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Summary 

Primary brain tumours (gliomas) initiate a strong host response and can contain large 

amounts of immune cells (myeloid cells) like microglia and tumour infiltrating 

macrophages. In gliomas the course of pathology is not only controlled by the genetic 

make-up of the tumour cells, but also depends on the interplay with myeloid cells in the 

tumour microenvironment. Especially malignant gliomas like glioblastoma multiforme 

(GBM) are notoriously immune-suppressive and it is now evident that GBM cells 

manipulate myeloid cells to support tumour expansion. The pro-tumourigenic effects of 

glioma-associated myeloid cells comprise a support for angiogenesis as well as tumour 

cell-invasion, -proliferation and -survival. Different strategies for inhibiting the 

pathological functions of myeloid cells in gliomas are explored and blocking the tropism 

of microglia/macrophages to gliomas or manipulating the signal transduction pathways 

for immune cell activation have been successful in pre-clinical models. Hence, myeloid 

cells are now emerging as a promising target for new adjuvans therapies for gliomas. 

However, it is also becoming evident that some myeloid-directed glioma therapies may 

only be beneficial for distinct subclasses of gliomas and that a more cell-type specific 

manipulation of either microglia or macrophages may improve therapeutic outcome.  

http://www.fu-berlin.de/en/einrichtungen/fachbereiche/fb/medizin/index.html
http://www.fu-berlin.de/en/einrichtungen/fachbereiche/fb/medizin/index.html
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Neuropathological features of gliomas 

Glial tumours constitute approximately 50% of all newly diagnosed primary brain 

tumours, with low-grade gliomas accounting for roughly 15% of all brain tumours in 

adults [106]. The morphology and the cellular markers for gliomas share some 

similarities with the main macroglial cell-types (i.e. astrocytes, oligodendrocytes) [75]. 

Histopathologically, gliomas are divided into four different grades (according to the 

classification scheme by the world health organization, WHO), in which low-grade 

tumours are defined as grade-I/-II and high-grade gliomas as grade-III and-IV [87]. The 

presence of mitotic activity is a key feature for distinguishing low-grade from high-grade 

gliomas [75]. Statistically, low-grade astrocytomas arise roughly in proportion to the 

relative mass of the different lobes with most common location within the frontal lobes, 

followed by temporal and parietal lobe lesions [107]. Overall, 5- and 10-year survival 

rates of ~70% and 50% for grade-I and grade-II gliomas, respectively, have been reported 

in the literature [25]. The tumour tissue has no obvious signs of neoangiogenesis, 

infiltrative invasion or inflammation [75]. On the contrary, the outlook for patients with 

high-grade gliomas is grim. The majority of individuals diagnosed with a grade-IV 

glioma, which are very heterogeneous tumours and therefore also named glioblastoma 

multiforme (GBM), have a median progression-free survival of just over half a year and 

median overall survival of 15-18 months [17], only some subpopulations of patients show 

median survivals of almost 2 years [54]. GBM is a fast growing, highly angiogenic and 

invasive tumour and the diffuse growth is a major obstacle for GBM therapy. Other 

hallmarks of malignant gliomas are break-down of the blood-brain barrier (BBB), many 

hypoxic areas and necrotic centres [75]. Gliomas are usually diagnosed by neurorimaging 

(i.e. magnetic resonance imaging) and visualisation of the uptake of a contrast-enhancing 

agent within the tissue indicates BBB-leakage/breakdown [159]. GBM typically presents 

as a ragged contrast-enhanced and complex multi-cystic structure. GBM may be 

diagnosed de novo, i.e. in patients without a clinical history for brain tumours (then 

named primary GBM) or may evolve from lower grade gliomas (secondary GBM) [103].  
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Multi-modal glioma therapy 

Glioma therapy comprises very different strategies. For patients with deep-seated lesions 

or lesions located in eloquent regions which are clinically and radiographically indicated 

as low-grade glioma a conservative management including regular neuroimaging (after 

obtaining a histological diagnosis) [165], see also [130,150]. Individuals with high-grade 

gliomas undergo multi-modal treatment combining cytoreductive surgery, radiation- and 

chemotherapy (using a DNA alkylating agent, Temozolomide; TMZ) [106]. All in all, the 

approaches to treat high-grade gliomas are largely palliative and substantial efforts are 

made to improve prognosis and to define markers allowing a stratification of patients into 

therapeutically relevant phenotypes. Therefore, it was suggested to use gene expression 

profiling of the tumour mass, which can classify high-grade glioma according to different 

genetic subtypes (e.g. the proneural, classical or mesenchymal genotype) [19,152,113]. 

This GBM classification scheme may in the future help to dedicate more individualized 

and efficient therapies to patients.  

 

Accumulation of myeloid cells in gliomas 

Another striking feature especially of high-grade gliomas is the large number of immune 

cells, i.e. microglia and macrophages that accumulate in the tumour mass (tumour 

associated myeloid cells; TAM) [111,7,31]. Peripheral blood-derived macrophages are 

largely restricted to perivascular areas, the meninx and the choroid plexus in the tumour-

free brain, but accumulate in GBM after break-down of the BBB [123]. Microglia is 

abundant in the tumour-free CNS and comprises between 5% and 10% (depending on 

region) of all brain cells [71,83]; for comparison - the density of neurons is 

approximately 20% of cells in the human brain [57]. In GBM the number of TAM can be 

very high and constitutes up to 30% of the tumour mass [5,161,138,125], in 

medulloblastomas even 80% of all intra-tumoural cells can carry myeloid cell markers 

