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Abstract: 
Polyglutamine (polyQ) diseases such as Huntington’s (HD) or Spinocerebellar 

ataxia type 1 (SCA1) are neurodegenerative disorders caused by abnormally 

elongated polyQ tracts in human proteins. PolyQ expansions promote misfolding and 

aggregation of disease-causing proteins, leading to the appearance of nuclear and 

cytoplasmic inclusion bodies in patient neurons. Several lines of experimental 

evidence indicate that this process is critical for disease pathogenesis. However, the 

molecular mechanisms underlying spontaneous polyQ-containing aggregate 

formation and the perturbation of neuronal processes are still largely unclear.   

This chapter reviews the current literature regarding misfolding and 

aggregation of polyQ-containing disease proteins. We specifically focus on studies 

that have investigated the amyloidogenesis of polyQ-containing huntingtin exon 1 

(HTTex1) fragments. These protein fragments are disease-relevant and play a critical 

role in HD pathogenesis. We will outline potential mechanisms behind mutant 

HTTex1 aggregation and toxicity, as well as proteins and small molecules that can 

modify HTTex1 amyloidogenesis in vitro and in vivo. The potential implications of 

such studies for the development of novel therapeutic strategies are discussed. 
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Introduction: 
Polyglutamine (polyQ) tracts with lengths between 5 and 30 glutamines are 

conserved and found in 0.34% of all human proteins, indicating that they play an 

important functional role [1]. This view is supported by systematic computational and 

experimental investigations of polyQ-containing proteins, which suggest that polyQ 

domains mediate protein-protein interactions [1]. For example, polyQ sequences in 

transcription factors can influence gene expression in yeast and mammalian cells by 

promoting the formation of regulatory protein complexes that facilitate transcriptional 

activation [2-4]. Thus, polyQ sequences form functionally relevant protein domains 

that play a critical role in the assembly and disassembly of protein complexes. 

However, substantial experimental evidence demonstrates that abnormally 

expanded polyQ tracts in proteins are toxic for cells and can cause severe inherited 

human diseases [4]. Such polyQ expansions are the result of rare genetic mutations, 

which were identified in patient families through positional cloning approaches [5]. 

The neurodegenerative disease Huntington`s chorea is caused by a CAG 

trinucleotide expansion in the HTT gene, which leads to the synthesis of an 

elongated polyQ tract within the corresponding huntingtin (HTT) protein [6]. Wild-

type, non-pathogenic HTT contains 6-35 glutamines, while the mutant, pathogenic 

protein in patients harbors more than 40 glutamines [6]. The polyQ tract in HTT is 

located at the N-terminus, followed by a proline-rich region and three conserved 

HEAT repeats, which have a typical α-helical solenoid structure [46]. Both the 

proline-rich and the HEAT repeat regions in HTT are critical for the assembly of 

protein complexes in neuronal cells [46, 47]. HTT is a large protein with a predicted 

molecular mass of about 350 kDa. Currently, its normal function in cells is not fully 

understood. However, studies in cell models and transgenic animals indicate that 

wild-type HTT plays a functional role in vesicle transport processes, cell signaling 

and transcriptional gene regulation, suggesting that it is a multifunctional scaffold 

protein that influences various cellular processes [48]. 

Huntington’s disease (HD) is the most frequent form of the hereditary choreas. 

It has a multifaceted phenotype, including cognitive, psychiatric and motor 

impairments [6]. Symptoms of HD commonly become noticeable between the ages of 

35-50 years; however, they can begin at any age from childhood to old age. HD 

affects the whole brain but certain areas such as the caudate nucleus and the 

putamen are most vulnerable. In these areas predominantly striatal medium spiny 
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neurons are degraded, which play a key role in the control of movement and 

behavior [8].  

To this day, 10 inherited polyQ expansion diseases have been reported, as 

summarized in Table 1. Although cellular dysfunction and toxicity are predominantly 

observed in neurons of the central nervous system (Table 1), the disease-causing 

proteins are ubiquitously expressed in all human tissues. Differentiated postmitotic 

neurons seem significantly more vulnerable to proteins with pathogenic polyQ tracts 

than fast-dividing mitotic cells. The molecular basis for the selective degeneration of 

neuronal cells in polyQ diseases, however, is still unclear [7].  

