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Abstract 

The essential myosin light chain (ELC) is involved in modulation of force generation of myo-

sin motors and cardiac contraction, while its mechanism of action remains elusive. We hy-

pothesized that ELC could modulate myosin stiffness which subsequently determines its force 

production and cardiac contraction. We therefore generated heterologous transgenic mouse 

(TgM) strains with cardiomyocyte-specific expression of ELC with human ventricular ELC 

(hVLC-1; TgMhVLC-1) or E56G-mutated hVLC-1 (hVLC-1E56G; TgME56G). hVLC-1 or hVLC-

1E56G expression in TgM was around 39% and 41%, respectively of total VLC-1. Laser trap 

and in vitro motility assays showed that stiffness and actin sliding velocity of myosin with 

hVLC-1 prepared from TgMhVLC-1 (1.67pN/nm and 2.3µm/s, respectively) were significantly 

higher than myosin with hVLC-1
E56G 

prepared from TgM
E56G

 (1.25pN/nm and 1.7µm/s, re-

spectively) or myosin with mouse VLC-1 (mVLC-1) prepared from C57/BL6 (1.41 pN/nm 

and 1.5±0.03 µm/s , respectively). Maximal left ventricular pressure development of isolated 

perfused hearts in vitro prepared from TgM
hVLC-1

 (80.0mmHg) were significantly higher than 

hearts from TgM
E56G

 (66.2mmHg) or C57/BL6 (59.3±3.9 mmHg). These findings show that 

ELCs decreased myosin stiffness, in vitro motility, and thereby cardiac functions in the order 

hVLC-1 > hVLC-1E56G ≈ mVLC-1. They also suggest a molecular pathomechanism of cardi-

omyopathies caused by hVLC-1 mutations. 

 

Key Words: essential myosin light chains; myosin; stiffness; in vitro motility; mutations
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Introduction 

Two myosin heavy chains (MyHC; 200 kDa each) and four non-covalently linked myosin 

light chains, two essential myosin light chains and two regulatory light chains (ELC and RLC, 

resp.: 16-28 kDa), form the native Type II myosin molecule, which is important in the mech-

anism of muscle contraction  

The primary structure of cardiac ELC isoforms presents with an elongated N-terminal (aa 1-

46), and a large C-terminal domain (aa 47-≈200) consisting of four helix-loop-helix EF-hand 

motifs [1,2]. ELCs bind with the utmost lysine-rich N-terminus to actin and with their C-

terminal domain to the myosin lever arm (myosin-LA), RLC, and myosin motor domain (my-

osin-MD) [2,3] and emerged as an important regulatory molecule which determines chemo-

mechanical transduction in muscle fibers [3,4,5]. Thus, myosin denuded of ELCs revealed 

only 1/3 of its normal force generation [5] and reduced in vitro actin filament sliding velocity 

[5,6]. Mutations of MYL3 (accession NM_000258.2), the gene encoding the human VLC-1-

Gen, causing familial hypertrophic cardiomyopathy (FHC) disturbed a variety myosin- and 

cardiac functions in experimental models (for review see [7]), further substantiating the im-

portant role of ELC during chemo-mechanical transduction. ELC/myosin binding suggests a 

structural stabilization of the compliant α-helix of the myosin-LA. This is an important func-

tional aspect since the lever arm is considered to be the elastic element which amplifies the 

very small conformational changes in the motor domain to a large movement of around 5-10 

nm [8]. Association of myosin with ELCs may increase the myosin-LA rigidity and at the 

same time would power-up force generation per cross-bridge [5,9]. In this study we tested the 

hypothesis that the association of myosin with different ELC (iso)forms could modulate myo-

sin stiffness and force generation, in vitro motility of actin filament sliding, and thus cardiac 

muscle functions.  

To obtain functionally intact myosin and cardiac preparations with weak myosin-binding 

hVLC-1
E56G

, we generated heterologous transgenic mouse strains which overexpressed 
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hVLC-1
E56G

 in the ventricle (TgM
E56G

). We could show that different ELC isoforms modulate 

myosin stiffness and force generation and subsequently cardiac contraction. These results 

could also provide a reasonable pathomechanism explaining the development of FHC by 

hVLC-1 mutations. 
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Materials and Methods  

Generation of transgenic mice and genotyping 

All animal experiments were approved by and conducted in accordance with the guidelines 

set out by the State Agency for Health and Social Affairs (LaGeSo, Berlin, Germany, G 

0178/07).  

