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Abstract 

Cellular commitment to differentiation requires a tightly synchronized, spatial-

temporal interaction of regulatory proteins with the basic DNA and chromatin. A 

complex network of mechanisms, involving induction of lineage instructive 

transcription factors, installation or removal of histone modifications and changes in 

the DNA methylation pattern locally orchestrate the three dimensional chromatin 

structure and determine cell fate. Maturation of myeloid lineages from 

haematopoietic stem cells has emerged as a powerful model to study those 

principles of chromatin mechanisms in cellular differentiation and lineage fate 

selection. This review summarizes recent knowledge and puts forward novel ideas 

on how dynamics in the epigenetic landscape of myeloid cells shape the 

development, immune-activation and leukaemic transformation outcome. 

 
Introduction 
The chromatin structure determines and maintains appropriate gene expression 

programs during cell differentiation and is involved in the inheritance of epigenetic 

information. DNA methylation and histone tail modifications are the two classical 

epigenetic mechanisms in mammalian cells 1. However, further mechanisms such as 

formation of specialized three-dimensional (3D) chromosomal structures are moving 

into the focus of current chromatin research 2; 3; 4. Epigenetic mechanisms gain a high 

level of interest in both basic and clinical research because chromatin modifications 

are often altered in human diseases and in particular in cancer 5. Importantly, both, 

the state of DNA methylation and histone modifications principally have a reversible 

nature - a very attractive quality from the therapeutical standpoint.  

The cellular steps of how haematopoietic stem cells (HSCs) differentiate via 

committed progenitors into myeloid lineages, such as monocytes, macrophages, 

dendritic cells and granulocytes, are now fairly well characterized. A number of 

transcription factors (TFs) have been identified which in a network-like structure 
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guide developing progenitors through binary branching points to differentiate into a 

mature myeloid lineage. Interruption of the normal differentiation process may arrest 

progenitors in their immature state, and as a consequence can lead to leukaemia. 

Although mutated or dysregulated transcription factors were shown to cause this 

block in differentiation, recent genome-wide sequencing efforts have identified 

epigenetic control enzymes as another class of frequently mutated gene products in 

leukaemia (reviewed in:6; 7; 8), providing a direct link between chromatin modification 

and disease. Here, we describe current knowledge of how epigenetic modifications 

shape the chromatin landscape of myeloid cells to dynamically control gene 

expression in cell differentiation and leukaemic transformation. 

 

1. Developmental stages of myeloid progenitors  

The haematopoietic system is a powerful model to examine mechanisms of cell fate 

decisions. Tremendous progress has been made over the years in the identification 

of cell-type-restricted surface marker proteins, allowing the discrimination and 

enrichment of basically all different haematopoietic cell types by means of flow 

cytometric or magnetic cell sorting. All blood cells arise from a single cell type, the 

multipotent HSC that, in the adult, resides in the bone marrow. These cells have the 

unique capacity to self-renew and generate differentiated progeny of all lineages 

throughout the lifetime of the organism. Differentiated cells arise by binary decision 

processes 9 through hierarchically organized progenitor stages. The progenitor 

stages are characterized by restricted cell fate decisions and proliferative expansion 

capacity as transit amplifying cells. All differentiation steps within this developmental 

hierarchy are governed by a complex interplay of transcription factors that 

orchestrate the epigenetic mechanisms involved in cell specification. 

 

In the classical view, HSCs generate the myeloid lineage by giving rise to the 

common myeloid progenitor (CMP) 10, which subsequently forms the 
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granulocyte/macrophage progenitor (GMP) that entails bipotential capacity to 

differentiate into granulocytes and monocytes/macrophages 11. However, this 

classical cascade has been refined and extended in recent years (Figure 1). Among 

the newly discovered progenitors, the monocyte/dendritic progenitor (MDP) sparked 

the field as it showed that monocytes, macrophages and dendritic cells are 

developmentally connected 12; 13. The MDP originates from the CMP and 

differentiates into monocytes/macrophages via the common monocyte progenitor 

(cMoP), and into dendritic cells (DCs) 14. However, the relatively small number of 

monocytes/macrophages yielded from the MDP/cMoP axis, based on adoptive 

transfer experiments, cannot account for the repopulation of the entire compartment. 

As a matter of fact, a number of tissue macrophage types such as Kupffer cells and 

microglia have recently been shown to arise from tissue invading yolk sac 

progenitors in the early embryo and are autonomously maintained throughout life, 

independently of HSCs and their progeny 15; 16; 17.  

Less is known about granulocyte development. GMPs are still the most commonly 

accepted precursor of all granulocyte types such as neutrophils, basophils and 

eosinophils. However, this model has been challenged by recent findings, separating 

neutrophile granulocyte development from basophilic/eosinophilic fate 18, indicating a 

more complex pattern in granulopoiesis. 

Dendritic cells arise from MDPs via an intermediate bipotential progenitor stage 

termed as common dendritic progenitor (CDP) 19. Several research groups described 

the CDP as the precursor of both classical DCs (cDCs) and plasmacytoid DCs 

(pDCs) 19; 20. Moreover, during states of infection, monocytes are also capable of 

generating DCs, which are classified as monocyte-derived DCs (moDCs) 21; 22. 

Hence, monocytes appear to retain substantial plasticity to redirect their 

differentiation path in order to respond to immune stimulation 23. Interestingly, while 

bone marrow resident CDPs may differentiate into splenic pre-cDCs 24 to form cDC 

subsets, this route of lineage commitment is not the only source, as common 
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lymphoid progenitors (CLPs), which generate T- and B-cells, also showed strong DC 

formation capacity 25; 26. Thus, DCs should be placed in-between the classical 

myeloid/lymphoid differentiation pattern, and may indicate wider plasticity in 

haematopoietic cell type specification. 

 

2. Transcriptional control of myeloid differentiation 

The expression of lineage-specific TFs dictates all commitment steps and 

successively reduces the self-renewal potential and ultimately restricts differentiation 

fate of the developing progenitors into one particular cell type. Genes and their 

products responsible to maintain the cell in an undifferentiated stage are down-

regulated, while simultaneously genes promoting differentiation are up-regulated. 

The progression of lineage commitment is determined by networks of tightly 

collaborating or antagonizing transcription factors, together shaping lineage fate 

decisions. Furthermore, cytokines are needed for commitment towards a specific 

mature blood cell type, and recent evidence underscores their role as instructive 

cues for differentiation fate decisions by controlling the expression of TFs 27; 28. 

