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ABSTRACT

Hidden Markov models (HMMs) and their variants
are widely used in Bioinformatics applications that
analyze and compare biological sequences. Design-
ing a novel application requires the insight of a
human expert to define the model’s architecture.
The implementation of prediction algorithms and
algorithms to train the model’s parameters, how-
ever, can be a time-consuming and error-prone
task. We here present HMMCONVERTER, a software
package for setting up probabilistic HMMs, pair-
HMMs as well as generalized HMMs and pair-
HMMs. The user defines the model itself and the
algorithms to be used via an XML file which is then
directly translated into efficient C++ code. The
software package provides linear-memory predic-
tion algorithms, such as the Hirschberg algorithm,
banding and the integration of prior probabilities
and is the first to present computationally efficient
linear-memory algorithms for automatic parameter
training. Users of HMMCONVERTER can thus set up
complex applications with a minimum of effort and
also perform parameter training and data analyses
for large data sets.

INTRODUCTION

Hidden Markov models (HMMs) are widely used in
Bioinformatics for analyzing and comparing biological
sequences, such as genomes, transcripts and proteins.
Applications range widely from comparative gene
prediction (1,2,3) to methods for identifying protein
domains (4) and predicting protein interfaces (5) and
inference models for genome-wide association studies
(6). Comparative applications employing pair-HMMs
and applications employing probabilistic models have
become increasingly important as they can significantly
improve the ability to detect functional features and to
interpret the model’s predictions.

As the states of a model and their connections capture
the most important features of the biological systems
being studied, model design is best done by a human
expert. The implementation of prediction algorithms,
however, can be time-consuming and error-prone. The
key idea of our software package HMMCONVERTER is
thus to separate the design of a particular model from
the implementation of the algorithms.
Earlier efforts in this direction comprise the compilers

GENLANG (7) and DYNAMITE (8). GenLang allows users to
specify HMMs (as well as context-free grammars) using
the language Prolog, whereas DYNAMITE (8) is a compiler
that produces efficient C code for pair-HMMs to be used
in conjunction with the Viterbi algorithm (9). A more
recent development is the compiler by Steffen and
Giegerich (10), which allows users to specify HMMs,
pair-HMMs (and context-free grammars) using algebraic
dynamic programming. HMMER3 (11) is a software
package for automatically deriving profile HMMs from
given multiple-sequence alignments such as those of the
protein family data base PFAM (4). HMMOC (12) and
MAMOT (13) are the two most recent developments
and the first to explicitly cater for probabilistic models.
MAMOT is a compiler that can be used to set up simple
HMMs, but not generalized HMMs and pair-HMMs,
i.e. those types of HMMs that are typically employed
by Bioinformatics applications today. The compiler
HMMOC is a more general framework that can be used
to set up probabilistic HMMs for any number of input
sequences as well as generalized and phylogenetic HMMs.
Both MAMOT and HMMOC, however, incorporate only
basic algorithms and do not provide computationally
efficient linear-memory algorithms for generating
predictions and for training the model’s parameters.
Most existing Bioinformatics applications, however, are

still based on hand-coded source code rather than high-
level toolkits as many Bioinformatics applications today
require computational efficiency and features that these
software packages do not provide.
We here present a new HMM compiler, called

HMMCONVERTER, which significantly extends the
functionality of MAMOT and HMMOC and which is the
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first to provide computationally efficient linear-memory
algorithms for generating predictions and for training
parameters. The package can thus be used to swiftly
design powerful applications employing complex models
and to analyze realistic data sets.

MATERIALS AND METHODS

Model architectures and state features

HMMCONVERTER takes as input an XML-file which
specifies the model’s architecture, the initial values of
transition and emission probabilities, the names of the
algorithms to be used for generating predictions and for
training the model’s parameters and the names of the
input and output files. Figure 1 shows an example of a
model definition. HMMCONVERTER supports generalized

or semi-Markov HMMs, i.e. HMMs and pair-HMMs
whose states emit or read an arbitrary number of symbols
from the input sequence(s) at a time. [As we expect the
models defined by HMMCONVERTER to be primarily used
for analyzing given input sequences rather than
for generating sequences, we will in the following say
that a state reads (rather than emits) symbols.] In
HMMCONVERTER it is, for example, possible to define a
state which reads one letter from the first input sequence
(e.g. an amino acid) and three letters from the second
input sequence (e.g. a triple of nucleotides corresponding
to a codon from a genomic DNA sequence). States can
also be silent provided they do not form a cyclic path
in the model’s architecture. The XML-file is directly
translated into efficient C++ code, providing checks of
the XML file against DTD files as well as numerous
consistency checks at compile and run-time.