Neurodegenerative polyQ expansion diseases are characterized by the 

accumulation of insoluble protein aggregates in neuronal cells (Table 1). These 

aggregates, which are often concentrated in large inclusion bodies, are observed in 

brain regions that display massive neurodegeneration, suggesting that the process of 

polyQ-mediated protein misfolding and aggregation drives pathogenesis [8]. This 

hypothesis is supported by investigations in transgenic mouse, fly and worm models, 

which indicate that toxicity in neuronal cells correlates with the formation of polyQ-

containing protein aggregates [9]. Moreover, in vitro studies with polyQ disease 

proteins have demonstrated that both spontaneous protein aggregation and toxicity 

are dependent on polyQ length. Proteins with short, non-pathogenic polyQ tracts 

remain soluble, while proteins with long, pathogenic polyQ tracts self-assemble into 

insoluble, fibrillar protein aggregates or amyloids [10;45]. Hence, the formation of 

amyloidogenic protein aggregates is highly likely to be an important pathobiological 

process. 

In this chapter, we will mainly review protein aggregation studies that focus on 

polyQ-containing disease-relevant N-terminal HTT exon 1 (HTTex1) fragments. Such 

protein fragments are generated in HD patients through the aberrant splicing of HTT 

mRNA [11]. HTTex1 rapidly self-assembles into protein aggregates in cell-free as 

well as cell-based assays and induces toxicity in various in vivo disease model 

systems [9;10]. A better understanding of the mechanism of HTTex1 aggregation and 

its impact on biological systems is critical for a better understanding of pathogenesis 

in HD and other polyQ disorders. 
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Pathogenic polyQ-containing protein aggregates in patients and 

disease models  

The deposition of N-terminal HTT protein fragments with expanded polyQ 

sequences in neuronal inclusion bodies (IBs) is one pathological characteristic of HD 

brains [8,9]. IBs, which generally have a diameter of 1-5 µm, are predominantly 

detected in cortical and striatal neurons [12;45]. Immunohistological studies revealed 

that IBs are exclusively detected with anti-HTT antibodies raised against N-terminal 

HTT regions [13], suggesting that the truncated fragments rather than the full-length 

protein form insoluble disease-relevant protein aggregates in patient brains. 

Strikingly, such IBs are predominantly detected in the nuclei of neuronal cells, 

implying that the nuclear environment promotes the aggregation of the pathogenic 

protein (Fig. 1A) [8]. It is currently assumed that the misfolding and aggregation of 

mutant HTT recruits cellular proteins such as ubiquitin, molecular chaperones or 

components of the ubiquitin-proteasome system into IBs and thereby causes a 

redistribution of important functional proteins [12]. This might lead to the loss of 

function of multiple cellular pathways that depend on low-abundance proteins, such 

as transcription factors or molecular chaperones. Accordingly, neuronal IBs 

consisting of truncated, aggregated HTT fragments and multiple other cellular 

proteins are distinct subcellular structures that are exclusively detectable in the 

brains of patients and HD models with disease phenotypes. 

Aggregation-prone HTT fragments also form soluble protein aggregates in 

neuronal cells [14]. These fibrillar oligomers or protofibrils, are diffusible structures 

(Fig. 1B) that can cause abnormal protein-protein interactions with other cellular 

proteins or lipids [15;16]. This may result in the co-precipitation of metastable, 

natively unfolded proteins and perturb the membrane integrity of cells or transport 

vesicles [15;17]. 

In vitro and cell-based studies with polyQ-containing N-terminal HTT 

fragments showed that HTTex1 fragments with pathogenic polyQ tracts 

spontaneously self-assemble into insoluble protein aggregates with a β-sheet-rich, 

fibrillar morphology (Fig. 1B and C) [10;45]. Therefore, HTT aggregation is 

reminiscent of the amyloid-β and α-synuclein fibrillogenesis observed in the brains of 

patients with Alzheimer’s and Parkinson’s disease, respectively [18]. Strikingly, 
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detailed investigations of HTTex1 fragments with different polyQ tracts have revealed 

that spontaneous HTTex1 fibrillogenesis is a polyQ-length dependent process [10]. 

HTTex1 fragments with non-pathogenic polyQ tracts are soluble, but large aggregate 

structures are detected in association with pathogenic HTTex1 fragments (Fig. 2A). 