The long accepted one-way direction of cellular commitment was questioned, first by 

ectopic expression of single TFs 27; 28; 29; 30; 31; 32 or cocktails of collaborating TFs 33, 

and secondly by ectopical application of altered cytokine signals 34, which lead to 

changes in TF expression. Both approaches redirected the default differentiation 

outcome towards a trans- or re-differentiation into another lineage or cell-type, thus 

challenging the paradigm of irreversible differentiation processes of somatic 

mammalian cells. Such cellular reprogramming experiments demonstrated the cell 

fate instructive capacity of myeloid lineage TFs including PU.1 and CCAAT enhancer 

binding proteins (C/EBP’s) 32; 35; 36. Moreover, TFs can also restrict the expression of 

key genes of alternative lineages. For example, the B cell-specific TF PAX5 is able to 

block expression of the important myeloid-specific c-fms gene, encoding M-CSFR as 

the receptor the for macrophage colony-stimulating factor (M-CSF) 37; 38. These and 
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related findings in other tissues suggest that cells retain the plasticity to convert their 

gene expression programs into that of alternative lineages by manipulating key 

instructive cues such as TF expression. Appropriate TF expression is therefore a key 

requirement for both lineage commitment and maintenance. The next chapters 

summarize the key TFs of the myeloid system, and address their specificity to the 

different myeloid lineages. 

 

Transcription factors directing monocyte/macrophage differentiation 

The main transcription factor required for maturation of myeloid progenitors in 

monocytes, macrophages and DCs, is the Ets family member PU.1, which directs 

lineage fate by being expressed in a concentration dependent manner. While its 

expression in HSCs is detectable at a relatively low level, its expression is increased 

in and is absolutely required for CMPs 11; 39. The expression remains at a high level 

during granulocyte differentiation 39; 40; 41, while differentiation into monocytes, 

macrophages and DCs appears to require even higher PU.1 levels 40; 41; 42; 43. 

Besides exerting its regulatory function through defined expression levels, the PU.1 

protein also interacts with a number of other TFs to control lineage fate. For example, 

through protein-protein interaction PU.1 antagonizes GATA-1 trans-activating 

abilities and thus impairs megacaryocyte/erythroid development. Furthermore, PU.1 

negatively regulates the expression of GATA-2 to block mast cell development 44. 

Both, interaction with other TFs and expression control, balance the mode of action 

of PU.1, as in GMPs increased levels of PU.1 antagonize the granulocyte fate 

instructive bZip transcription factor C/EBPα 45 and, at the same time, increased levels 

of PU.1 protein induce expression of the genes encoding the early growth response 

proteins Egr-1 and Egr-2, both TFs of the zinc finger family 46. Importantly, further 

increase of PU.1 expression levels appears to promote the transition of monocytes 

into a DC phenotype at the expense of macrophage differentiation capacity, by 

antagonizing the activity of the macrophage TF MafB 47. 
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Similar to PU.1, a number of additional TFs are crucial for monocyte/macrophage 

development. The interferon regulatory factor 8 (Irf8) is highly expressed in MDPs 

and their monocyte and macrophage progeny, but not expressed in granulocytic 

progenitors 48. Its deletion leads to a differentiation arrest at the MDP stage, and 

causes granulocyte expansion at the expense of monocyte and macrophage 

production 48; 49; 50. Thus, Irf8 promotes monocyte/macrophage development and 

suppresses granulocyte commitment.  

Upon terminal differentiation, macrophages for example exit the cell cycle and 

remain non-proliferative. Interestingly, a combined deficiency of the TFs MafB and c-

Maf allows macrophages to re-enter the cell cycle and proliferate in response to M-

CSF without losing their differentiated phenotype or function 51. Mechanistically, in 

the absence of MafB/c-Maf the proliferative and monocytic differentiation genes 

Krüppel-like factor 4 (KLF4) and c-Myc were upregulated and required for extended 

self-renewal. This example shows that appropriate TF expression is not only required 

for lineage commitment and differentiation, but also for proper control of the cell cycle 

status and proliferation.  

 

Transcription factors directing granulocyte differentiation 

A central TF for development of granulocytes is C/EBPα. Targeted deletion of 

C/EBPα leads to a differentiation block between the CMP and the GMP stage, and 

completely abrogates downstream neutrophil and eosinophil development, while 

monocytes and macrophages are not affected 52; 53. This block in neutrophil 

differentiation is partially attributed to compromised expression of the C/EBPα target 

gene Csf3r, encoding the granulocyte colony stimulating factor receptor (G-CSF-R) 

52; 54. Interestingly, depletion of C/EBPα expression after the GMP stage does no 

longer affect granulocyte development, suggesting inherent epigenetic mechanisms 

propagate the once taken decisions 53. Thus, precise timing of expression of C/EBPα 

is key for proper granulopoiesis. Moreover, tightly controlled interaction with other 
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TFs enables C/EBPα to exert its function. One of these TFs interacting with C/EBPα 

collaboratively or antagonistically, dependent on the cellular context, is GATA-2 29. 

Enforced expression of GATA-2 in C/EBPα positive GMPs instructs eosinophile fate, 

while basophile development from GMPs initially requires reduction of C/EBPα 

followed by expression of GATA-2 and subsequent re-expression of C/EBPα. 

Another member of the C/EBP family, C/EBPε, is required for the terminal stages of 

neutrophil differentiation, as lack of this gene leads to a granule deficiency phenotype 

55; 56. Taken together, granulocyte development requires the step-wise expression of 

different C/EBP TFs for full maturation.  

 

Transcription factors directing Dendritic cell differentiation 

DCs comprise a heterogeneous assembly of highly specialized cells of the innate 

branch of immunity 13. They are the major antigen processing cell type of the immune 

system. DCs can be categorized into a number of subsets with different phenotypes 

and immune functions, such as classical DCs (cDC), plasmacytoid DCs (pDCs), 

monocyte-derived DCs (moDCs) and Langerhans cells 57; 58. The Integrin CD11c is 

the hallmark surface marker for all DCs, although it is not exclusively expressed on 

DCs 59; 60. The short-lived, phagocytic cDCs derive via pre-cDC progenitors 24 from 

CDPs 20. In lymphoid organs, cDCs can be further subdivided into CD8α+ and CD4+ 

cDCs that are responsible for cross presentation of antigens to CD8α+ T cells or 

activation of CD4+ T cells, respectively 58. In non-lymphoid organs, functionally 

related equivalents exist but exhibit different surface marker expression. CD103+, 

CD11b low cells resemble the lymphoid CD8α+ cDCs, while CD11b+ DCs 

correspond to the lymphoid CD4+ cDCs 58. Differentiation into and function of the 

various DC subsets are highly dependent on the expression of tightly controlled TFs. 