[138]. We observed that the distribution of TAM in GBM is very heterogeneous and the 

average number of these cells is between 20% and 30% (M. Synowitz and R. Glass, 

unpublished data). In most studies the quantification of TAM was performed in GBM 

samples (which is the most frequent intra-axial brain tumour) and TAM were reported to 

be less abundant in lower grade gliomas.  
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Microglia development 

Microglia and bone-marrow-derived monocytes/macrophages have largely overlapping 

marker profiles and to date there is no unequivocal method to distinguish both cell types 

in samples resected from human GBM [162]. This matter is not trivial since monocytes 

of the peripheral blood and microglia have different developmental origin and may have 

distinct function in physiology and pathology [129]. In contrast to monocyte-dendritic 

cell progenitors, microglial progenitor cells are generated in the yolk sac after gestational 

day 8.5, which is before the onset of definitive hematopoiesis (at E10.5, when monocytes 

arise) [44]. Both, microglia- and monocyte/macrophage-development depends on the 

myeloid master transcription factor PU.1 (also named spleen focus forming virus proviral 

integration oncogene, Spi-1) [73] and on the activity of the receptor for macrophage 

colony stimulating factor (CSF1R) [44], while the maintenance of microglial cells during 

adulthood depends on the activity of the tumour growth factor-β (TGF-β) receptor-1 [20]. 

Stimulation of CSF1R in microglia is mediated via macrophage colony stimulating factor 

(M-CSF) and interleukin 34 (IL34) [44]. This signal transduction pathway is not unique 

for the generation of microglia alone but is also essential for the generation of peripheral 

tissue-macrophages in the lung, liver (Kupffer cells) or skin (Langerhans cells) [129]. 

Generation of monocytes and macrophages during definitive hematopoiesis, in contrast to 

microglia, requires the transcription factor MYB1 and activation of the fms-related 

tyrosine kinase (FLT3, a cytokine receptor) [133]. After microglia precursors have 

entered the developing CNS (between E8.5 and E9.5) they differentiate into microglia 

and appear to self-renew in the brain throughout live [46]. Microglial cells do not need to 

be replenished from peripheral sources like the bone marrow [3], but previous 

experiments indicated that a transient ablation of all myeloid cells can lead to the 

colonisation of the brain with peripheral macrophages, which could then not be 

distinguished from bona fide microglia (in terms of morphology and with older sets of 

markers) [9]. Such experiments were interpreted to support the notion that monocyte-

derived macrophages and microglia largely share the same physiological role. However, 

today we observe that microglia also have unique roles in the CNS, which are different 

from classical functions of immune cells [109]. It was e.g. observed that microglia makes 
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close contact to pruning synapses and can participate in information processing of 

neurons [72].  

 

CNS Immunity 

The abundance of TAM in high grade gliomas has been initially been described more 

than 90 years ago [31] and over several decades researchers focused on delineating the 

inefficient immune-response of TAM [126,143,39]. It was concluded that the high levels 

of tumour growth factor-β (TGF-β) that are secreted from glioma cells have immune-

modulatory functions, which prevents myeloid cells from inducing a coordinated immune 

response against the tumour [68]. Indeed, it is now evident that TGF-β signalling is 

crucial for microglia in physiology and under neuropathological conditions [20]. 

However, only a sub-population of microglial cells may participate in controlling the 

adaptive immune response [49]. The current view is that peripheral macrophages and 

dendritic cells, in addition to microglia, can perform an important role for immune 

surveillance in the CNS [123]. Although the brain has no lymphatic vessels, which can 

transport antigen to deep cervical lymph nodes and to specialized dendritic cells, there are 

other routes by which peripheral immune cell can scan the immune status of the CNS. 

Peripheral macrophages can encounter antigen from the CNS, even with an intact BBB, 

by an exchange of interstitial brain fluids through the cribiform plate and through the 

choroid plexus into the periphery. Especially during auto-immune neuropathology it is 

evident that the peripheral immune system can mediate strong immunological action 

within the CNS. One promising way to exploit the peripheral control of CNS immune 

functions for brain tumour treatment is pursued by immunotherapy approaches [4]. Here 

e.g. cytokine application, serotherapy or active immunotherapy (to activate peripheral 

dendritic cells with antigen of tumour-origin) is used to prime the peripheral immune 

system to attack gliomas [55]. All in all, it is likely that re-activating antigen-presentation 

especially in bone-marrow derived immune cells (and additionally a relieve from 

immune-suppressive signals in tumour infiltrating lymphocytes, see below) would revive 

a functional anti-tumourigenic response of the adaptive immune system.  
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Distinguishing microglia from peripheral macrophages 

It was previously suggested that peripheral macrophages can be distinguished from 

microglia by means of CD11b and CD45 expression levels in the tumour-free mouse 

brain [58], in tumour models [7] and in human tumours [110]; while both cell types have 

high levels of CD11b on the plasma-membrane, only macrophages label intensely for 

