones (heuristic

method).

The first and second groups were compared in a fourfold table

(table 1).

Pearson’s Chi-squared test and Fisher’s exact test revealed a

highly significant (p,0.001) difference between the groups and

inter-rater agreement.

The Chi-squared test revealed a very high correlation between

the use of first-choice criteria and inter-rater agreement. Also, we

were able to demonstrate that application of second-choice criteria

correlates with poorer inter-rater agreement.

To clarify this observation, kappa coefficients were calculated

for the first- and second-choice groups separately:

Inter-rater agreement first choice: k= 0.976

Inter-rater agreement second choice: k= 0.673

Figure 5. Three rings around the optic disc ensure vessel
grading at consistent eccentricity for each vessel.
doi:10.1371/journal.pone.0102034.g005

Figure 6. Alternate vessels with low variance of thickness and
brightness.
doi:10.1371/journal.pone.0102034.g006
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Further analysis of the first choice group revealed the

importance of the additional criteria:

N In 50%, the blood vessel was labeled based on two main

criteria plus additional criteria.

N In 15%, the blood vessel was labeled based on three main

criteria plus additional criteria.

All in all, 65% of the vessels labeled based on the first-choice

approach were labeled using additional criteria for support,

therefore they play a crucial role for the analysis.

Validity of the test. The second step was to determine the

validity of the test. The reference ophthalmologist labeled 85.8%

(387 of 462) of the vessels as determinable. For the 387 vessels,

Cohen’s kappa between the ophthalmologist’s result and the

results of the cSLO raters was k= 0.803.

The correlation respectively the values of kappa between the

cSLO raters and the reference are the measure for the correctness

of the test. The contingency table comparing the test and reference

results is presented in table 2. Moreover, test sensitivity and

specificity were calculated (table 3).

The cases were again divided into the first- and second-choice

groups. Pearson’s Chi-squared test and Fisher’s exact test yielded a

highly significant (p,0.001) difference between the first- and

second-choice groups and the correct labeling result (table 4).

The first choice group included 257 (66%), and the second-

choice group 130 of the identifiable blood vessels. Kappa values

were calculated both for the first- and second-choice groups:

For the first-choice group, the test-reference agreement was

k= 0.960, and for the second-choice group k= 0.506.

96% of the undeterminable vessels and 87% of the incorrectly

labeled vessels were found in the second-choice group. This

distribution also revealed a very highly significant difference (p,

0.001) between the groups.

Distribution of the criteria applied. To identify the

criteria which correlated with incorrect results, we analyzed the

frequency distribution of the results (table 5).

The result shows:

N In those cases where all three main criteria had been applied,

all blood vessels were labeled correctly (0% incorrect or

unidentifiable).

N If two main criteria were used, 6% of the vessels were labeled

incorrectly or unidentifiable (8/135).

N Using one main criterion brought a colorful picture of results.

In this case, 30% of the blood vessels were incorrectly labeled

or unidentifiable (16/55).

N The use of zero main criteria resulted in:

N # a very high rate of unidentifiable vessels (42%; 62/147), and

N # a high rate of incorrectly labeled vessels (18%; 27/147).

Secondly, the second-choice cases were split into two groups

(see column ‘‘cases’’ in table 5):

N the group using one main criterion to analyze the

questions:

N # Are one or more of the additional criteria responsible for

the wrong results?

N # Are one or more of the additional criteria responsible for

the right results?

N the group using zero main criteria to answer three

questions:

Table 1. Inter-rater-agreement for 1st and 2nd choice.

inter-rater-agreement of the OCT-raters total

no agreement agreement

1st choice absolute 3 257 260

relative 1.2% 98.8% 100%

2st choice absolute 34 168 202

relative 16.8% 83.2% 100%

total 37 425 462

8% 92% 100%

doi:10.1371/journal.pone.0102034.t001

Table 2. Test-reference agreement of 387 identifiable vessels.

test-reference agreement reference labeled total

artery vein

test labeled artery 190 31 221

86% 14% 100%

vein 7 159 166

4.2% 95.8% 100%

total 197 190 387

50.9% 49.1% 100%

doi:10.1371/journal.pone.0102034.t002
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N # Did one or more criterion have a falsifying effect?

N # Is the high rate of undeterminable vessels an indication of

poor illustration quality?

N # Does labeling vessels without using any main criteria make

sense?

The kappa values for the split second-choice group were

calculated separately. If one main criterion and arbitrary

additional criteria were used, the test-reference agreement was

k= 0.712. If zero main criteria and arbitrary additional criteria

were used, the test-reference agreement was k= 0.361.