Thus the polyQ-length-dependent aggregation of HTTex1 in vitro mirrors 

observations in patients and in transgenic model systems [8,9].  

 

Mechanism of polyQ-mediated HTT exon1 protein aggregation 
Studies with amyloidogenic polypeptides and proteins such as IAPP, Aβ, α-

synuclein or PrP have demonstrated that the process of fibril self-assembly is generic 

and can be divided in two phases: (1) a lag phase where few or no fibrils form and (2) 

a fibril growth phase where a dramatic exponential increase in fibril mass is observed 

[19]. Usually, such spontaneous amyloid polymerization reactions have been 

explained with nucleation-dependent polymerization models [10;19;45]. These 

theoretical models assume that the rate-limiting step in the amyloidogenic pathway is 

the formation of a “nucleus”, which develops slowly during the lag phase of the fibril 

assembly cascade. The “nucleus” is an oligomeric aggregate species of low 

abundance that is kinetically unstable and assembles with low propensity. Once 

formed, however, it rapidly grows into larger amyloid fibrils through an addition of 

monomers [10;19]. Thus the characteristic sigmoidal fibrillar growth profile observed 

for many amyloidogenic polypeptides reflects the greater ease by which monomers 

are added onto existing aggregates compared to the de novo formation of 

amyloidogenic oligomers (nuclei) from monomers through primary homogenous 

nucleation [19]. 

Spontaneous HTTex1 fibrillogenesis in vitro critically depends on the length of 

the polyQ tract (Fig. 2A) as well as on protein concentration and time (Fig. 2B). 

Moreover, aggregation can be stimulated by preformed fibrils, indicating that HTTex1 

fibrillogenesis is dominated by a nucleation-dependent mechanism similar to that of 

other amyloidogenic polypeptides [10;45]. However, the details of the molecular 

mechanisms by which disease-relevant polyQ-containing HTTex1 fragments self-

assemble into amyloid structures are currently not very well understood. Biochemical 

and biophysical studies hint that HTTex1 fragments with pathological polyQ tracts are 

converted into mature amyloid fibrils via spherical oligomers and/or protofibrils 
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[14;20]. These structures were indeed detected in cell-free aggregation reactions by 

atomic force microscopy (AFM) [20]. However, these studies also provided 

experimental evidence that the vast majority of spontaneously forming HTTex1 fibrils 

are obtained through addition of monomers rather than through precursor oligomers 

[20]. Further studies are necessary to elucidate the critical steps in the HTTex1 

polymerization cascade.  

 

Proteotoxicity of polyQ-containing protein aggregates  

Neurodegenerative disorders caused by CAG repeat expansions share two 

main characteristics: the deposition of protein aggregates and neuronal cell death. 

However, the identification of a defined neurotoxic aggregate species and the 

mechanism by which it ultimately causes toxicity is challenging and remains elusive. 

Different types of mutant HTT (mHTT) aggregates such as oligomers, fibrils 

and IBs have been identified in neuronal cells [10;14;20;23]. IBs composed of mHTT 

fragments trap multiple proteins such as ubiquitin and chaperones, thereby exerting 

constant stress on the cellular environment [12;17]. Nevertheless, a number of 

studies indicate that IBs are less toxic for mammalian cells than small, soluble HTT 

protein aggregates. According to the evidence provided, mHTT fragments are 

transported into distinct, IB-like quality control compartments that accumulate the 

misfolded polyQ protein. Such compartments include structures such as the 

aggresome, the IPOD (insoluble protein deposit), the JUNQ (juxta- nuclear quality 

control) or the StiF (Sti1-inducible foci) [12;21;22]. Interestingly, the maturation of 

these IB-like compartments is regulated by cytosolic chaperones and their co-

chaperones, suggesting that chaperone pathways control the toxic effects of 

misfolded proteins in mammalian cells. Therefore, improving cells’ capacity to deal 

with misfolded proteins by increasing the levels of molecular chaperones should 

reduce mHTT-induced toxicity. Indeed, observations in mammalian and yeast cells 

have been made that the molecular chaperones Hsc70 and Sti1p promote the 

accumulation of mHTT fragments into IB-like compartments [22;23]. This ultimately 

leads to reduced toxicity, suggesting that the process of the chaperone-induced 

formation of IBs is a strategy to protect cells against misfolded, proteotoxic polyQ 

proteins. Together, these studies imply that IBs, at least in rapidly dividing cells, have 