CD45 and microglia have low CD45 levels. However, it is not clear how robust these 

markers really are in a glioma context; i.e. gliomas may modify the CD-molecule 

expression in TAM. To our experience, patient derived material often does not allow a 

distinction between the two cell-types based on CD-markers; most glioma biopsies 

harbour CD11bhigh/CD45high cells but biopsies containing CD11bhigh/CD45low populations 

are infrequent (M. Synowitz and R.Glass, unpublished observation). Peripheral and CNS 

immune cells were previously also distinguished by generating chimeric animals after 

sub-lethal irradiation and bone-marrow transplantation (e.g. from donors constitutively 

expressing green fluorescent protein; GFP) [117]. Microglia is radio-resistant and only 

the hematopoietic cells in the bone marrow are exchanged by this paradigm. This method 

requires that the brain is shielded from the radiation beam [94] since otherwise the BBB 

is opened and peripheral immune cells enter the CNS, populate some brain areas and 

generate tissue macrophages that share many microglial markers [32,169]. Anyway, the 

radiation procedure causes a massive release of cytokines into the circulation [134] that 

may also alter brain physiology. Recently, superior methods have been described to 

unequivocally separate microglia from peripheral immune cells. Genetic mouse models, 

which indicate developmental markers specifically for microglia or monocytes and 

monocyte-derived macrophages were generated and now distinct myeloid-cell 

populations can be observed without generating pathological side effects. It was reported 

that Flt3-cre induced recombination of an inducible reporter (flox-STOP-flox-YFP) very 

efficiently marks bone marrow-derived myeloid cells but spares microglia [133,46]. Also, 

a model was established to specifically indicate microglia using recombination (and 

activation) of an inducible reporter under control of the gene promoter for the fraktalkine 

receptor (Cx3cr1). Timed activation of Cx3cr1-CreErt2 by Tamoxifen application in 

transgenic animals crossed to a flox-STOP-flox reporter initially marks all myeloid cells, 

but the physiological turnover of peripheral monocytes and monocyte-derived 
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macrophage depletes reporter-positive immune cells from the peripheral blood while 

labelled microglia persists [45]. In another approach to distinguish microglia and blood-

borne myeloid cells, microglia was purified from physiological, blood-free brain samples 

and monocyte-derived macrophages were purified from peripheral blood, then direct 

RNA sequencing was used to identify differentially expressed genes in both cell-types 

[58]. Interestingly, it was found that certain purinergic receptors (like P2Y12) or surface 

molecules (like Siglec-H) are exclusive markers for microglia. Future work (e.g. using 

genetic recombination in transgenic models) will need to show if these differences persist 

in gliomas; if this is the case the it will be possible to therapeutically treat glioma-

associated microglia specifically (e.g. with purinergic compounds) or to identify 

microglia in glioma immunohistochemically. 

 

Microglial activation and innate immunity 

Classically, the immune cell function of microglia was observed after challenging the 

brain with bacterial pathogens (e.g. after sterile infection with lipopolysaccharides; LPS), 

these studies showed that microglia can undergo remarkable morphological changes [76] 

and become motile [1]. It was speculated that microglia revert from a “resting” state 

(associated with a stellate cell-shape) towards a motile and activated phenotype 

(associated with an amoeboid cell-shape) [121]. However, real-time observations by 

intravital microscopy revealed that microglia under physiological conditions are not 

immotile (as the term "resting" infers), but constantly scan the environment [121,30,100]. 

If lesions to the brain parenchyma are encountered, then microglial cells initiate a damage 

response, which can (depending on the extent of the lesion) also include other brain cells 

like astrocytes [50]. While the protection of the CNS from infection or injury is certainly 

a task for microglial cells, current studies also acknowledge the tissue protective role of 

microglia and show that these cells may contribute to neuronal survival in different 

neuropathologies [109]. Overall, it is established that microglia has a prominent role 

during acute inflammation. Here, pathogens activate microglia via stimulation of toll-like 

receptors (TLR), then microglia phagocytose [124] or kill microorganisms, by releasing 

reactive oxygen species (ROS)[69] or nitric oxide (NO) [35] and e.g. secrete 

inflammatory cytokines like tumour necrosis factor- α (TNF-α), interleukin-6 (IL-6), 
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IL10 and IL12 [62]. The physiological response of microglia to inflammatory pathogens 

is summarised as the M1-type of microglial activation [16]. Microglial cells also control 

the resolution of inflammatory events and participate in tissue repair functions including 

the induction of angiogenesis in lesioned areas [137,16]. During homeostasis the 

parenchymal cells, in particular neurons, present several plasma membrane molecules 

and release CX3CL1, which are recognised by microglia and prevent their activation 

[51,129]. The pro-inflammatory and tissue protective functions of microglia may also 

become apparent in gliomas but in a tumour environment they were, in most studies, not 

separated from the inflammatory reactions of monocyte-derived macrophages. Here, 

gliomas secrete IL4, IL6 and IL10 [139], as well as TGF-β [144] that induce an 

alternatively activated phenotype in TAM, which is referred to as M2-type of activation 

[78]. Increased production of prostaglandin E2 (PGE2) by glioma is associated with 

suppression of T-cell and TAM activation and plays an important role in the generation 

of an immunosuppressive environment [98].  The cell death pathway molecule FAS-

ligand (CD95-L or FASL) was found to be expressed by human GBM and both TAM and 

T-cells express the FASL receptor (FAS). It was recently reported that FASL contributes 

to local immunosuppression whereas there is no evidence that GBM-derived FASL 

induces TAM apoptosis [65]. TGF-β, macrophage-CSF (M-CSF), IL-4 and IL-10 

mediate an M2 phenotype of TAM. M2-activated TAM have e.g. reduced MHC-II levels 

[132], release IL10 [171,157], upregulate GM-CSF, IL-10, CXCL14 [42]  and vascular 

endothelial growth factor (VEGF) [101] and have increased expression of Arginase-1 

[37]. M-CSF expression in glioblastomas correlates with the expression of the M2 marker 