<model>
<Model Type name=“d i shone s t ca s ino”/>
<Annotation Labels>

<Annotation Label name=“Label ” s co r e=“1”>
< l a b e l id=“Label . 0 ” name=“F”/>
< l a b e l id=“Label . 1 ” name=“L” />

</Annotation Label>
</Annotation Labels>
<Alphabets ca s e s =“1” s e t =“123456”/>
<Emiss ion Probs id=“EP” s i z e =“2” f i l e =“emiss ion dishonest hmm2 . txt ”/>
<States>

<State id=“S . 0 ” name=“Sta r t ” xdim=“0” />
<State id=“S . 1 ” name=“Fair ” xdim=“1” >

<Label><l a b e l i d r e f=“Label .0” /></Label>
</State>
<State id=“S . 2 ” name=“Loaded ” xdim=“1” >

<Label><l a b e l i d r e f=“Label .1” /></Label>
</State>
<State id=“S . 3 ” name=“End” xdim=“0” />

</States>
<Trans i t i ons t r a i n=“Al l”>

<from i d r e f=“S.0”>
<to i d r e f=“Al l ” exp=“0.5”/>

</from>
<from i d r e f=“S.1”>

<to i d r e f=“S . 1 ” exp=“0.79067”/>
<to i d r e f=“S . 2 ” exp=“0.20932”/>
<to i d r e f=“S . 3 ” exp=“0.00001”/>

</from>
<from i d r e f=”S.2”>

<to i d r e f=“S . 1 ” exp=“0.46968”/>
<to i d r e f=“S . 2 ” exp=“0.53031”/>
<to i d r e f=“S . 3 ” exp=“0.00001”/>

</from>
<from i d r e f=“S.3”/>

</Trans i t ions >
</model>

Figure 1. Example of an XML model definition. This example shows how the model of the dishonest casino (19), its states and transitions are defined
in HMMCONVERTER using XML. The emission probabilities are listed in the included flat-text file emission_dishonest_hmm2.txt. This is one of the
examples included in the HMMCONVERTER software package. The HMMCONVERTER manual explains in detail how to define a variety of models, how
to invoke parameter training algorithms and how to define different types of sequence analysis.
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Prediction algorithms

For any given model, predictions can be generated with
the Hirschberg algorithm (14), i.e. the linear-memory
version of the well-known Viterbi algorithm (15). This is
a unique feature of HMMCONVERTER and allows complex
pair-HMMs to be used to analyze long input sequences.
The Hirschberg algorithm is implemented in a way which
allows users to directly specify the maximum amount
of memory available on the respective computer. It is
thus possible to optimize the time requirement of the
Hirschberg algorithm by keeping the number of iterations
that the algorithm has to perform to a minimum. Unlike
banding, which is discussed below, the Hirschberg
algorithm is a computationally more efficient variant of
the Viterbi algorithm that is guaranteed to find the
optimal Viterbi solution.

Banding

For comparative applications involving pair-HMMs, both
the Viterbi and the Hirschberg algorithm can be
heuristically accelerated by restricting the search space
along the sequence dimensions in a ‘band’ or ‘tube’. This
sub-space of the search space can either be specified
explicitly by the user or derived by HMMCONVERTER

from BLAST matches (16) (Figure 2). The latter is done
by a dedicated dynamic programming procedure that
takes a set of local BLAST matches as input and derives
the highest scoring sub-set of mutually compatible
matches, i.e. a set of matches which can be simultaneously
ordered along both sequence dimensions. If the ‘band’ or
‘tube’ is to be derived from BLAST matches, the user can
specify the radius of the tube around the selected matches.

Banding can be combined with the Viterbi and
Hirschberg algorithms, thus allowing the design of
computationally extremely efficient applications. This
feature is implemented in a very memory-efficient way
using dedicated data structures, so that only memory

inside the specified sub-space of the dynamic pro-
gramming matrix is allocated. When used correctly, i.e.
when the tube contains the optimal and most near-optimal
alignments of the two input sequences, banding can
lead to near-linear time and memory requirements for
algorithms employed with pair-HMMs without incurring
a loss in prediction performance, e.g. for comparative gene
prediction (1). HMMCONVERTER explicitly checks that
tubes specified by users are well-defined, but does not
aim to adjust poorly chosen tubes.