	
   7	
  

a protective role by serving as compartments for misfolded, aggregation-prone 

proteins.  Even though IBs consisting of insoluble HTT aggregates are considered 

less harmful by some investigators than soluble aggregate species, they still exert a 

constant stress on protein homeostasis in mammalian cells. Recently, an artificial β-

sheet-rich polypeptide, which forms typical amyloid fibrils in in vitro aggregation 

assays, was shown to be highly toxic for mammalian cells [23]. This polypeptide is 

thought to cause cellular toxicity through the formation of stable β-sheet-rich protein 

aggregates that can sequester several important, metastable proteins. PolyQ 

aggregates in cells potentially cause dysfunction and toxicity by binding essential 

cellular proteins, thereby preventing their ability to perform their normal cellular tasks 

[23]. However, the relevance of different aggregate species to pathogenesis needs 

further elucidation. 

Mitotic cells have the ability to asymmetrically distribute inclusion bodies to 

only one of the daughter cells, allowing the other to develop free of aggregates. Cells 

left with IBs show a reduced capacity for reproduction, suggesting that they 

experience increased cellular stress [7]. As neurons are post-mitotic cells, they are 

constantly exposed to IBs and thus to proteotoxic stress. This is likely to lead to the 

dysfunction of key cellular pathways and the accumulation of additional misfolded 

proteins in a process that may last for decades. Numerous studies have analyzed the 

effects of polyQ-containing HTT fragments on a range of distinct cellular pathways 

(review in [4]). For example, mHTT fragments disrupt autophagy and the ubiquitin 

proteasome system (UPS) in cells, indicating that components of the cells’ protein 

degradation-machinery are specifically vulnerable to polyQ aggregates [12;24;25]. In 

human HD brains, neuronal autophagosomes are enlarged and accumulate, 

supporting the view that mHTT aggregates perturb protein degradation pathways. In 

addition, reduced cytosolic turnover of mHTT aggregates has been observed in cell 

models. This phenomenon is thought to be the result of the defective recognition of 

HTT aggregates rather than of impaired autophagosome-lysosome fusion [24]. 

Interestingly, mHTT fragments are also present in synaptic terminals in neurons, 

where they form aggregates and cause an impairment of the local ubiquitin-

proteasome system (UPS) [25]. As the UPS is a critical modulator of synaptic 

plasticity and function, this highlights the importance of synaptic pathology in HD. 

Additionally, pathogenic HTT fragments disrupt axonal transport in neuronal cells. 

Under pathological conditions, the transport protein kinesin binds to microtubules 
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with reduced affinity [26]. This is due to increased phosphorylation by the axonal 

cJun N-terminal kinase JNK3, which is hyperactivated by mHTT in neuronal cells. 

This disruption of the axonal transport machinery ultimately leads to an undersupply 

of synapses with essential membrane-bound cargos and thus to an impairment of 

synaptic function [26].  

Previous studies have also suggested that mHTT aggregates are toxic for 

cells because they directly produce reactive oxygen species [27]. Similar results have 

also been reported for amyloid-ß aggregation reactions, supporting the observations 

with aggregation-prone HTTex1 fragments [28]. Intriguingly, experimental evidence 

suggests that aggregates formed of simple polyQ peptides are cytotoxic for 

mammalian cells when transported into the nucleus [29]. This suggests that the 

nuclear environment is especially vulnerable to polyQ protein aggregates. This could 

be due to the fact that polyQ aggregates recruit other polyQ or Q-rich proteins such 

as the TATA-binding protein (TBP), which subsequently lose their normal cellular 

functions [30]. Finally, evidence demonstrates that in vitro-produced fibrillar HTTex1 

aggregates, rather than oligomers or monomers, are toxic for mammalian cells [15]. 

One potential mechanism for this behavior is that amyloid-like polyQ-containing 

protein aggregates can disrupt cellular membranes, potentially resulting in an 

uncontrolled breakage of cells or subcellular compartments [15]. These findings 

suggest that both small, diffusible mHTT aggregates and large IBs containing 

insoluble protein aggregates are harmful for cells. However, additional studies with 

disease-relevant model systems such as induced pluripotent stem (iPS) cell-derived 

neurons from HD patients need to be performed in order to elucidate the details of 

the molecular mechanisms by which polyQ protein aggregates perturb cellular 

systems.  