Remember: The test-reference agreement of the second choice

group as a whole amounted to: k= 0.506. In table 6, the

frequency of the additional criteria in the different cases was

analyzed:

The overview shows that three of the five additional criteria

were used very often (AC_1, AC_2, AC_3). The other two

additional criteria were used significantly rarer [25]. Unlike in all

other cases, AC_1 was the most often used criterion for the

second-choice group. The frequencies of the three main criteria

were calculated in the same way and did not reveal any significant

differences in their distribution (table 7).

Analysis of the criteria used in the second-choice

case. For the second-choice group, the rate of correct results

showed no significant difference between using one or more

additional criterion (p = 0.08), implying that more additional

criteria did not improve the test result. Regarding the quality of

the different additional criteria, we found a highly significant

correlation between the number of correct results and the

additional criterion used for the second-choice group (tables 8

and 9). Pearson’s Chi-squared test and Fisher’s exact test showed a

highly significant (p,0.001) difference between the additional

criterion applied and the test result for using one main criterion

(table 8). This significant difference was also verifiable in case of

using zero main criteria (table 9).

Tables 6, 8 and 9 show that the use of AC_1 correlated with a

high rate of wrong results. AC_4 and AC_5 were sparely used and

are statistically not evaluable, and the use of AC_2 and AC_3

correlated with correct results.

The kappas for application of one main criterion and zero main

criteria were calculated excluding the use of the criteria AC_1,

AC_4 and AC_5:

one main criterion: k= 0.940

zero main criteria: k= 0.529

Also, the test-reference agreement of the whole second-choice

group without these criteria was calculated: k= 0.745. The

consequences of eliminating AC_1, AC_4 and AC_5 are

summarized in table 10.

Because of the high frequency of AC_1 in the case of zero main

criteria (table 9; AC_1 was used in 99/183 (54%) of cases), this

additional criterion was considered separately. By using only

AC_1, (while eliminating all other criteria), the test-reference

agreement was k= 0.291.

Discussion

Our study aimed to establish valid and reliable criteria for blood

vessel labeling in cSLO IR-images, obtained by SD-OCT scanners

used in parallel to OCT images. In doing so, we compared eight

criteria extracted from the ophthalmological literature.

Table 3. Sensitivity, specificity and positive predictive value of the test.

test-sensitivity for arteries 0.964 (190/197)

test-sensitivity for veins 0.837 (159/190)

test-sensitivity for all vessels 0.902 (349/387)

test-specificity for arteries 0.837

test-specificity for veins 0.964

positive predictive value for arteries 0.860 (190/221)

positive predictive value for veins 0.958 (159/166)

doi:10.1371/journal.pone.0102034.t003

Table 4. Connection between the test results and the 1st and 2nd choice.

Result total

incorrect correct unidenti-fiable

1st choice observed frequency 5 252 3 260

expected frequency 21.4 196.4 42.2 260

relative 1.9% 96.9% 1.2% 100%

2nd choice observed frequency 33 97 72 202

expected frequency 16.6 152.6 32.8 202

relative 16.3% 48.1% 35.6% 100%

total observed frequency 38 349 75 462

expected frequency 38 349 75 462

relative 8.2% 75.6% 16.2% 100%

doi:10.1371/journal.pone.0102034.t004
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We set up a hierarchy of these criteria with three main and five

additional criteria.

Main criteria:

1. The central light reflex is wider in arteries and smaller in
veins.

2. Arteries are brighter than veins.

3. Arteries are thinner than veins.

Additional criteria:

1. Arteries and veins alternate near the optic disc.

2. Arteries never cross arteries and veins never cross veins.

3. Vessels should be seen in the context of the vessel tree.

4. Arteries take a straighter course than veins.

5. Angles between crossing blood vessels are almost 90u, whereas
angles between outgoing vessels are between 30u and 45u.

Moreover, blood vessels which were labeled applying two or

more main criteria yielded better test results than vessels labeled

based on less than two main criteria. These two cases were

analyzed as first and second choice.

For the cases $2MC + X AC (first choice), an almost perfect

inter-rater agreement (k= 0.976), an almost perfect correctness

rate (k= 0.960) and a very low rate of unidentifiable vessels (1.15%

(3/260)) was shown.

We demonstrated that the three main criteria were equally

important and equally often used.