Incorporating prior information

Most biological sequence data today can be easily
assigned some form of prior annotation, e.g. matches to
homologous sequence data or partial and incomplete
information as shown in Figure 3. It thus makes a lot of
sense to try to integrate this prior information as well as
information on the corresponding confidence levels into
the prediction and parameter training algorithms in
order to improve both.
HMMCONVERTER can integrate prior knowledge about

the annotation of the input sequence(s) probabilistically
into the prediction algorithms as well as the parameter
training algorithms. To use this feature, the user has to
specify prior probabilities for different annotation labels
for the desired positions along the input sequences. This
information is integrated in a probabilistic way into
the algorithms by biasing the nominal emission
probabilities with the relevant position-specific prior
probabilities. For an HMM and the input sequence
X=(x1, . . . , xLx

) of length Lx, the annotation label set
S={Exon, Intron, Intergenic} and the prior information
shown in Figure 3, for example, the nominal emission
probability es(xi) of a state s for reading nucleotide xi at
a sequence position i2 [90,370], would be replaced by
es(xi) pl(s)(i), where l(s)2S is the annotation label of
state s and pl(s)(i) the prior probability of sequence
position i for having annotation label l(s).

Figure 2. Banding. Projection of the three-dimensional search space for a pair-HMM onto the plane spanned by the two input sequences. The tube
inside the large rectangle significantly reduces the three-dimensional search space. The two narrow vertical strips in the left figure correspond to the
amount of memory allocated by the first iteration of the Hirschberg algorithm. The tube can be either user defined (left) or derived from BLAST

matches (right). The two thick lines in the right figure correspond to the set of matches selected by the dynamic programming routine as the highest
scoring sub-set of mutually compatible BLAST matches (the discarded BLAST matches are not shown here). In this example, the radius is specified as
30 by the user.
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It is also possible to specify priors for multiple, mutually
compatible sets of annotation labels, e.g. information on
the annotation and on the alignment when dealing with
a pair-HMM.
HMMCONVERTER allows users to combine the use prior

probabilities with all prediction and parameter training
algorithms.
Being able to probabilistically incorporate prior

information on the input sequences into the prediction
algorithms allows users to design applications that make
the best use of the already available annotation and to
improve the prediction performance with respect to
applications that cannot take prior information about
input sequence into account. Furthermore, this feature
allows for explicit testing of different hypotheses as
competing annotations for the same input sequence can
result in different predicted annotations. It is thus possible
to design annotation applications which combine the
positive aspects of manual human expert annotation
with the advantages of automatic and readily reproducible
predictions.
Also parameter training can be significantly improved

by taking prior information on the input sequences
probabilistically into account. None of the parameter
training algorithms are guaranteed to find a set of param-
eters that optimize the global prediction performance. By
incorporating prior information on the known or likely
annotation of the input sequences, we can increase the
chances of improving the resulting prediction perfor-
mance. Using this feature it is, for example, possible
to train the parameters of a pair-HMM given pairs of

well-annotated input sequences with unknown global
alignment.

It is thus possible to combine the Hirschberg
algorithm or any training algorithm with a ‘tube’ and
prior probabilities in order to create and train powerful
applications and to analyze long sequences efficiently.

Training algorithms

It is typically easy to define the states of a model and its
transitions, but can be very difficult to assign probabilities
to the numerous transition and emission parameters in the
model. As the prediction performance crucially depends
on these parameter values, it is thus very important to be
able to maximize the performance as a function of the
parameter values. Unless the model has very few free
parameters, this is best done automatically by employing
a parameter training algorithm.

HMMCONVERTER is the first software package to
provide an implementation of the new linear-memory
algorithm (T. Lam and I. Meyer, Submitted for publica-
tion; 17) for Viterbi training (18) as well as the linear-
memory algorithm (19,20) for Baum–Welch training
(21). In addition, it incorporates a third, new method
called posterior sampling training (T. Lam and I. Meyer,
Submitted for publication; 17) which derives new
parameter values from state paths that are sampled from
the posterior distribution. Posterior sampling training can
outperform Baum–Welch training, both in terms of
performance and in terms of memory and time efficiency,
and provides a significantly more robust way for
parameter training than Viterbi training (T. Lam and
I. Meyer, Submitted for publication; 17). We have also
implemented a linear-memory algorithm (T. Lam and
I. Meyer, Submitted for publication; 17) for this type of
training into HMMCONVERTER.

All three training methods work in an iterative way and
require termination criteria, the user can either specify
a maximum number of iterations or alternatively,
for Baum–Welch training, a minimum log-likelihood
change. All three training algorithms can be combined
with prior information on the training sequences and
with banding, thereby further improving the chances of
successful parameter training and rendering training
even for complex models and long sequences feasible.