	
  

Modulation of polyQ-mediated protein aggregation by distinct 
cellular pathways and proteins  

Numerous proteins that modulate mHTT aggregation and toxicity in cell-free or 

cell-based assays have been identified [31;32]. Molecular chaperones and 

chaperone-associated proteins can directly bind to polyQ proteins. They can either 

stabilize the conformation and prevent the conversion of polyQ sequences from a 
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random coil into an aggregation-prone β-sheet-rich structure [31], or induce the 

degradation of the polyQ protein [32]. The chaperone CHIP, which possesses E3 

ubiquitin ligase activity, binds to proteins with expanded polyQ tracts including mHTT, 

which leads to an increased ubiquitination and degradation of the targeted protein 

[32]. Protein aggregates can also be cleared from cells via macro- or chaperone-

mediated autophagy (CMA). Selective catabolism in CMA is conferred by the 

presence of a KFERQ-like targeting motif in polyQ proteins, by which molecular 

chaperones recognize the hydrophobic surfaces of the misfolded substrates and 

transfer them to the lysosomal membrane protein LAMP-2A. They are then taken up 

into lysosomes, where they are degraded by lysosomal enzymes [33]. A synthetic 

fusion-peptide consisting of an Hsc70-binding motif and two polyQ-binding 

sequences can promote the degradation of mHTT through CMA [33]. The peptide 

activates CMA by stimulating the association of mHTT with the chaperone 

machinery. Enhanced clearance of mHTT fragments through treatment with this 

construct was observed in cell models as well as transgenic mice [33]. A similar 

strategy was applied to promote the degradation of polyQ aggregates through 

macroautophagy. In this case, a synthetic peptide derived from the key autophagy 

protein beclin1 was used to induce protein degradation [34]. Thus the development of 

autophagy-stimulating peptides is a powerful strategy to promote the clearance of 

polyQ-containing protein aggregates from mammalian cells. 

For sake of completeness, it should be stated that posttranslational 

modifications such as phosphorylation, acetylation or SUMOylation influence the 

aggregation propensity of polyQ-containing HTT fragments in various model 

systems. Acetylation at lysine 444 (K444) increases the clearance of mHTT through 

macroautophagy. Expression of an acetylation-resistant mHTT fragment led to a 

dramatic increase in aggregation and neurodegeneration in primary cortical neurons 

and mouse brain [35]. Taken together, autophagy, chaperones and posttranslational 

modifications dramatically influence the biological activity of mHTT and its 

aggregation propensity in cells. 
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Identification of small molecules that influence polyQ-mediated 

protein aggregation  

Cellular processes that maintain proteostasis are of critical importance with 

regard to aggregation of polyQ-containing disease proteins. Proteostasis is 

maintained and regulated by molecular chaperones, autophagy, the ubiquitin 

proteasome system, and stress signaling pathways that sense the accumulation of 

abnormally folded proteins in cells [4;31-34]. Modulation of proteostasis is believed to 

have a powerful influence on misfolding and proteotoxicity of aggregation-prone 

disease proteins. Studies with the small molecule geldanamycin (GA), a potent 

inhibitor of Hsp90 ATPase activity, have revealed that increases in the levels of 

molecular chaperones such as Hsp70 or Hsp40 are associated with reduced 

aggregation and toxicity of mutant HTTex1 fragments in cells and flies [36]. The 

importance of chaperone networks in managing misfolded proteins in cells is also 

supported by the effect of the compound YM-1, which increases the binding affinity of 

Hsp70 to polyQ disease proteins, leading to an increased efficiency of their 

ubiquitination and degradation [37]. High-throughput screenings have led to the 

identification of numerous novel small molecules that influence the expression of 

molecular chaperones in mammalian cells [38]. The mechanism of action of these 

compounds needs to be further investigated, however, to develop new therapeutic 

strategies. 