As for monocytes, initial DC commitment from early progenitors depends on the step-

wise expression of the two TFs PU.1 and Irf8. The absence of PU.1 abolishes MDP 

formation, while the absence of Irf8 blocks CDP development from MDPs 48; 49. On a 
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molecular level, PU.1 induces the Fms-like tyrosin kinase 3 (Flt3 or Flk2) as a vital 

cytokine receptor for DC survival 42. The target genes by which Irf8 controls DC 

development are not yet clear.  

Interestingly, both PU.1 and Irf8 are linked to the development of monocytes and 

DCs 48, suggesting similar regulatory mechanisms of cell commitment in both 

lineages. This is even more likely in the light of monocyte derived DCs (moDC), 

which represent a relatively new subset of DCs, currently described as CD11c 

intermediate, CD11b+, MHCII+ cells. The overlapping marker panel with monocytes 

on the one hand and with cDCs on the other hand makes identification based on this 

marker panel problematic. Thus, this subset is less well understood and molecular 

mechanisms in the establishment of moDCs remain to be explored.  

pDCs express B220 and Siglec-H as diagnostic surface marker proteins, and 

compared to cDCs express lower levels of CD11c. They are dedicated antigen-

presenting cells and harbor high type I interferon production capacity upon infection 

61. Expression of the basic helix-loop-helix transcription factor member E2-2 (also 

named transcription factor-4 (Tcf4)) is a prerequisite for proper pDC development 62. 

E2-2 controls IRF8 and SpiB and in the absence of either factor no pDCs are formed 

62; 63; 64.  

 

3. Epigenetic principles of myeloid differentiation  

In recent years, a gene-focused way of thinking shifted to a genome wide scale, 

providing a systemic view on global cellular functions such as regulation of gene 

expression. This is mostly due to the development of next generation sequencing 

methods in combination with chromatin immunoprecipitation (ChIP-seq). 

Combinations and variation of these methods have radically changed the way to 

approach dogmatic questions in life sciences. Now, the challenge lies in 

understanding how co-expressed gene-networks interact to control and execute cell 

fate decisions. It has become evident that tissue and cell type specific gene functions 
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are closely linked to precise spatiotemporal regulation of distal regulatory DNA 

elements, to the expression of defined TF networks, and to the selection of 

appropriate gene promoters. Moreover, chromatin is understood not only as a 

scaffold that packages DNA but as enzymatically controlled to actively participate in 

gene regulatory and epigenetic functions providing memory to lineage decisions 65. 

The smallest chromatin structure is the nucleosome, consisting of a histone core 

octamer with 147 bp of DNA wrapped around it. In particular, the N-terminal ends of 

the core histones, referred to as histone tails, protrude from the nucleosome and are 

recipients of multiple post-translational modifications (PTM). These covalent 

modifications serve as anchors for a multitude of co-factors that are involved in the 

identification of regulatory genome elements, packaging or unpacking of coding 

genes or keeping them poised for signal dependent activation or repression 66; 67. 

Many different types of histone modifications have been identified, of which methyl 

and acetyl moieties have been most extensively studied.  

The next chapters will summarize how cell type specific chromatin organization 

interacts with regulatory sequence features of the genome, such as promoters and 

enhancers, putting a particular focus on the myeloid system. 

 

The chromatin signature of enhancer elements 

Enhancers are the most abundant class among the regulatory regions in the genome 

68, serving as hot spots for dynamic modification of histones. In fact, the interplay 

between TFs and chromatin modifying enzymes at enhancers appears as a major 

driving force for cell type specific gene expression 2; 69. Recent studies in myeloid 

cells suggest a hierarchical model in which combinations of lineage-specific TFs 

synergize to epigenetically poise and regulate specific sets of genes in macrophage 

differentiation and function 70; 71. These TFs appear to fulfill pioneer functions by 

determining the position of myeloid specific enhancer repertoires and by directing the 

recruitment of epigenetic modifier co-factors to establish transcriptionally instructive 
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chromatin marks. These factors in turn modify and prepare the chromatin to allow 

subsequent binding of a second wave of TFs with signal dependent properties 71.  

The identification of specific histone modification signatures on regulatory elements 

has been crucial for the understanding of tissue specific gene regulation 72; 73. 

Enhancer signatures are based on mono-methylation of lysine 4 (H3K4me1) and 

acetylation of lysine 27 (H3K27ac) of histone H3 marking active enhancers, a 

combination of H3K4me1 plus H3K27me3 marking poised enhancers, or tri-

methylation of lysine 27 (H3K27me3) marking silenced enhancers 72; 74. The 

epigenetic signature of promoters follows a similar pattern in that poised and active 

promoters are marked by tri-methylation of lysine 4 of histone H3 (H3K4me3) 75; 76.  

 

Enhancer structure in myeloid progenitors and monocytes 

An embryonic stem cell-based in vitro differentiation model together with ChIP-seq 

revealed that early myeloid commitment requires the TFs Stem cell leukaemia/T-cell 

acute lymphoblastic leukaemia 1 (SCL/TAL1), Friend leukaemia integration 1 

transcription factor (FLI1) and Runt-related transcription factor 1 (RUNX1), together 

with C/EBPβ to establish the expression of the entire repertoire of myeloid genes, 

among which is PU.1 77. Binding of all four factors to the upstream regulatory 

enhancer element (URE) of PU.1 is needed to induce PU.1 expression. Interference 

with FLI1 binding was shown to delay PU.1 transcription und thus to slow down 

monocyte development 77. Moreover, RUNX1 transiently binds to the URE of PU.1 

and mutation of the RUNX1 binding sites leads to inactivation of this enhancer and 

reduction of PU.1 expression 78. Under physiological conditions in myeloid 

progenitors, PU.1 activates the c-fms gene by binding to both its proximal promoter 

and intra-genic enhancer, called c-fms intronic regulatory element (FIRE), to direct 

the production of macrophages by M-CSFR expression 79.  

However, PU.1 does not only bind to the regulatory sequences of the c-fms gene, but 

occupies the vast majority of enhancer elements specific to macrophages, supporting 
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the notion as a fundamental TF for myelopoiesis 80. Furthermore, the presence of 

PU.1, and possibly additional factors, was found to trigger H3K4me1 histone 

modification on macrophage specific enhancers 70, thus participating in chromatin 

activation. PU.1-deficient myeloid progenitors showed chromatin re-arrangement and 

H3K4me1 histone deposition upon restoration of PU.1 expression 70, while reduction 

of PU.1 or PU.1 binding site mutations in enhancers led to reduced H3K4me1 and 

altered chromatin arrangement on several myeloid enhancers tested 80. Along the 

same line, ectopic expression of PU.1 in fibroblasts was sufficient to induce their 

transdifferentiation into macrophages, although not all macrophage-specific 

enhancers elements could be activated by PU.1 alone 80; 81.  