CD163 in TAM [78]. Both microglia and monocyte-derived macrophages share these M1 

and M2 features in neuropathology as well as in high-grade gliomas and the NF-ΚB and 

the signal transducer and activator of transcription-3 (STAT3) pathways have central 

roles in shifting TAM between M1 and M2 phenotypes [170,120,77]. Manipulation of the 

related signalling cascades may become a possibility to promote the anti-tumourigenic 

M1 type in TAM [59,2]. It should also be noted that a prototypical M1 phenotype (as 

initiated by LPS) or M2 polarisation (as observed during the resolution of inflammation) 

is usually not encountered in TAM [37,42]. It was observed that TAM in gliomas have an 

aberrant immune-type and share both M1 and M2 features (Fig. 1). Currently it is 
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unknown if myeloid cells homogenously have a mixed M1/M2 type or if there are 

distinct TAM subsets (subtypes of microglia as well as monocyte-derived macrophages) 

which are either more in the M1 or the M2 spectrum. Altogether, earlier work suggested 

that microglial cells were brain macrophages which can switch between “on” and “off” 

modes of activation – this image is now reverted and we see that microglia and 

monocyte-derived macrophages are assigned with an array of different brain-specific 

roles during physiology and pathology, which are not necessarily reflected by 

morphological changes.  

 

Adaptive immune functions in gliomas 

Systemic immunosuppression in patients with primary intracranial tumours has been well 

documented [163]. Deficits in the adaptive immune response of glioma patients are 

induced by tumour-released immune-modulatory cytokines [39,68] and partly by 

clinically applied corticosteroids (Dexamethasone) [8], which are given to reduce glioma-

associated edema [148]. Glioma patients have low peripheral lymphocyte counts, reduced 

delayed-type hypersensitivity reactions to recall antigen, impaired mitogen-induced 

blastogenic responses by peripheral mononuclear cells, and increased levels of CD8+ 

suppressor T-cells [81]. The lymphocyte deficit involves the T-helper (CD4+) subsets 

with decreased T-cell activity in vitro. Furthermore, there is diminished induction of 

immunoglobulin synthesis by B-cells in vitro from the peripheral blood of patients with 

intracranial tumour, probably related to diminished T-helper activity [14].  

Only activated T-cells can traverse the BBB and gain entry to the brain [123]. Then, brain 

infiltrating CD4+ T-cells may lose the activated status through the action of TGF-β 

released from glioma cells or TAM [151], or from TAM secreting IL-10 and C-C 

chemokine ligand-17 (CCL17), CCL18 or CCL22 [162]. Cytokines like TGF-β have 

been shown to suppress the production of both IL-1 and human leukocyte antigen (HLA) 

class-II molecules by antigen-presenting cells, and also suppresses the activation and 

proliferation of cytotoxic T lymphocyte (CTL) [64]. In GBM patients, systemic immune 

responses are unable to overcome the immunosuppressive tumour microenvironment and 

patients have reduced T-cell responses due to a number of factors including impaired T-

cell receptor (TCR) signalling, immunosuppressive cytokines, T-cell anergy (mediated by 
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regulatory T-cells, Treg, induced immune suppression), and dysfunctional antigen-

presenting cells [97,142]. Another study on GBM has shown that TAM had surface HLA 

class-II expression but lacked expression of the co-stimulatory molecules CD80, CD86, 

and CD40 critical for T-cell activation and thus were unable to activate T-cells [60]. 

Also, in GBM, there is a lack of effector and/or activated CTL and a relative abundance 

of Tregs [158]. One important aspect is a dramatic reduction in the expression of HLA 

molecules on the surface of tumour cells [67], which weakens their detection by CTL.  

Differential activation of STAT3 in TAM can control multiple immunosuppressive 

pathways in high-grade gliomas [162]. STAT3 activation in TAM is induced by different 

cytokines of the tumour microenvironment such as IL-10, IL-6, epidermal growth factor 

(EGF) and fibroblast growth factor. Activated STAT3 is known to reduce the expression 

of surface molecules necessary for antigen presentation such as MHC-II, CD80, and 

CD86 [79], as well as to increase the expression of many M2-specific 

immunomodulatory mediators including IL-10, EGF, VEGF, and various matrix 

metalloproteinsases (MMPs) [18]. It is currently unclear whether a single dominant 

molecule or a complex network of molecules is responsible for the immunosuppressive 

phenotype of glioma TAM, but STAT3 activation appears to play a key role in generating 

and perpetuating the M2-shifted TAM in gliomas.  

 

The pro-invasive function of myeloid cells in gliomas 

A specific role for microglial cells in brain tumours was addressed two decades ago 

[47,143]. Initially, in vitro studies showed that microglia, which can be purified from the 

fetal mouse or from the rat brain and maintained for limited times in cell culture, has 

profound effects especially on the invasiveness of glioma cells [95,6]. A seminal studies 

using Boyden chamber migration assays demonstrated that the presence of microglia 

facilitates the transmigration of glioma cells through a matrix containing barrier [11]. 

Especially the use of cultivated brain slices, which assures the preservation of original 

three-dimensional cellular context of the brain in an in vitro setting, has advanced our 

understanding of the specific role of microglia in gliomas [104,91]. Glioma cells, stably 

expressing a fluorescent reporter protein, can be inoculated into brain slices and the 

motility of the tumour cells can be monitored in real-time under conditions closely 
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resembling the in vivo situation. These slice cultures are a method of choice when a 

pharmacological treatments are investigated, since compounds that otherwise do not 

traverse the blood brain barrier can be applied into the tumour area. Furthermore, 

microglia can maintain their normal surveillance-function function scanning the brain for 

potential lesions (see above) and the role of microglial cells in gliomas can be 

investigated without the intratumoural accumulation of monocyte-derived macrophages. 