Small molecules that induce autophagy might also be of therapeutic value in 

the treatment of polyQ diseases. The well-known inducer rapamycin, an inhibitor of 

the mTOR pathway, potently decreases the abundance of insoluble polyQ HTT 

aggregates in cell models of HD and transgenic flies [39]. Rapamycin has only a mild 

effect in neurons, while the compound 10-NCP, an Akt inhibitor, was found to induce 

autophagy in neuronal cells more potently, suggesting that different compound 

classes may be required to promote the degradation of polyQ aggregates in different 

cell types [40]. Besides small molecule promoters of functional proteostasis, 

compounds that directly target the aggregation process have been identified. They 

include substances such as Congo red, Thioflavine S, PGL-135 or EGCG ((–)-

epigallocatechin-3-gallate), which reduce the formation of polyQ-containing HTTex1 

aggregates [41-43]. To date, the mode of action of EGCG has been studied most 

extensively (Fig. 3A). It directly binds to soluble HTTex1 fragments, reducing their 
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propensity to spontaneously convert into β-sheet-rich fibrillar protein aggregates. 

Interestingly, EGCG does not block HTTex1 aggregation in cell-free assays. Rather, 

it promotes the formation of amorphous HTTex1 protein aggregates which are not 

observed in the absence of the substance [43]. This indicates that EGCG redirects 

the polyQ-mediated HTTex1 aggregation pathway, leading to the formation of a new 

type of aggregate structure. Studies in cells have revealed that this new type of 

HTTex1 protein aggregate can be degraded more efficiently than β-sheet-rich fibrillar 

aggregates, resulting in decreased toxicity for mammalian cells. 

Several studies indicate that critical features of neurodegenerative diseases 

such as protein misfolding, aggregation and neurotoxicty can be reproduced in 

transgenic fly models [49]. These investigations motivated us to assess the effect of 

EGCG on photoreceptor neurodegeneration in HD transgenic flies, overproducing an 

aggregation-prone HTTex1 protein with a pathogenic polyQ tract of 93 glutamines 

(HTTex1Q93). In this model the expression of HTTex1Q93 causes the progressive 

disruption of the regular trapezoidal arrangement of seven visible photoreceptor 

neurons (rhabdomers) that can be monitored by light microscopy. We found that in 

the absence of EGCG, HTTex1Q93-expressing neurons deteriorate until on average 

~3.5 photoreceptors per ommatidium remain after 7 days (Fig. 3B). In EGCG treated 

flies, however, neurodegeneraton was significantly diminished, indicating that the 

compound has a protective effect on neurotoxicity in transgenic flies [43]. Intriguingly, 

EGCG is also a potent inhibitor of α-synuclein and amyloid-β fibrillogenesis, 

suggesting that it is a generic modulator of protein misfolding and aggregation [44]. 

We propose that EGCG functions as a chemical chaperone that can target multiple 

aggregation-prone proteins in a way similar to that of protein chaperones. In 

summary, targeting aggregation-prone proteins directly with small molecules might 

be an avenue for therapeutic interventions in polyQ and, more broadly, in protein 

misfolding diseases.  

 

Conclusions 

Polyglutamine diseases are caused by a CAG-expansion mutation in a disease gene, 

which leads to an elongated polyQ sequence in the protein product. HTTex1 

containing a pathogenic polyQ stretch self-assembles and forms aggregates of 
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different morphologies in vitro and in vivo. Similar to other amyloidogenic proteins, 

HTTex1 fibrillogenesis follows a polyQ-length-dependent nucleation and 

polymerization pathway. Controlled by the proteostasis network, cells have 

developed defense mechanisms, which inhibit misfolding and facilitate aggregate 

clearance. A better understanding of the basic principles of protein misfolding and 

aggregation will be the basis for the identification of small molecules which may be 

applicable as therapeutic agents. 

 

Summary 

• PolyQ-diseases are neurological disorders that are caused by a polyQ expansion 

mutation 

• The expansion of the polyQ tract in the disease protein leads to misfolding and 

intracellular aggregate formation associated with cell-type-specific neurotoxicity 

and brain-region-specific atrophy 

• HTTex1 spontaneously self-assembles into amyloid structures 

• The aggregation reaction follows a nucleation-dependent mechanism 

• PolyQ aggregates are β-sheet rich structures 

• Intracellular inclusion bodies sequester a wide variety of cellular proteins leading 

to a disturbance of proteostasis  

• Small diffusible mHTT aggregates as well as large inclusion bodies are harmful 

for cells 

• There is no effective treatment for any of the polyQ diseases 
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− EGCG 
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Tabelle 1: Overview of the ten known polyglutamine diseases (modified from [4]) 