PU.1 is also essential for the initiation of DC development. As a key event in the 

production of early DC progenitors, PU.1 activates expression of IRF8 in MDPs by 

binding to a specialized upstream enhancer and subsequently modifies its spatial 

chromatin structure to loop into proximity to the Irf8 proximal promoter 48. Similarly, 

looping between the URE and the proximal PU.1 promoter has also been shown to 

depend on PU.1 binding 82. Hence, PU.1 appears not only to modify histone tail 

marks but also to be involved in the re-arrangement of the spatial chromosomal 

conformation which is associated with myeloid-specific gene expression. However, 

the mechanism by which PU.1 directs changes in the higher-order chromatin 

structure is not yet known.  

In immune-challenged phagocytes, C/EBPβ and the AP-1 protein JunB are induced 

to co-occupy a large proportion of regulatory regions 71; 83, consistent to the 

previously reported function of AP-1 proteins as chromatin openers 84. Importantly, 

these enhancer regions were already occupied by PU.1, which was required to 

prepare the chromatin for binding of stimuli-inducible TFs in constitutive and poised, 

but not in latent enhancers 71; 85. Also, providing a direct link between these factors, it 

was shown that C/EBPβ expression strongly depends on high PU.1 expression 86; 87.  
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Histone tail modifying enzymes in myeloid development 

A large number of different proteins have been shown to set up, maintain or remove 

post-transcriptional modification at histones. Acetylation of histone tails is achieved 

by histone acetyl transferases (HAT), which are potent enzymes identified as 

prerequisites for transcriptional activation 73; 80; 88. Numerous HATs have been 

identified, which can be grouped into p300/CBP, MYST (e.g. MOZ) and GNAT (e.g. 

PCAF, GCN5) families. Their function, however, is not limited to modify histones, as 

they also ad acetyl groups to lysines of other proteins such as TFs 89. 

In the context of myeloid biology, the Monocytic Zinc finger (MOZ) histone 

acetyltransferase is of particular interest. It fulfills multiple tasks in myeloid 

development and macrophage function, and is involved in leukaemogenesis. MOZ 

acetylates multiple lysine residues on histones H3 (K9 and K14) and H4 (K5, K8, 

K12, K16), and serves as a transcriptional co-activator for RUNX1 and PU.1 88; 90; 91. 

In a RUNX1 dependent fashion, MOZ induces expression of the Macrophage 

Inflammatory protein 1a (MIP1-a) 92 and of Myeloperoxidase (MPO) 91, both of which 

are crucial genes for inflammatory response mechanisms of myeloid cells. 

Of note, MOZ is frequently found as a translocation partner associated with acute 

myeloid leukaemia (AML). MOZ can fuse to CBP, creating the t(8:16) translocation, 

to p300 (t(8:22)), or to TIF2 (inv(8((p11q13)) 88; 90; 91; 93. In healthy myeloid 

progenitors, MOZ binding to PU.1 is required for activation of M-CSFR expression 94. 

Importantly, the leukaemogenic fusion products MOZ-TIF2 and MOZ-CBP cause 

elevated M-CSFR expression 94.  

IRF2, a member of the Interferon Regulatory Factor (IRF) family represses interferon 

mediated gene expression 95; 96. Upon 12-O-tetradecanoylphorbol-13-acetate (TPA) 

induced macrophage differentiation of the human monocytic U937 cell line, IRF2 was 

found to interact with p300/CBP as well as with the p300/CEBP associated factor 

(PCAF) and as a consequence IRF2 becomes acetylated at its DNA binding domain 

(DBD). This in turn leads to inhibition of p300 mediated core histone acetylation 
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which is associated with repression of IFN-responsive genes 89; 97. Collaborations 

between HATs and C/EBP TFs have also been described. In myelopoiesis, TIP60, a 

HAT of the MYST family, binds to C/EBPα and serves as a co-activator in myeloid 

differentiation 98. 

During differentiation, it is not only necessary to initiate expression of a certain 

transcriptional program, but also to extinguish it once it is no longer needed. 

Termination of transcription is associated with the removal of histone acetylation at 

enhancer and promoter regions 99, indicating the necessity for transient modifications 

of histones for lineage commitment. This removal is catalyzed by histone 

deacetylases (HDACs), which constitute a large superfamily of enzymes. While their 

predominant function in the nucleus lies in the removal of acetyl-groups from 

histones, HDACs also deacetylate other proteins. As a salient example, SIRT1 

deacetylates the tumor suppressor gene Phosphatase and Tensin homolog (PTEN) 

to control cell signaling pathways 100. PTEN can catalyze the dephosphorylation of 

Pi3K products leading to increased cell proliferation and reduced cell death, 

indicating that HDACs are involved in malignant transformation processes.  

Indeed, several groups of chromatin modifying enzymes, including HDACs, are 

frequently dysregulated in cancer 6. Histone deacetylation promotes chromatin 

condensation and is known to silence tumor suppressor genes such as p53 101; 102, 

other transcription factors 103, transcriptional co-regulators or signaling molecules 104. 

HDAC inhibitors promote re-activation of tumor suppressors by inducing chromatin 

remodeling 105. Therefore, inhibition of HDACs is of major clinical importance 106. 

Among the available HDAC inhibitors, valproic acid (VPA) in combination with all-

trans retinoic acid (ATRA) have been evaluated in several clinical studies of AML 107. 

Mechanistically, understanding of how exactly HDAC inhibitors work is not trivial as 

these inhibitors have global effects on gene expression rather than modulating the 

expression of a single cancer-relevant gene. In fact, not much is known about 

functions of HDACs specifically in myeloid development, as global depletion of class 
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I HDAC genes results in early lethality 108; 109; 110, emphasizing their broad functions in 

the genome. But at least some specificity can be assumed because conditional 

knockout studies in mice showed class I HDAC dependency for normal 

erythroid/megacaryocyte but not for myeloid development 110; 111. Moreover, in AML 

samples in which C/EBPα was downregulated, treatment with HDAC inhibitors led to 

re-expression of C/EBPα, suggesting that these inhibitors may derepress specific 

differentiation associated genes in transformed myeloid cells 112. A similar correlation 

has been shown in the acute promyelocytic leukaemia (APL), a subtype of AML in 

which the RARa-PLZF (t(11;17)) translocation impairs the expression of C/EBPα 

target genes 113. RARa-PLZF undergoes protein-protein interaction with C/EBPα and 

thereby is recruited to regulatory elements of C/EBPα target genes. The PLZF 

residue of this fusion product can recruit HDAC1, which leads to histone H3 

deacetylation at C/EBPα bound target genes and subsequently to repression. 