In case of using additional criteria we found, that for all

correctly labeled vessels of the first-choice group, AC_2 and AC_3

led to correct results (table 6). However, only 66% of all potentially

identifiable vessels were covered by the first choice. Consequently,

Table 5. Correlation between main criteria and test results.

case
number of main
criteria used result total

incorrect correct unidentifiable

2nd choice 0 27 58 62 147

1 6 39 10 55

1st choice 2 5 127 3 135

3 0 125 0 125

38 349 75 462

doi:10.1371/journal.pone.0102034.t005

Table 6. Distribution of additional criteria, expected frequency means all AC are on an equal level, p-value for the difference
between expected and observed frequency.

criterion relative frequency observed frequency expected frequency p-value

all identifiable vessels (387) AC_3 30.2% 117 0.0001

AC_2 16.0% 62 0.0790

AC_1 15.0% 58 50.8 0.2588

AC_4 4.1% 16 0.0001

AC_5 0.3% 1 0.0001

first choice (260) AC_3 20% 52 0.0001

AC_2 11.2% 29 0.0014

AC_1 1.5% 4 17.2 0.0004

AC_4 0.4% 1 0.0001

AC_5 0% 0 0.0001

second choice (202) AC_1 53% 107 0.0001

AC_3 41% 83 0.0001

AC_2 18.8% 38 50.0 0.0578

AC_4 9.9% 20 0.0001

AC_5 1% 2 0.0001

correctly labeled vessels (349) AC_3 29.5% 103 0.0001

AC_2 16.9% 59 0.0026

AC_1 11.5% 40 41.6 0.7814

AC_4 1.4% 5 0.0001

AC_5 0.3% 1 0.0001

doi:10.1371/journal.pone.0102034.t006
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using first choice only would leave one third of the vessels

undetermined.

The second-choice group (#1MC + X AC) presented a

different picture of the test results and criteria frequencies. In an

attempt to find a reason for the insufficient test results for the

second-choice group, we subdivided this group into two

subgroups, one using one main criterion and the other using zero

main criteria.

It turned out that AC_2 and AC_3 were the only additional

criteria which yielded good results in the second choice cases.

Elimination of the other additional criteria caused the test-

reference agreement of the second choice cases to increase

significantly.

The test in its entirety
With the exception of the second-choice group, the additional

criterion AC_3 was the most frequently used one (table 6) in all

cases. Furthermore, analysis of frequencies suggests that AC_4 and

AC_5 might be irrelevant for first and second choice (whole test)

(table 6).

In contrast to [16], we were able to demonstrate both

statistically and empirically that criterion AC_5 is incorrect. To

give an example, figure 7 shows blood vessels crossing at an angle

of 45u, and blood vessels branching at a 90u angle. For the new

test, AC_1, AC_4 and AC_5 were eliminated.

There are two different options for labeling:

1. The test should label all vessels based on the main criteria; if

no main criterion can be detected or if non-ambiguous

labeling is not possible, use of AC_2 and/or AC_3 is

allowed.

2. The test should label only those vessels to which one or

more main criteria apply. If no main criterion is detectable,

the vessel should be classified as unidentifiable.

In connection with the first option, 18% (n = 69) of the

potentially identifiable blood vessels remained undetected. The

Table 7. Distribution of main criteria, expected frequency means all MC are on an equal level, p-value for the difference between
expected and observed frequency.

criterion relative frequency observed frequency expected frequency p-value

all identifiable vessels (387) MC_1 60.5% 234 0.6264

MC_2 59.4% 230 228 0.8712

MC_3 56.8% 220 0.5164

first choice (260) MC_1 86% 224 0.4522

MC_2 86.9% 226 215 0.3582

MC_3 75% 195 0.0948

second choice (202) MC_1 6% 12 0.0700

MC_2 4% 8 18 0.0032

MC_3 17.3% 35 0.0001

correctly labeled vessels (349) MC_1 66.5% 232 0.4436

MC_2 64.8% 226 223 0.7844

MC_3 60.2% 210 0.2986

doi:10.1371/journal.pone.0102034.t007

Table 8. Correlation between application of additional criteria and test result based on one main criterion.

Using one main criterion in the second-choice group result total

correct incorrect or unidentifiable

AC_1 observed frequency 3 5 8

expected frequency 5.6 2.4 8

relative 37.5% 62.5% 100%

AC_2 observed frequency 13 1 14

expected frequency 9.8 4.2 14

relative 92.9% 7.1% 100%

AC_3 observed frequency 31 9 40

expected frequency 28.1 11.9 40

relative 77.5% 22.5% 100%

AC_4 observed frequency 0 5 5

expected frequency 3.5 1.5 5

relative 0.0% 100% 100%

doi:10.1371/journal.pone.0102034.t008
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kappa of the test-reference agreement was at k= 0.916. For the

second option, 25% (n = 98) of the potentially identifiable vessels

were not detected by the test. The kappa of test-reference

agreement was k= 0.957.