Techniques have been developed to specifically ablate microglia in brain slices without 

deteriorating the entire cellular architecture of such slice preparations. In tumour-

inoculated brain slice preparations the application of Clodronate-filled liposomes was 

instrumental to uncover important pro-pathological action of tumour-associated 

microglial cells [91].  The liposomes are rapidly and specifically taken-up by the 

phagocytic microglia and the payload (Clodronate) induces cytotoxicity. The dying 

microglia initially promotes astrocyte activation, which ceases after a relatively short 

interval (of three days). As a control, brain slices can be replenished (after Clodronate 

application) with exogenously cultivated microglia and the pro-tumourigenic effects are 

re-installed [91]. The course of tumour progression in microglia-containing versus 

microglia–depleted slices can be compared in this model. These experiments 

corroborated that microglia indeed has a pro-invasive effect in gliomas – as postulated 

from earlier cell culture studies. Conditioned media from the (glioma containing) brain 

slices had increased metalloprotease-2 (MMP2) activity only when microglia was present 

and then individual glioma cells invaded deeper into the brain tumour parenchyma. 

Importantly, this study showed that microglia promotes the activity of MMP2, but does 

not alter the expression levels of this enzyme. Metalloproteases are synthesised and 

secreted as inactive pro-forms and only the proteolytic cleavage of a peptide moiety 

converts the pro-enzyme into its active form [135] Then the active MMP2 can degrade 

extracellular matrix and facilitate glioma invasion. Subsequent studies with different 

mouse models supported these in vitro findings [93,154,92]. Ablation of myeloid cells by 

intra-tumoural application (via osmotic mini-pumps) of Ganciclovir in glioma-bearing 

animals engineered to express the herpes simplex thymidine kinase (HSVTK) gene, 

which converts of the pro-drug Ganciclovir into an active cell-death inducing agent, 

under a promoter for CD11b (Cd11b-Hsvtk) drastically diminished TAM numbers in 
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gliomas and largely reduced glioma size [92]. The molecular signalling pathway 

responsible for the glioma-supporting effect of TAM was uncovered and manipulated in 

another in vivo model. Here, we (and subsequently others) found that glioma cells release 

a (still unknown) soluble factor that triggers toll-like receptor-2 (TLR2)[154], which 

promote the activity of mitogen activated kinase (MAPK) p38 and of the TLR signal 

transducer MYD88 [92] in TAM. The MYD88 molecule induces the expression of 

another metalloprotease named membrane type-1 metalloprotease (MT1-MMP) on the 

plasma membrane of TAM. TAM-expressed MT1-MMP converts pro-MMP2 into active-

MMP2 thereby facilitating glioma motility (Fig. 2).  

The extracellular matrix in the brain has a different biochemical composition and 

architecture as compared to peripheral tissues like e.g. epithelia [99,33,127]. In epithelial 

tumours matrix-degradation and disruption of the epithelial layering is a hallmark for 

tumour progression and malignancy [99]. In the brain extracellular matrix components 

are less abundant and the matrix is heterogeneous between areas of grey and white 

matter, basement membranes are predominantly found along the vasculature, the 

meninges and parenchyma bordering with the ventricles [127]. Metalloproteinase-

mediated matrix degradation is therefore associated with different pathological effects as 

compared to epithelia and can result in increased invasion of glioma cells along the 

vasculature or also opening of the blood brain barrier [153,10,61]. MMP-activity has also 

signalling effects and can unmask cryptic amino-acid residues in the matrix[108,155], 

which stimulate growth factor receptors or bind to different integrins on tumour cells and 

can thereby support tumour expansion [149]. 

 

The pro-angiogenic role of myeloid cells in gliomas 

Another major role for MMPs on TAM is to initiate and to support the formation of new 

intra-tumoural blood vessels. The activity of MT1-MMP in concert with MMP2 disrupts 

basement membranes on blood-vessels and allows endothelial cell sprouting [149]. 

Additionally, TAM prime endothelial cells to sproute as they synthesize and release 

TNF-α and also other angiogenic molecules which have direct angiogenic effects or 

promote the secretion of vascular endothelial growth factor from glioma cells [140,101] 

(Fig. 3). The sprouting endothelia in gliomas need to be coordinated to form functional 
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vessels and especially the microglial cells may control this step, too. During development 

microglia localizes to vessel branch points, guides the endothelial tip-cells towards each 

other, induces tip- to stalk-cell conversion in the endothelia and thereby assures the 

building of functional vascular tubes [147]. TAM also express the pro-angiogenic MMP-

9 [63] or induce the expression of MMP-9 in glioma (stem) cells [167]. MMP-9 

participates in modifying the basement membrane and liberates growth factors like stem 

cell factor (SCF) [82] that acts as a specific agonist for the tyrosine kinase KIT. The KIT 

signalling pathway can recruit bone marrow-derived endothelial precursors to tumours 

and thereby augment the formation of vascular structures by a mechanism termed 

vasculogenesis [146]. However, another study suggested that vasculogenesis has only a 

minor role in GBM and that vascular sprouting and vessel cooption are the main drivers 

for the formation of new blood vessels in gliomas  [89].  It is likely that microglial cells 

have a specific role in the initial steps of intratumoural vascularization (when the BBB is 

intact and macrophages have not yet invaded the brain), subsequently the sprouting 

endothelia and later the monocyte-derived macrophages, which invade into the tumour, 

will also release pro-angiogenic signalling molecules and perpetuate the formation of 

vascular structures in gliomas.  As described above, anti-angiogenesis was regarded as a 

promising therapeutic strategy [102], but application of the VEGF-A-blocker 

Bevacizumab has clinically failed [90]. It is currently a matter of intense investigation if 