Importantly, application of HDAC inhibitors partially restores expression of the 

C/EBPα target genes.  

 

4. The role of three-dimensional chromatin structures in myeloid 

differentiation  

Disclosure of spatial organization of the genome remains a challenging task, even 

though the nucleus microscopically displays obvious compartmentalization such as 

chromosome territories, nuclear bodies etc. However, the precise chromosomal 

architecture in the nucleus and the functional role of nuclear compartmentalization in 

gene regulation is not well understood 3; 114; 115. Reporter assays confirmed the 

interaction between regulatory regions, which on a linear scale are far away from 

each other in the genome, some of which are located even on different 

chromosomes 116; 117. Several explanations have been put forward for these long-

distance chromatin interactions such as nucleosomal sliding or chromatin looping 

(recently reviewed by: 4; 8; 118). Indeed, fluorescence in situ hybridization (FISH) 



 16 

technology has provided initial evidence for the role of chromatin looping. More 

recently, chromosome conformation capturing (3C) and related techniques such as 

4C, 5C, and Hi-C (for review see: 4; 82; 119; 120) have been developed, which allow 

studying the interactions between distal DNA elements more precisely, and help to 

reconstruct the 3D organization of chromatin at individual gene loci or of the entire 

genome. Based on such investigations, there is now overwhelming evidence that 

distal regulatory elements communicate with their respective target genes through 

chromatin looping 4 and that chromatin looping might be a prerequisite for 

subsequent gene activation. Indeed, a recent report by Deng et al. provides evidence 

that chromatin looping controls the induction of ß-globin gene expression in erythroid 

cells 121, supporting the notion of a cause-consequence relationship between 

chromatin looping and gene expression. The 3C based technologies follow the 

assumption of Cullen at al. that nuclear proximity of interacting DNA elements form 

loop-like structures which can be detected by nuclear ligation 122. Technically, 

chromatin is cross-linked by formaldehyde, then digested by restriction enzymes, and 

subsequently re-ligated in a highly diluted manner, allowing the preferential ligation of 

chromatin fragments within a cross-linked complex 123; 124. These interactions can 

then be visualized by different approaches. A classical 3C experiment has the 

limitation that a possible spatial interaction of only two chromatin regions can be 

studied at a time. To overcome this limitation, the next logical step was to extend this 

analysis to a “one-to-many” situation, as gene regulation may require the physical 

cross-talk of multiple regulatory elements. This step was made possible by the 

combination of genome-wide platforms such as array technologies or next generation 

sequencing with the 3C technology. Still, these methods focused on a central anchor 

point placing it in the center of a net of chromatin interactions. Finally, 

comprehensive chromatin interaction maps can now be generated by 5C and Hi-C, 

allowing the simultaneous detection of millions of pairwise chromatin interactions, 

which then are bioinformatically assembled to generate genome-wide interaction 
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maps 114; 125; 126. Besides the great advances of these described techniques in 

revealing higher order chromatin structures, certain limitations still remain. For 

example, the large cell numbers required to conduct 3C-based assays is 

problematic, as most cell populations are not homogenous, or synchronous. Thus, all 

detected spatial chromosomal interactions represent the average of the population 

studied, and do not reflect heterogeneity. Importantly, to overcome this limitation, 

single-cell Hi-C technology has recently been developed 119. However, it remains to 

be seen how reliable this technology reports on chromatin contacts in individual cells, 

as it requires massive PCR amplification and thus may be subject to a methological 

bias.  

In the haematopoietic system, the by far best-characterized genomic region for long-

range chromatin interactions is the human ß-globin locus of erythroid cells 121; 125; 127. 

Moreover, spatial chromosomal interactions have also been studied on a number of 

myeloid gene loci. For example, our own studies on early dendritic cell development 

revealed an actively induced chromatin looping process as a crucial event for the 

commitment of early myeloid progenitors towards DC lineage fate 48. Thereby, 

upregulation of Irf8 expression in DC progenitors correlated with the cell-type specific 

looping of a distal enhancer element to the proximal promoter region in conjunction 

with high PU.1 expression levels (Figure 2a), followed by PU.1 binding to two 

adjacent and evolutionary conserved sites within this enhancer. A similar mechanism 

of PU.1 mediated chromatin looping also occurs at the PU.1 gene locus (Figure 2b) 

82; 128. The distant regulatory element URE is in proximity to the PU.1 proximal 

promoter in macrophages 128 and in HSCs 82. Interestingly, chromatin looping in 

HSCs strongly depends on PU.1 protein occupancy at a binding site in the URE 82 as 

mutation of these sites abrogated the loop formation in HSCs but not in 

macrophages. In macrophages, we recently found an additional regulatory element 

for PU.1 in close proximity to the URE enhancer, the -12 kb cis element 43, which 

also harbors a PU.1 autoregulatory binding site. This -12 kb element shows 



 18 

chromatin looping specifically in myeloid cells and compensates for the loss of URE 

function 82. 

Another study in myeloid cells demonstrated that lipopolysaccharide (LPS) induced 

expression of osteopontin (OPN) depends on interaction with an upstream located 

enhancer 129. While in non stimulated cells, OPN is expressed at a low level, LPS 

stimulation leads to DNA looping and an associated increase in OPN expression. 

This looping structure was found to depend on nuclear factor 'kappa-light-chain-

enhancer' of activated B-cells (NF-kB) binding to the enhancer, activator protein 1 

(AP-1) binding to the proximal promoter, and recruitment of the histone acetyl 

transferase p300. Interestingly, an acetyltransferase deficient p300 mutation reduced 

looping frequency at the OPN gene, a functional mechanism that has also been 

demonstrated for looping within the β-globin locus 130. Thus, appropriate expression 

of activating transcription factors as well as modification of histone tails are required 

for remodeling of the spatial chromatin structure. 

A study in myelocytes demonstrated that several proviral integration sites, located 

between 20 and 70 kb upstream of the c-Myb gene, are in spatial proximity to the c-

Myb promoter in myeloblastic cells 131. While this DNA-loop is ubiquitously present in 

all c-Myb expressing cells, viral infection induces local H3K4 mono- and tri-

methylation of and H3K9acetylation at the proviral integration sites. At the same time, 

binding of the 11-zinc finger TF CCCTC-binding factor (CTCF) increases at these 

sites, altogether leading to elevated c-Myb expression and subsequent induction of 

leukaemia.  