Table 1 summarizes the memory and time requirements
for all prediction and parameter training algorithms
provided by HMMCONVERTER.

Model parameterization, pseudo-counts and efficiency

Many of the models employed by Bioinformatics applica-
tions today have a large number of free parameters.
In order to reduce the number of free parameters and to
improve the performance outcome of parameter training,
HMMCONVERTER allows users to parameterize the
model’s probabilities by providing arithmetic formulae
in the XML file. Transition probabilities can be defined
as functions of free transition parameters using the
operators ‘+’, ‘�’, ‘�’ and ‘/’ and brackets. Emission
probabilities can be parameterized using combinations of
the two functions ‘SumOver’ and ‘Product’. Using these

Figure 3. Prior information. Example of prior information for
input sequence X of length Lx for an annotation label set
S={Exon,Intron,Intergenic}. For sequence interval [1,89], no prior
information on the annotation of the sequence is available. This stretch
of the sequence would thus be analyzed with an model whose nominal
emission probabilities are not biased by any prior probabilities. For
sequence interval [90,184], there is prior information concerning the
likelihood of different sequence positions for being Exon, Intron and
Intergenic. For the rest of the input sequence, i.e. for sequence interval
[185,370], we know with certainty that the sequence positions in
[185,214] are exonic and that the remainder of the sequence is
intergenic. Note that the prior probabilities add up to 1 for every
sequence position for which any prior information is supplied, reflecting
the fact that in this case the three labels Exon, Intron and Intergenic in
this annotation label set are mutually exclusive and that each sequence
position has to fall into exactly one of these three categories.
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functions, one can, for example, derive lower dimensional
emission probabilities from higher dimensional ones
[for example, the emission probabilities of an emit state
that reads three symbols from sequence X at a time can be
derived from those of a match state that reads six symbols
at a time, three from input sequence X and three from Y
using Pemitx ðx1, x2,x3Þ ¼

P
ðy1, y2, y3Þ

Pmatchðx1, x2, x3, y1, y2,
y3Þ] and one can express higher dimensional emis-
sion probabilities as a function of several lower dimen-
sional ones [for example, Ptripleðx1, x2, x3Þ ¼ Psingleðx1Þ�
Psingleðx2Þ � Psingleðx3Þ]. As the functions ‘SumOver’ and
‘Product’ can be combined, the emission probabilities
for most applications can be easily parameterized.

As this parameterization is respected by the training
algorithms, the number of free parameters in complex
models can be significantly reduced, thereby reducing the
risk of over-fitting and increasing the chances of successful
training. In addition, the user can specify arbitrary sub-
sets of the free parameters to be trained simultaneously
and can set pseudo-counts to prevent null probabilities
and over-fitting. In order to address the numerical
underflow problems that easily arise when probabilistic
models are used to analyze long input sequences, all
prediction and training algorithms operate internally in
log-space.

Documentation

The HMMCONVERTER package comprises a detailed
manual as well as several examples which illustrate the
full functionality of the package, e.g. the dishonest
casino, an HMM for CpG-island prediction (18) and a
p53-transcription site prediction model (13).

Availability

The HMMCONVERTER package including detailed
documentation and multiple examples is freely available
under the GNU General Public License version 3 (GPLv3)
and can be downloaded from http://people.cs.ubc.ca/
�irmtraud/hmmconverter.

RESULTS AND DISCUSSION

We introduce a new software package, HMMCONVERTER,
which can be used to design powerful applications that
employ HMMs or pair-HMMs with a minimum of
effort. The package requires the user to specify the

model and the names of the algorithms to be used via
an XML file which is directly translated into efficient
C++ code. The user is thus shielded from the
implementation of the underlying algorithms and can
focus on what humans do best, namely model design.
HMMCONVERTER is the only software package to provide
computationally efficient linear-memory algorithms for
generating predictions and for training the model’s
parameters (Figure 1). The package provides the linear-
memory Hirschberg algorithm for generating predictions
as well as three linear-memory training algorithms for
Viterbi training, Baum–Welch training and a new, pro-
mising type of training called posterior sampling training.
In addition, it supports probabilistic models and provides
sophisticated features, such as banding and the integration
of prior probabilities which can be combined with any of
the prediction and training algorithms.
HMMCONVERTER thus allows the design of complex

Bioinformatics applications that can be trained efficiently
and used for sophisticated data analyses.
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