TAM can mediate resistance to Bevacizumab by releasing angiogenic factors 

alternatively to VEGF-A. Myeloid cells accumulating in GBM can promote the 

acquisition of a mesenchymal tumour-subtype [84,38,34], which is associated with 

resistance to Bevacizumab [114,115]. However, as with most pathways controlled by 

TAM, support of angiogenesis is only one side of the intra-tumoural actions of these 

immune cells in gliomas. Myeloid cells also inhibit intra-tumoural vessel formation e.g. 

by liberating angiostatins from the extracellular matrix, by activity of the urokinase type 

plasminogen activator [74]. In brain tumours the net effect of TAM pro- and anti-

tumourigenic activity is on the tumour supporting side, but there may be a possibility to 

shift this balance and promote the anti-tumour effects of glioma associated microglia or 

of  blood-borne macrophages that invaded into primary brain tumours.     
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Adenosine-5-triphosphate (ATP) was shown to stimulate the production of chemokines 

and CCl2 (MCP-1) and interleukin-8 (IL-8) in gliomas [66]. Nucleosides like adenosine 

modulate in an auto- and paracrine fashion the fine-tuning of the tumour-stroma-

interaction [15]. Extracellular adenosine itself is not only a passive product of tumour 

induced ischemia, hypoxia and necrosis but also actively released due to altered purine 

metabolism [85]. Most of the signalling actions of extracellular adenosine are mediated 

by G-protein-coupled cell-surface receptors that are divided into four subtypes: A1, A2A, 

A2B and A3 [40]. Adenosine has several inhibitory effects on M1 macrophage activation 

which are mediated by A2A receptors [53] and increases M2 macrophage activation [28]. 

VEGF production by macrophages is stimulated through A2A receptors and therefore it 

can support angiogenesis [122]. Microglial cells express functional A1A receptors and in 

gliomas selective stimulation of A1A inhibits the TAM activation [88,145]. 

 

Blocking the tumour supporting phenotype of myeloid cells 

While the abundant expression and release of TGF-β in gliomas was initially attributed 

only to the tumour cells, it now established that myeloid cells also generate TGF-β and 

thereby mediate important pathological effects [164,68,166]. In addition to blunting 

adaptive immune responses TGF-β was also observed to have direct effects on the highly 

aggressive subset of stem-like glioma cells especially in tumours of the mesenchymal 

genotype [112]. Application of Amphotericin-B can induce a tumour stem cell 

suppressive phenotype in TAM and mediates profound therapeutic effects in mouse 

models [131]. 

Of note, the ablation of myeloid cells in a mouse glioma model (using Cd11b-Hsvtk 

transgenic animals; see above) has also shown anti-tumour effects of TAM, previously. 

Here, systemic application of Ganciclovir was used which may have preferentially 

reduced the number of monocytes in the peripheral blood and monocyte-derived 

macrophages (which accumulate in gliomas) and under these settings an anti-

tumourigenic role for myeloid cells in gliomas was observed [43]. The anti-tumourigenic 

function of the macrophage population was addressed to their antigen-presenting capacity 

and to their ability to activate T-lymphocytes. Again, these results suggest that TAM 

have the capacity to mediate both pro- and anti-tumour effects and that it will be 
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interesting to dissect the function of intra-tumoural monocyte-derived macrophages or 

microglia in order to establish cell-type specific targets for adjuvans therapies for 

gliomas. 

The Flt3-cre [46] and Cx3cr1-CreErt2 [45] based models, in addition to newly 

established cell-surface markers [58], will advance our understanding of the cell-specific 

traits of microglia- or monocyte-derived macrophages in gliomas. Nevertheless, it is 

likely an oversimplification to regard either immune-cell population as homogenous 

[119]. There is solid evidence that microglia are heterogenic with respect to different 

brain areas and that they also undergo changes during aging [52]. These differences may 

not cause too much variance in experimental glioma models where tumour localisation, 

timing of tumourigenesis and genetic background of gliomas can be tightly controlled 

[23]. However, when analysing patient-biopsies heterogeneity is an issue since gliomas 

are located to different brain areas, patient-age can differ by several decades and gliomas 

are caused by a range of genetic mutations with consequences for cell-signalling and 

immunogenicity [87,103]. One way of patient stratification is to obtain glioma samples 

and to investigate the gene expression pattern assigning tumours to distinct genetic 

subclasses [19,152]. Preclinical glioma models indicated that this approach is important 

to identify individuals that may respond to myeloid-directed brain tumour therapies 

[118,12]. Blockade of CSFR1 signalling specifically in TAM by a small molecule 

inhibitor (BLZ945) had very robust anti-tumourigenic effects in a mouse glioma model 

resembling the proneural GBM-type [118]. Importantly, BLZ945 largely abrogated the 

tumour supporting function of TAM in a mouse model and the beneficial effects of 

CSFR1-inhibition were associated with the induction of a gene-expression signature that 

also served to predict improved survival in human GBM of the proneural subtype but not 

in other GBM subtypes. Another CSFR1 inhibitor (PLX3397) inhibited glioma cell 

invasion in an orthotopic implantation model using immune-competent mice [26]. 