 

CTCF and Cohesin in myeloid biology 

Among the globally acting DNA-binding factors that relate to chromatin structure, 

CTCF is probably the best studied one. CTCF and the multimeric protein cohesin 

complex, involved in mitosis, transcriptional regulation, chromosome rearrangement 

and chromosome condensation 132, are found at clusters of chromatin interaction 
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areas where they are strongly enriched at the boundary region of so called 

topological domains 133. CTCF had long been regarded as the main insulator protein 

in vertebrates, but was recently attributed more context dependent to nuclear 

architectural functions 134. This notion originated from observations utilizing 3C based 

technologies 135. 

CTCF appears to function in close collaboration with the cohesin complex, as both 

co-localize and in a combinatorial fashion facilitate long-range chromatin interactions 

within the IGF2-H19 locus, a gene cluster being involved in imprinting 136; 137. 

Depletion of cohesin resulted in ablation of CTCF mediated chromatin loops, 

essentially indicating that cohesin functions as a stabilizer of CTCF mediated DNA 

loops.  

For both proteins, CTCF and cohesion, there is also evidence for a functional role in 

myeloid biology. Cohesin gene mutations are found in 5.9% to 12.1% of subtype 

independent AML patients 138; 139. Experimentally, CTCF depletion was observed to 

associate with severe changes in the transcription of myeloid genes, as sh-RNA 

mediated knockdown of CTCF in CMPs accelerated myeloid differentiation, 

presumingly by a mechanism involving increased expression of Egr-1 140. In line with 

these results, ectopic expression of CTCF in myeloid cells led to growth retardation 

141. However, another study employing LysM-Cre induced ablation of CTCF in mice 

found that CTCF loss led to, albeit slightly, reduced macrophage differentiation 

capacity in vivo, along with a reduction of MHCII expression in liver macrophages. 

Furthermore, under inflammatory conditions, CTCF deficient macrophages showed 

reduced expression of both, pro- and anti-inflammatory genes, indicative for a role of 

CTCF in macrophage activation 142. Recently, a functional interplay of CTCF with the 

cohesin complex was reported to control PU.1 gene expression in myeloid cells 143. 

In that study, chromosomal occupancy of the cohesin complex and CTCF was found 

around the PU.1 gene upstream enhancers. Moreover, CTCF knockdown led to 

derepression of PU.1 expression, suggesting that CTCF is a negative regulator of 
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PU.1. Interestingly, the CTCF binding site within the PU.1 URE enhancer was co-

occupied by the SWI/SNF complex member SMARCA5, leading to the idea that 

CTCF may cooperate with the SWI/SNF complex to act on nucleosomal remodeling 

at this locus 143. 

 

SWI/SNF and chromatin remodeling in myeloid cells 

Occupancy of transcription factors at a target DNA site in the chromatin is greatly 

influenced by the position of nucleosomes 144. Remodeling of nucleosome positions 

is achieved either by sliding or by removal and re-insertion of histone octamers or 

their variants. The SWI/SNF multiprotein complex consists of more than a dozen 

subunits and is essential for chromatin remodeling 8; 118; 145. The SWI/SNF complex 

does not bind to DNA directly, but is recruited by other DNA binding proteins, 

including TFs 146; 147; 142.   

B-to-myeloid cell trans-differentiation can be achieved by the expression of PU.1 

together with C/EBPα or C/EBPβ and serves as a model to unravel mechanisms of 

cell fate determination 32; 81. Recently, we found that C/EBPβ crosstalks with the 

SWI/SNF complex to determine the B cell trans-differentiation outcome either into 

macrophages, dendritic cells, or granulocytes 36. SWI/SNF recruitment depended on 

C/EBPβ phosphorylation and absence of arginine methylation in a region involved in 

SWI/SNF interaction 36; 148; 149. Another hint for a possible crosstalk between C/EBPβ 

and the SWI/SNF complex came from in vivo studies in knockout mice. There, 

C/EBPβ has previously been shown to be important for cytokine-induced 

granulopoiesis in situations of immunological challenge 150; 151. In accordance, the 

ATPase subunit Brg1 of SWI/SNF has been reported as crucial factor for 

granulopoiesis in mice 152. Moreover, functional interaction between SWI/SNF and 

C/EBPα is a prerequisite for C/EBPα mediated proliferation arrest and tumor 

suppression capacity 153. Taken together, these examples highlight that TFs act 

together with the SWI/SNF complex to dynamically alter the nucleosomal distribution 



 21 

within the chromatin to drive myeloid differentiation, proliferation, and immune 

function.  

 

5. Chromatin dynamics in macrophage activation  

Macrophages are central to innate immunity and display an immense array of 

functions involved in counteracting tissue-invading pathogens, activation of cells of 

the adaptive immune system, or promoting tissue healing 154; 155. These functions are 

conducted by specialized macrophages that are functionally and operationally 

grouped into various specialized subpopulations 156. Mechanistically, most of the 

specialized functions require de novo expression of genes that formerly were not 

expressed in steady state homeostasis, and as such require local chromatin 

remodeling and activation. Extrinsic cues such as cytokines, chemokines and cellular 

contacts are often responsible for induction of such immune genes. Hence, these 

signals must stimulate signaling cascades leading to the dynamic activation of gene 

regulatory chromatin elements.  

 

Upon stimulation of macrophages, extrinsic signals are intracellularly propagated to 

finally interact with the chromatin landscape and modify gene expression. Natoli and 

colleagues have shown that these signals can either lead to activation of pre-existing 

enhancer elements 80; 157, or can trigger the de novo activation of new enhancers 71.  

A large proportion of stimuli-responsive enhancers in immune-activated 

macrophages are pre-marked by a H3K4me1high/H3K4me3low signature even 

before stimulation that is characteristic for poised genes 71. In addition, the majority 

(>76%) of these enhancers are also occupied by PU.1 prior to macrophage 

activation. In contrast to constitutive enhancers, a smaller group of immune-

responsive enhancers initially lack the activation or poising associated histone 
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modification signatures 71. These regions, which were termed ‘latent enhancers’, are 

not, as far as one can tell, occupied by TFs prior to their stimulation. However, upon 

macrophage activation, e.g. by cytokines or LPS, latent enhancers acquire activating 

histone modifications such as H3K4me1 and H3K27Ac, and bind to signaling-

triggered TFs 69. Different stimuli were found to recruit individual sets of latent 

enhancers, each depending on stimulus-signal specific co-activators, as for example 

IL-4 stimulation required Stat6 binding to the latent enhancer subset, while IFNy 

stimulation depended on Stat1. Only then PU.1 is able to bind DNA, facilitate histone 

modification, and subsequently latent enhancer activation. Indeed, macrophages 

deficient for stimulation-responsive effector TFs, as for example Stat1 or Stat6, failed 

to modulate the enhancer repertoire in response to extrinsic stimuli 71. Importantly, 

upon re-stimulation of previously activated macrophages, latent enhancers appear to 

react faster than constitutive enhancers, and therefore may reconstitute an 

epigenetic memory to previously encountered immune-challenges. Mechanistically, 

removal of the stimulating cytokine reduced histone acetylation and TF binding to 

pre-stimulation levels, but H3K4me1 levels remained high, leaving the cells in a 

poised state that permitted faster kinetics following re-stimulation.  