Disease Protein Pathological 
repeat length Affected brain region 

Dentatorubropallidoluysian atrophy (DRPLA) Atropin-1 49-88 Cerebral cortex 
Huntington's disease (HD) Huntingtin 40-121 Striatum and cortex 

Spinal and bulbar muscular atrophy (SBMA) Androgen receptor 38-62 Motor neurons; brain stem; 
spinal cord 

Spinocerebellar ataxia 1 (SCA1) Ataxin-1 39-82 Cerebellum 
Spinocerebellar ataxia 2 (SCA2) Ataxin-2 32-200 Cerebellar Purkinje cells 

Machado-Joseph disease (MJD) Ataxin-3 61-84 Ventral pons and 
substantia nigra 

Spinocerebellar ataxia 6 (SCA6) CACNA1A 10-33 Cerebellar Purkinje cells 

Spinocerebellar ataxia 7 (SCA7) Ataxin-7 37-306 Cerebellar Purkinje cells; 
brain stem; spinal cord 

Spinocerebellar ataxia 12 (SCA12) PPP2R2B 66-78 Cerebral and cerebellar 
cortex 

Spinocerebellar ataxia 17 (SCA17) TATA-binding protein 47-63 Cerebellar Purkinje cells 
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Fig. 1: Electron microscopy of in vivo human nuclear inclusions and in vitro HTTex1 
aggregates. 
(A) Nuclear inclusion in cortical neurons from a Huntington‘s disease patient. Scale bar corresponds to 
1 µm. Image by courtesy of DiFiglia et al., 1997 [8]. 
(B) HTTex1 fibrillar structures isolated from COS-1 cells and immunogold labeled. Scale bar 
corresponds to 50 nm. Image by courtesy of Scherzinger et al., 1999 [10]. 
(C) In vitro generated fibrillar HTTex1 aggregates show morphological similarity. Scale bar 
corresbonds to 100 nm. 
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Fig. 2: Spontaneous HTTex1 aggregation is polyQ and time dependent 
(A) COS-1 cells expressing HTTex1 fragments with different polyQ lengths form aggregates in a 
polyQ-length dependent manner. Cell lysates were separated in insoluble (pellet) and soluble 
(supernatant) fractions by centrifugation. Image by courtesy of Scherzinger et al., 1999 [10]. 
(B) Proteolytic cleavage of GST-HTTex1Q49 fusion protein results in the release of HTTex1Q49 
fragments, which form insoluble aggregates in vitro in a time-dependent manner. 
(C) The HTTex1Q49 fragment in a time-dependent manner forms bundles of amyloid-like aggregates 
with a fibrillar morphology. Aggregation was monitored by atomic force microscopy (AFM). Scale bar 
corresponds to 500 nm. 
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Fig. 3: Figure 3: The compound EGCG protects against HTTex1Q93-induced photoreceptor 
degeneration in Drosophila melanogaster 
(A) Chemical structure of (–)-epigallocatechin-gallate (EGCG). 
(B) 7-day old Drosophila melanogaster flies expressing HTTex1Q93 show extensive photoreceptor 
degeneration. When treated with solvent the ommatidia contain three (white arrowhead) or four 
(yellow arrowhead) rhabdomers. Flies fed with 100 µM EGCG show reduced degeneration, with up to 
seven rhabdomers (green arrow). Image by courtesy of Ehrnhoefer et al., 2006 [43] 
 

	
  


	14309_Cover
	14309_FinalDraft
	Spontaneous self-assembly of pathogenic huntingtin
exon 1 protein into amyloid structures
	Abstract
	Introduction
	Pathogenic polyQ-containing protein aggregates in patients and
disease models
	Mechanism of polyQ-mediated HTT exon1 protein aggregation
	Proteotoxicity of polyQ-containing protein aggregates
	Modulation of polyQ-mediated protein aggregation by distinctcellular pathways and proteins
	Identification of small molecules that influence polyQ-mediatedprotein aggregation
	Conclusions
	Summary
	Key words
	Biographical Note
	References
	Table 1
	Figure
 1
	Figure
 2
	Figure
 3