The measured image quality of the missed blood vessels is

shown in table 11.

Consequently, in the context of the first option, 91.1% of the

missed vessels and 93.9% for the second option do not have a good

quality. The quality of the detected vessels in the first possibility

was good in 64%, in the second possibility in 70% of the cases.

A possible explanation for the fact that vessels are not

identifiable is the different imaging technique of CFP and cSLO.

The OCT scanner produces black-and-white cSLO IR images;

the fundus image on the other hand is a colored photograph. A

colored picture contains more information about the vessels, in

particular on blood oxygenation.

Conclusion

Two new test forms with excellent results are possible:

In the first version, the test labels all vessels by the main criteria,

and if no main criterion can be detected or if non-ambiguous

labeling is not possible, using additionally criteria (AC_2 and/or

AC_3) is allowed.

In the second version, only those vessels in the test to which one

or more main criteria apply are subjected to labeling. If no main

criterion can be detected, the vessel should be classified as

unidentifiable.

The first version yields a higher rate of identifiable vessels, the

second version a higher rate of security in labeling. In the first

version, the kappa of k= 0.916 remains almost perfect. So, to

include as many vessels as possible, we prefer the first version of

the test. This benefit outweighs the lower level of accuracy.

Ultimately, the user of the test has to define an objective before

starting the test. This objective will depend on what the data will

be used for. Before the labeling is run, the user will define whether

the goal is a high rate of identifiable vessels or maximum test-

accuracy. Figure 8 shows a hands-on workflow for vessel labeling

and visualizes the different levels of test security.

The disadvantage of our method is that image resolution here

does not attain the level reached via CFP. Moreover, cSLO-

images are black-and-white shots only, so the level of information

is technically limited. Moreover, the test did not determine all

vessels which could be identified in the reference.

In spite of these curtailments, the method presented here, which

involves using cSLO IR-images produced by an OCT scanner for

the purpose of investigating blood vessels has many benefits:

Table 9. Correlation between application of additional criteria and test results based on zero main criteria.

Using zero main criteria in the second-choice group Result total

correct incorrect or unidentifiable

AC_1 observed frequency 33 66 99

expected frequency 42.7 56.3 99

relative 33.3% 66.7% 100%

AC_2 observed frequency 17 7 24

expected frequency 10.4 13.6 24

relative 70.8% 29.2% 100%

AC_3 observed frequency 24 19 43

expected frequency 18.6 24.4 43

relative 55.8% 44.2% 100%

AC_4 observed frequency 4 11 15

expected frequency 6.5 8.5 15

relative 26.7% 73.3% 100%

AC_5 observed frequency 1 1 2

expected frequency 0.9 1.1 2

relative 50% 50% 100%

doi:10.1371/journal.pone.0102034.t009

Table 10. Test reference agreement of the second-choice group before and after elimination of AC_1, AC_4 and AC_5.

before elimination of AC 1,4,5 after elimination of AC 1,4,5

whole second choice group k= 0.506 k= 0.745

using one main criterion k = 0.712 k= 0.940

using zero main criteria k = 0.361 k = 0.529

doi:10.1371/journal.pone.0102034.t010
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– high reliability (k= 0.840)

– high validity (k= 0.957)

– time-saving method – only one rater required.

The test was developed based on data from healthy subjects.

This fact brings a few restrictions. In course of ethical reasons it

was not possible to use fluorescein angiography in place of CFP as

ophthalmologic reference. Moreover the small number of subjects

in the study precludes a definite evidence. To get an impression of

the test results in pathologic entities the workflow was tested

additionally on four eyes of two patients. One was suffering from

cerebral vasculitis, the other one was affected by giant-cell

arteriitis. Diagnosis was made by cerebral MRI and vessel biopsy.

Even in these pathological conditions it was possible to label the

vessels using the developed workflow. The cSLO images of them

are shown in figure 9. The characteristics of arteries and veins in

the images of these sick two patients do not differ from healthy

subjects. Thus, the workflow for vessel labeling could be applied

exemplary in eyes with vascular diseases as well. To detect

differences in the vessel morphology of sick and healthy subjects

measurements, e.g. of the vessels’ diameter, in cSLO images are

necessary. This could be done in future studies. Recently, the

workflow was also successfully used for vessel labeling in

CADASIL patients [Alten et al., manuscript submitted].