However, in our hands CSF1R-inhibition did not mediate any anti-tumour effects, when 

using a related glioma mouse model (M. Synowitz and R. Glass, unpublished 

observations); suggesting that subtle differences in experimental procedures may have 

profound impact, when investigating TAM. Several studies suggest that inter-individual 

differences between gliomas, in particular the genetic subtype of tumours, can be of 
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importance to predict the outcome of immune-cell targeting therapies [84,38,34]. This is 

not surprising since the genetic subtype is determined from the entire tumour biopsy, 

which includes TAM. During progression and relapse GBM can convert from the 

proneural to the mesenchymal type [13,21,27] and it was shown that TNF-α release form 

intra-tumoural myeloid cells and TNF-α induced NF-kappa-B signalling in stem-like 

glioma cells can promote the conversion of the GBM genotype [12]. The shift from the 

proneural towards the mesenchymal glioma phenotype can promote radiation resistance 

in a subset of the proneural tumours. This has profound therapeutic implications, as NF-

ΚB blockade may be an important strategy to improve the outcome of radiotherapy. 

Altogether, the studies on the tumour-modulating effects of TAM in gliomas show that 

the expression signature has some predictive value for the application of e.g. BLZ945, 

but also indicate that the proneural subtype is not homogenous and that some proneural 

gliomas are sensitive to a TAM-induced mesenchymal drift. Hence, a better 

understanding of the gene expression pattern of TAM in glioma is necessary to e.g. 

stratify patients according to new myeloid cell-targeting adjuvans treatments that 

comprise CSFR1-inhibition or NF-ΚB blockade plus irradiation. The molecular analysis 

of tumour biopsies and different glioma cell subsets has largely advanced our 

understanding of the pathological processes in malignant brain tumours. Similar 

techniques have already been used in several pioneering studies to uncover prognostic 

markers and signalling pathways of myeloid cells in gliomas or neuropathological 

disease. With more studies on the genetic make-up of microglia and monocytes-derived 

macrophages in glioma mouse models we will obtain a more detailed picture on the 

potential therapeutic targets in subsets of TAM. The larger challenge ahead is to obtain 

similar data on TAM in human brain tumours, where we do not have easy access to 

relevant control samples from the tumour-free human brain (so different controls form 

post-mortem material and epilepsy surgery will be necessary) and where it will be 

difficult to prove if the markers distinguishing microglia and blood-borne macrophages in 

the mouse brain also apply to human cells. 
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The tropism of myeloid cells to gliomas 

In the past, additional TAM targeting strategies in preclinical glioma models also had 

beneficial effects. Application of the clinically approved immune-suppressive drug 

cyclosporine-A could strongly inhibit the pro-tumourigenic effects of myeloid cells in 

glioma [96,141,24]. Other investigator used stimulation of TLRs in glioma cells and in 

TAM as a therapeutic paradigm [48,36,70]. Another way to interfere with the tumour 

promoting role of myeloid cells in gliomas is to blunt the intra-tumoural accumulation of 

these immune cells by blocking chemoattractive signalling.  Experiments using 

encapsulated glioma cells showed that glioma-released soluble factors have major role in 

guiding myeloid cells towards the tumour mass. Here, glial-derived neurotrophic factor 

(GDNF) predominated chemoattraction of microglia in vitro, GDNF induced a tropism 

for myleoid cells towards gliomas in vivo and GDNF-knockdown in gliomas had a 

therapeutic function [80]. Other studies showed that CCL2 (MCP-1), CCL5, CCL7, 

VEGF-A [116,105,168] or (in hypoxic areas) stromal derived factor-1 [160] have 

prominent tropic function for myeloid cells in gliomas (Fig. 2). In contrast to the function 

of CX3CR1 in physiology, which promotes a resting state in microglia  [51], the same 

receptor can promote myeloid cell recruitment to human brain tumours and thereby 

support tumour expansion [56], but had no pathological role in a mouse model [86]. A 

recent publication suggests hypoxia-induced Semaphorin 3A (Sema3A) as a potent 

attractant for TAM by triggering VEGF-receptor-1 phosphorylation through the 

associated holoreceptor, composed of Neuropilin-1 (NRP1) and PlexinA1/PlexinA4. 

Importantly, whereas NRP1 levels are down-regulated in the hypoxic environment, 

Sema3A continues to regulate TAM in an NRP1-independent manner by eliciting 

PlexinA1/PlexinA4-mediated stop signals, which retain them inside the hypoxic niche 

[22]. Again, it is presently not known if these many different chemotropic molecules are 

active either in different glioma subtypes, or glioma models of distinct genetic 

backgrounds, if all myeloid cells respond equally to these pro-migratory cues or if there 

are distinct immune cell-subtypes which have a preference for the one or the other 

chemoattractive signalling pathway.   
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Future directions 

To date most studies on myeloid cells in glioma have uncovered specific pro- or anti-

tumourigenic function of myeloid cells in the untreated tumour. Especially in pre-clinical 

models distinct roles of TAM in tumour-antigen presentation, promotion of glioma-

invasion or angiogenesis were described. These data were backed up with findings from 

human biopsies, with the caveat that humans usually are treated with Dexamethasone 

before surgical tumour resection. Some exciting data are also available on the impact of 

myeloid cells on glioma treatment using irradiation [12,128]. It was observed that 

myeloid cells can support glioma cell survival and prevent the accumulation of anti-

tumourigenic reactive oxygen after radiochemotherapy. The myeloid cells provide 

alternative metabolites to glioma cells (quinilonic acid instead of NADH), which prevent 

the generation of reactive oxygen species that mediate some of the beneficial effects of 

radiochemotherapy [128]. Also it was shown that the composition of myeloid cell-

subtypes is altered throughout radiochemotherapy, with as yet unknown consequences for 

the therapy of glioma relapse [136]. One important topic that has not received much 

attention so far is the role of microglia during tumour formation and progression form 

low-grade to high-grade stages. It is postulated that gliomas arise from neoplastic 

transformation of stem and precursor cells (NPCs) in the brain or from de-differentiating 

astrocytes [23,41]. Microglia has been proven to be of importance for the turnover of 