We generated two transgenic mouse (TgM) models with cardiomyocyte-specific overexpres-

sion of the non-mutated human ventricular ELC (hVLC-1) or its E56G mutated form (hVLC-

1E56G), i.e. TgMhVLC-1 and TgME56G, respectively (for more details see the Supplemental data).  

Cardiac morphology was assessed by echocardiography (Vevo2100, VisualSonics, Toronto, 

Canada) of 3 month old male TgM
hVLC-1

, TgM
E56G

 and C57BL/6 mice under light isoflurane 

(2%) anaesthesia.  

For tissue isolation, three months old male transgenic mice were anaesthetized using ketamine 

hydrochloride (80mg/ml)/xylazine hydrochloride (12mg/ml) administered by i.p.-injection 

(1mg/kg body weight). 

 

Transcriptome analysis 

Total RNA was extracted from ventricles of 3 month old male TgMhVLC-1 or TgME56G (n=4 

animals/group) using TRIzol reagent, and transcribed into cDNA with Two-Cycles Target 

labelling and Control Reagents (Ambion WT Expression Kit and GeneChip WT Terminal 

Labeling and Hybridization kit, Affymetrix, Santa Clara, CA, USA). Non-pooled microarray 

experiments were performed with cDNA using GeneChip Mouse Gene 1.0 ST Array (28,853 

genes, Affymetrix). For comparison of the expression profiles of TgM
hVLC-1 

with TgM
E56G

, we 

considered a False Discovery Rate (FDR-value) of <0.05 and a changed expression level 

>2.0fold as significant (for more details see Supplemental data). 
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Transgene incorporation into myosin 

We prepared myofibrils according to [10] and ventricular myosin according to [11]. 

Transgene expression of myosin preparation was evaluated by densitometrical scanning of the 

Coomassie-stained protein bands and expressed as % of hVLC-1 or hVLC-1
E56G 

of total VLC-

1 (transgenic hVLC-1 + endogenous mVLC-1 = 100%) using ImageJ. 

 

Analysis of myosin heavy chain isoenzyme expression 

Myosin heavy chain (MyHC) isoenzyme expression pattern was analyzed from ventricular 

myofibrils by a modified method according to [12]. Briefly, myofibrils were dissolved in 2% 

SDS and loaded (3 µg/lane) on a SDS-PAGE consisting of a 6% separation gel containing 

10% glycerol for 15 h at 50 V const. in the cold room. Gels were stained with Coomassie-

blue. 

 

Laser-Trap Analysis 

Measurements of the motor mechanics including motor stiffness of single myosins were 

carried out using an optical trap approach. The optical trapping set-up was based on a Zeiss 

Axiovert microscope described elsewhere [13]. The positions of the two traps were controlled 

by electro-optical deflectors (EOD), which were used to move the 2 bead-actin filament-

dumbbell relative to the myosin molecule. Actomyosin binding events were detected using the 

variance-Hidden Markov procedure [14], which gave estimates of the stiffness of each actin-

bead linkage and the myosin head. The stiffness of the links was very non-linear and a 

minimum tension, typically 10 pN, was required for significant noise reduction during myosin 

binding. To achieve relatively high link stiffness between latex beads and actin filament, we 

stretched the dumbbell by moving the trapped beads apart at a laser power giving a trap 

stiffness of about 0.1 pN/nm. The total stiffness along the x-axis of the free dumbbell was 

then reduced by using a positive feedback system in AC mode as previously described [15] 
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(for more details see Supplemental data). 