The examination of vessels in cSLO images offers a straight-

forward, practicable extension of the application of OCT

technique into neurology without tying up further technical

resources. Blood vessel examination and screening has a high

clinical potential. Spectral domain optical coherence tomography

using automated eye tracking and image alignment based on

cSLO images is very fast, non-invasive and little personel intensive

and combines several aspects of retinal examination in a single

device.

Many clinical applications are conceivable; in particular

vascular neurological diseases like cerebral vasculitis, CADASIL

or cerebral micro-/macroangiopathies might be revealed in

abnormal vessels in OCT and cSLO-images.

But since widespread diseases like dementia or stroke also have

been shown to correlate with retinal vessel changes in CFP, SD-

OCT technology has the potential to open an even wider field of

medical applications as it combines knowledge on cerebral and

retinal diseases in one application. The increasing use of SD-OCT

imaging, originally used in ophthalmology, shows the increasing

overlap between the different medical disciplines.
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Figure 7. Both the crossing and the outgoing vessels show 906
and 306-456 angles.
doi:10.1371/journal.pone.0102034.g007

Table 11. Quality of potentially identifiable missed vessels applying the 1st or 2nd test option.

Quality of missed vessels 1st option 2nd option

good 8.7% (6) 6.1% (6)

medium 24.6% (17) 25.5% (25)

bad 66.7% (46) 68.4% (67)

doi:10.1371/journal.pone.0102034.t011

Figure 8. Workflow for correct vessel labelling in cSLO images.
The different levels of test security are visualized by five colours. MC =
main criteria: The central light reflex is wider in arteries and smaller in
veins. Arteries are brighter than veins. Arteries are thinner than veins.
AC = additional criteria: Arteries never cross arteries and veins never
cross veins. Vessels should be seen in the context of the vessel tree.
doi:10.1371/journal.pone.0102034.g008
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16. Chrástek R, Wolf M, Donath K, Niemann H, Michelson G (2002) Automated

calculation of retinal arteriovenous ratio for detection and monitoring of

cerebrovascular disease based on assessment of morphological changes of retinal

Figure 9. As an example for vascular diseases cSLO images of four eyes of two patients are shown. Picture A and B belong to a patient
suffering from cerebral vasculitis. Picture C and D arise from a patient who is affected by giant-cell arteriitis. A change of vessel characteristics is not
noticeable. Vessel labeling was performed using the new workflow.
doi:10.1371/journal.pone.0102034.g009

Vessel Labeling in OCT: Criteria for Blood Vessel Discrimination

PLOS ONE | www.plosone.org 12 September 2014 | Volume 9 | Issue 9 | e102034



vascular system; Proceedings of IAPR Workshop on machine vision applications:

240–243.
17. Green AJ, Cree BA (2009) Distinctive retinal nerve fibre layer and vascular

changes in neuromyelitis optica following optic neuritis. J Neurol Neurosurg

Psychiatry 80: 1002–1005.
18. Frost S, Kanagasingam Y, Sohrabi H, Vignarajan J, Bourgeat P, et al. (2013)

Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s
disease. Transl Psychiatry 3: e233.

19. Fleiss JL, Levin B, Paik MC (2004) Statistical Methods for Rates and

Proportions: Wiley.
20. Landis JR, Koch GG (1977) The Measurement of Observer Agreement for

Categorical Data. Biometrics 33: 159–174.

21. Narasimha-Iyer H, Beach JM, Khoobehi B, Roysam B (2007) Automatic

identification of retinal arteries and veins from dual-wavelength images using
structural and functional features. IEEE Trans Biomed Eng 54: 1427–1435.

22. Gang L, Chutatape O, Krishnan SM (2002) Detection and measurement of

retinal vessels in fundus images using amplitude modified second-order Gaussian
filter. Biomedical Engineering, IEEE Transactions on 49: 168–172.

23. Welsch U (2006) Sobotta Lehrbuch Histologie: Elsevier, Urban & Fischer.
24. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in

retinal images by piecewise threshold probing of a matched filter response.

Medical Imaging, IEEE Transactions on 19: 203–210.
25. Sachs L (2004) Angewandte Statistik: Anwendung statistischer Methoden;

Springer-Verlag GmbH, Germany.

Vessel Labeling in OCT: Criteria for Blood Vessel Discrimination

PLOS ONE | www.plosone.org 13 September 2014 | Volume 9 | Issue 9 | e102034