NPCs [29,156] and it remains to be shown if microglia (e.g. during brain inflammation) 

contributes to the acquisition of somatic mutations in pre-neoplastic brain cells, which 

can drive tumourigenesis. Importantly, it was recently observed in a transgenic mouse 

model that CSFR1 blockade (by BLZ945) in myeloid cells can largely prevent/ slow-

down malignant progression of neoplastic brain cells into high-grade gliomas [118]. 

Given that there are often little treatment options for patients with low-grade gliomas it 

will be important to explore if tackling the glioma-associating microglia can prevent the 

malignant transformation of lower grade tumours. For basic science studies investigating 

the role of microglia in gliomas there is the advantage that lower-grade gliomas have an 

intact BBB, which implies that nor monocyte-derived macrophages have entered the 
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tumour area, and hence specifically the pathological impact of glioma-associated 

microglia can be studied in biopsies from human tumours.    

Altogether, we have now firm evidence that TAM are pathologically important and 

potential targets for adjuvans treatment of gliomas. Currently, we see an array of pro- and 

anti-tumourigenic effects of microglia or monocyte-derived macrophages, which make it 

difficult to directly translate immune cell-directed therapeutic approaches into clinical 

procedures. Uncovering the inter-individual heterogeneity of TAM in brain tumours and 

defining distinct pro- or anti-tumourigenic functions in microglia or blood-borne 

macrophages (and in subtypes of these cells) will help to set-up promising therapies and 

to locate patients that may profit from new TAM-targeting treatments.   
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Legends 

Figure 1. Myeloid cell polarization in glioma. Glioma-derived factors (black arrow) 

induce glioma-infiltrating myeloid cells (TAM) to adopt an immune-phenotype that is 

predominated by markers for the M2-type (alternatively activated), but M1-markers 

(classically activated) are also present. The M1-shifted TAM mediate anti-tumour effects 

(e.g. by initiating an adoptive immune response or by releasing cytotoxic oxygen- or 

nitrogen-radicals) whereas M2-shifted TAM drive tumour-growth, -invasion and 

angiogenesis (by releasing tumour cell-supporting cytokine, chemokines and angiogenic 

growth factors). M1- and M2-types are largely controlled by the signal transducer and 

activator of transcription (STAT) signalling pathways (STAT-1 and STAT-3) and can be 

induced in microglia and macrophages by different cytokines and growth-factors (blue 

arrows). Drugs like Amphotericin-B (Amph-B; a clinically approved anti-fungal agent), 

BLZ945 or PLX3397 (CSFR-1 inhibitors) are able to efficiently modulate glioma-

polarized myeloid cells; Amph-B can induce TAM activation (and TAM-mediated 

tumour stem cell suppression), while CSFR-1 inhibitors block acquisition of the M2 

phenotype in TAM.  

 

Figure 2. Glioma chemoattract myeloid cells and induce the a pro-invasive 

mechanism. Chemoattractants that have been shown to stimulate myeloid cell migration 

into the gliomas include CSF-1, GDNF, M-CSF and GM-CSF. An unidentified glioma-

released factor (?) stimulates toll-like receptor-2 (TLR2) in TAM and subsequently the 

p38-MAPK- and MYD88-pathway, then MT1-MMP is expressed and on the plasma-

membrane of TAM. MT1-MMP on TAM proteolytically cleaves glioma-derived pro-

MMP-2 (an inactive pro-enzyme), which is thereby converted into the active form 

(MMP2) that degrades the extracellular matrix (ECM) and promotes glioma invasion; 

matrix degradation can activate other TLRs in TAM and promote the accumulation of 

additional TAM.  

 

Figure 3. Mechanisms by which glioma-associated myeloid cells promote tumour 

angiogenesis. TAM have increased activity of MMPs (like e.g. MMP9) that  promotes 

the release of stem cell factor, which is a chemoattractive signal for bone marrow-derived 
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endothelial progenitors; thereby TAM potentially participate in vasculogenesis (1).  The 

chemokine CXCL12 induces the tropism of TAM to hypoxic areas that are not well 

vascularised or have aberrant vasculature (2), which may foster angiogenesis in these 

regions by the mechanisms describe in point-3. TAM activate ECM-modifying enzymes 

(MMPs) and release a variety of soluble factors (growth factors and cytokines) which 

have direct angiogenic effects (3).  

 








	14142_Cover
	14142_Final Draft

	Title: CNS macrophages and peripheral myeloid cells in brain tumours

	Summary
	Neuropathological features of gliomas
	Multi-modal glioma therapy
	Accumulation of myeloid cells in gliomas
	Microglia development
	CNS Immunity
	Microglial activation and innate immunity
	Adaptive immune functions in gliomas
	The pro-invasive function of myeloid cells in gliomas
	The pro-angiogenic role of myeloid cells in gliomas
	Blocking the tumour supporting phenotype of myeloid cells
	The tropism of myeloid cells to gliomas
	Future directions
	Acknowledgements
	References
	Legends
	Figure 1

	Figure 2

	Figure 3 