Response to inflammatory signals is, however, complex, and in addition to signaling 

cascades and responsive TFs, involves a large number of co-regulators including 

chromatin modifiers and remodelers 158. For example, HDACs participate in the 

regulation of inflammatory gene expression, since their inhibition is anti-inflammatory 

159; 160. Congruently, histone tail acetylation is an important functional requirement for 

immune activation. H3K4me3 promoter methylation in macrophages of higher 

eukaryotes was suggested to prevent inappropriate silencing of genes 161. 

Furthermore, deletion of mixed lineage leukaemia 4 (MLL4), an enzyme catalyzing 

H3K4me3 deposition, was shown to reduce LPS responsiveness of mouse 

macrophages 161, indicating a global role of histone methylation in macrophage 

activation. Mechanistically, absence of MLL4 controls expression of the 
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glycosylphosphatidylinositol (GPI) anchor. A defective GPI anchor causes loss of 

CD14, which is crucial for the recognition of LPS.  

 

6. Disruption of chromatin control in malignant myelopoiesis  

Myeloid cells can be transformed into several pathologically distinct types of 

malignancies, such as chronic or acute myeloid leukaemias (CML or AML, 

respectively) and myelodysplastic syndromes 162. AML is defined by clonal expansion 

of transformed myeloid progenitor cells, termed “blasts”, which are characterized by 

blocked or impaired differentiation capacity. AML is a heterogeneous disease, and 

depending on the developmental state at which the differentiation block has 

occurred, several subtypes are classically distinguished. The molecular nature of 

halted differentiation has been linked to genetic alterations, such as gain- or loss-of-

function mutations in genes encoding lineage-specific TFs 163; 164; 165; 166. In addition, 

the uncontrolled growth of myeloid leukaemia cells is often caused by mutated 

cytokine receptors or signaling molecules such as mutations of Flt3 159; 160; 161. How 

DNA methylation is connected to AML remains a matter of debate 7. DNA 

methyltransferases (DNMTs) establish and maintain the genomic methylation 

patterns mostly of CpG-dinucleotides 167. Whereas DNMT3a and DNMT3b act as de 

novo methyltransferases, DNMT1 functions as the major DNA methylation 

maintenance enzyme in mammalian cells 168. In normal mammalian cells, the vast 

majority of the genome is methylated at CpG sequences, while some areas with a 

high CpG density, termed CpG islands, are often spared from methylation when 

located at transcription start sites 169. In cancer cells, this pattern is often reversed in 

that CpG islands in the proximity of tumor suppressor genes are hypermethylated 

whereas the rest of the genome undergoes global hypomethylation 7; 169. Indeed, 

recent genomic sequencing efforts of myeloid leukaemia cases have revealed 

frequent mutations in a number of epigenetic regulator proteins such as DNMT3a, 
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Isocitrate dehydrogenase 1 (IDH1), IDH2, and Ten eleven translocation protein 2 

(TET2) 170; 171 that are all involved in DNA methylation/de-methylation (Figure 3).  

Approximately 20% of all AML patients carry loss-of-function mutations in the 

DNMT3a gene 172; 173. Interestingly, mice bearing a conditional depletion of DNMT3a 

in HSCs showed both increased and decreased methylation at different genomic loci 

174. In Dnmt3a-/- HSCs expression of lineage-differentiation promoting genes was 

decreased while expression of genes keeping the cells in an undifferentiated state 

was increased, indicating a requirement for DNMT3a to guide stem cells into 

differentiation. In line with the observation in HSCs, ES cells depend on DNMT3a to 

methylate pluripotency genes, such as Nanog and octamer-binding transcription 

factor 4 (Oct4), during differentiation 175. Of note, DNMT3a-null HSCs showed 

multilineage repopulation advantage over non-mutated HSCs in xenografts, but did 

not develop a myeloproliferative disorder or even acute leukaemia, suggesting that 

additional mutations are required to push Dnmt3a mutant cells into a transformed 

state 176. 

Another direct connection between DNA methylation and AML is through mutations 

in the genes encoding IDH1 and IDH2. Both, IDH1 and IDH2 are catalytic enzymes 

of the Krebs-cycle that in a NADP+ dependent manner convert isocitrate to α-

ketogluterate in the cytoplasm and mitochondria of cells 170. In AML, IDH1-R132, 

IDH2-R172 and IDH2-R140 are the three frequently found mutations, which by a 

gain-of-neo-function mechanism lead to altered enzymatic activity 177. Mutated 

IDH1/2 synthesizes 2-hydroxyglutarate (2-HG) instead of α-ketogluterate, and thus 

inhibit the catalytic functions of α-ketogluterate dependent dioxygenases such as 

TET2, which converts 5-mC to 5 hydroxymethylcytosine. Importantly, TET2, IDH1, or 

IDH2 mutations occur mutually exclusively in AML but lead to similar promoter 

hypermethylation profiles in patient cells 170; 178 demonstrating that they act within the 

same functional pathway 178. In fact, TET2 ablation in mice leads to increased HSC 
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self-renewal and eventually to the development of a myeloproliferative disorder, a 

phenotype resembling that of the IDH1-R132 knock-in mouse 179.  

In addition to mutations leading to altered DNA methylation patterns, it has long been 

known that changes in histone tail modifications can lead to myeloid leukaemia. A 

salient example is the gene for the trithorax-related methyltransferase MLL, that is a 

frequent target for recurrent chromosomal translocations with up to now more then 

50 different fusion partners (reviewed by: 180). MLL rearrangements were found in 

10% of all human leukaemias, and more then 80% are attributed to t(4;11)(q21;q23) 

or MLL–AF4; t(9;11)(p22;q23) or MLL–AF9; t(11;19)(q23;p13.3) or MLL–ENL; 

t(10;11)(p12;q23) or MLL–AF10; and t(6;11)(q27;q23) or MLL–AF6 fusions, all of 

them having lost the SET domain, that confers the H3K4 methyltransferase activity. 

Nevertheless, MLL fusion proteins retain methyltransferase activity, possibly by 

recruiting – and interacting in a complex with other methyltransferases such as 

DOT1L, responsible for H3K79 methylation 181. Another very recent example for a 

direct involvement of alterations in histone methylation in AML was the identification 

of loss-of-function mutations in the gene encoding the histone H3K36 

methyltransferase SETD2a 182. Downregulation of SETD2a leads to systemic loss of 

H3K36 tri-methylation (H3K36me3) and was found mutated in 6.2% of acute 

leukaemias. The combination of SETD2a knockdown with additional genetic lesions 

such as MLL-AF9 or RUNX1-ETO t(8;21) knock-in in mice in vivo increased the 

frequency of leukaemia initiating cells and resulted in accelerated onset of 

leukaemia. Thus, SETD2a may act as a tumor suppressor in myeloid neoplasia. 

Moreover, a number of HAT and HDAC enzymes often act as fusion partners of 

chromosomal translocations in AML cells. For example, fusion products of MOZ to 

CREB binding protein (CBP) 183 or to p300 are recurrently found in AML 184. As a 

result, chromatin decondensation by mistargeted histone acetylation signals can 

aberrantly activate the expression of MOZ target genes, which in turn leads to 

blocked myeloid differentiation 6. 
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Various epigenetic modifying enzymes such as HDACs are recruited by the RUNX1-

ETO fusion complex (also known as AML1-ETO), which is one the most frequently 

found mutations in AML 185; 186. Mechanistically, the RUNX1-ETO protein binds to 

RUNX1 sites of target genes, among which are the genes encoding the cell-cycle 

arrest inducer C/EBPα as well as the tumor suppressor p14(ARF) 185; 187. Reduction 

of histone acetylation goes along with an increase of H3K9me3 and H3K27me3 at 

these genes, indicative for transcriptional silencing 187. Application of HDAC inhibitors 

to RUNX1-ETO induced leukaemia led to an anti-leukaemic response and induced 

myeloid differentiation due to proteosomal degradation of the RUNX1-ETO fusion 

complex 188. 

Finally, a comprehensive study by Shi et al. demonstrates the dependency of 

leukaemic transformations on chromatin accessibility at cancer associated gene loci 

or their regulatory elements 144. In their AML model, the authors underlined the 

importance of the SWI/SNF complex member Brahma-related gene-1 (Brg1) to 

maintain long-range chromatin interaction with distant Myc-specific enhancers. 

Reducing Brg1 expression down regulated c-Myc expression, interfered with 

chromatin looping, and TF occupancy at the enhancer site of the c-Myc gene. These 

findings demonstrated the pivotal role of the SWI/SNF complex to maintain the 

nucleosomal architecture of myeloid cells, and indicated how disruption of this 

epigenetic mechanism can contribute to leukaemogenesis. 

 

Concluding remarks 

Whole-genome approaches provide the opportunity to study chromatin dynamics at 

unprecedented resolution and affirm that chromatin is far more vibrant than it was 

previously appreciated. Thus, our understanding of the transcriptional programs that 

govern myeloid cell specialization has rapidly grown. Even as the advance in 

technology helps to identify new players and mechanisms in myeloid cell 

commitment, deciphering global regulatory processes on a mechanistic level is 
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hindered by the complexity of interacting TFs, cis-regulatory elements, structural 

proteins and post-translational modifications of histones and DNA methylation.  

From the clinical point-of-view the plasticity of the myeloid compartment not only 

confers an array of mutated TFs and cytokine receptor- and signalling proteins 

associated with leukaemia. This panel of crucial checkpoints has recently been 

extended to epigenetic control enzymes leading to aberrant chromatin structures, 

alterations in histone and DNA modifications, and also to modifications in RNA 

processing and splicing 6; 170; 189; 190. Consequently, it will remain an important task for 

the future to translate basic achievements on the epigenetic nature of cells into 

desperately needed novel ideas for tumor therapy. Continuous research on the 

chromatin mechanisms guiding the biology of myeloid cells is likely to remain an 

essential tool to provide answers to these important clinical challenges.  
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Figure legends 

 

Figure 1: Differentiation hierarchy of myeloid cells in the mouse. 

Haematopoietic stem cells (HSC) in the bone marrow give rise to common lymphoid 

progenitors (CLP) and common myeloid progenitors (CMP), and CMPs differentiate 

into granulocyte-macrophage progenitors (GMP). However, the phenotypic GMP 

compartment comprises several more specialized progenitor subunits, which include 

myeloid progenitors (MP), monocytes/macrophages and DC precursors (MDP), 

common dendritic progenitors (CDP) and common monocyte progenitors (cMoP). 

MPs give rise to granulocytes (eosinophil, basophil and neutrophil granulocytes) and 

to the MDP. The MDP gives rise to common DC progenitors (CDP) and common 

monocyte progenitors (cMoP). Under homeostatic conditions, different monocyte 

populations, distinguished by Ly6C expression, replenish macrophages in the 

periphery and during inflammation, Ly6C+ monocytes can form monocyte derived 

DCs (moDC). CDPs form the pre-cDC, giving rise to conventional DCs (cDC), and 

plasmacytoid DCs (pDC).  

 

Figure 2: Chromatin looping and PU.1 function. 

(A) In non haematopoietic cells the Irf8 promoter (green box) is not in physical 

proximity to the -50 kb regulatory element (dark blue box; left panel). In contrast, in 

DC progenitors the -50 kb enhancer is bound by PU.1 (red oval), which is associated 

with H3K9ac, physical interaction with the Irf8 promoter and induction of IRF8 

expression (indicated by red strings, right panel).  

(B) In non haematopoietic cells (left panel) the PU.1 promoter (red box) is not 

transcribed, the URE (light blue box) and the -12 kb (light green box) regulatory 

elements are not in physical proximity to the PU.1 promoter. However, in 

haematopoietic stem cells (HSC, middle panel), a physical proximity of PU.1 

promoter region and the URE coincide with medium level PU.1 expression. In 
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contrast, interaction of the PU.1 promoter with both the URE and the -12 kb 

regulatory element in monocyte/macrophages coincide with high level PU.1 

expression. 

 

Figure 3: Aberrant epigenetic modifications involved in myeloid leukaemia. 

Epigenetic mechanisms are involved in myeloid cell commitment and three major 

functions are associated with the onset of leukaemia, aberrant histone modification, 

aberrant DNA-methylation and altered chromatin accessibility (red boxes). 



Schoenheit et al. Figure1: Differentiation hierarchy of myeloid cells in the mouse.
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Schoenheit et al. Figure 2: Chromatin looping and PU.1 function.
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Schoenheit et al. Figure 3: Aberrant epigenetic modifications involved in myeloid leukemia.
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