 

In Vitro Motility Assay 

Myosin was extracted from glycerinated left ventricular myocardium of TgM
hVLC-1

, TgM
E56G

, 

and C57BL/6 mice and analyzed in the in vitro motility assay (IVMA) as described previous-

ly [16]. To remove the rigor-like heads from the myosin preparation, after washing out the 

unbound myosin with bovine serum albumin, the flow cell was washed with two volumes of a 

solution of 5 µM phalloidin-labeled actin, allowed to incubate for 1–2 min, then washed with 

2 volumes of buffer containing 1 mM ATP followed by a wash with experimental buffer 

(25mM MOPS, 25mM KCl, 4mM MgCl2, 1mM EGTA, 1mM DTT, 200µg/ml glucose oxi-

dase, 36µg/ml catalase, 5mg/ml glucose, and 2mM ATP (pH 7.2 at 25°C)). Actin sliding ve-

locities (Vf) were measured and their distribution characterized according to parametric statis-

tics [16].  

 

Skinned fiber analysis 

Demembranated multicellular heart fibers (skinned fibers) were prepared from ventricles of 

TgMhVLC-1 or TgME56G as described [17]. For mechanical experiments, fibers were dissected 

into bundles of 150–200 µm diameter and 1-1.5 mm length under a preparation microscope. 

Fibers were mounted isometrically between a force transducer and a length step generator 

(Scientific Instruments, Heidelberg) with micro syringes in relaxation solution (25mM 

imidazol, 10mM ATP, 10mM creatinphosphate, 12.5mM MgCl2, 5mM NaN3, 1mM DTE, 

5mM EGTA, 12.5mM KCl, 380U/ml creatine kinase, pH 7). Sarcomere length  was at resting 

tension (1.95 - 2.0 µm) as detected by laser diffraction analysis. Contraction solution was the 

same as relaxation solution except that EGTA was substituted by 5mM CaEGTA. 

 

Isolated perfused hearts (Langendorff mode) 
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Hearts of narcotized animals were rapidly excised and transferred to a dissection dish contain-

ing ice-cold modified Krebs-Henseleit buffer containing 118mM NaCl (118.0), 4.7mM KCl, 

2mM CaCl2, 2.1mM MgSO4, 24.7mM NaHCO3, 1.2mM KH2PO4, 0.06mM EDTA, and 

11mM glucose. A 21 gauge stainless steel cannula was inserted into the aorta in the cold buff-

er dish. Afterwards the hearts were mounted on the Langendorff perfusion rig and 

retrogradely perfused under constant pressure of 60mmHg at 37°C. Carbogen (5% CO2, 95% 

O2) was delivered to the Krebs-Henseleit buffer to maintain a pH of 7.4. Hearts were electri-

cally stimulated with a coaxial electrode at 414 bpm. To measure left ventricular 

isovolumetric pressure (LVP) a self-made fluid filled (water) balloon was inserted in the left 

ventricle. The balloon was connected via a fluid filled tube to a calibrated pressure transducer 

(APT300, Hugo Sachs Electronics (HSE) Germany). Other parameters were calculated based 

on the LVP such as maximum rate of pressure increase and pressure decrease (+dLVP/dtmax, 

−dLVP/dtmax). All data were acquired using the Isoheart software (HSE).  

 

Statistics 

Values are means±SEM. Statistical difference between mean values was calculated using 

Student's t-test for two-tailed unpaired values or 1-way ANOVA and data were considered 

significant at p-values of < 0.05.  
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Results and Discussion 

Five TgM
E56G

 founders and four TgM
hVLC-1

 founders were genotyped positively, i.e revealed 

the expected PCR-signal of 989 bp while C57BL/6 mice showed no PCR-signal (Figure 1A). 

Protein analysis of ventricular myosin obtained from TgM
hVLC-1

, TgM
E56G

 and C57BL/6 mice 

by SDS-PAGE showed that the transgenic hVLC-1 forms (25 kDa) were present only in both 

TgM strains but not in C57BL/6 (Figure 1B). Expression of transgenic hVLC-1 in TgM
hVLC-1 

(n=24) and TgME56G mice (n=35) were not significantly different (39.1±1.7% and 40.7±1.9%, 

respectively). We could only detect α-MyHC expression on the myofibrillar protein level in 

all mouse models investigated (Figure 1C). 

Analysis of in vivo cardiac morphology and contractile parameters by echocardiography re-

vealed that three month old male TgM
E56G

 developed no cardiac hypertrophy (Supplement 

data, Table 1). Relative wall thickness and left ventricular mass/body weight ratio remained 

unchanged in both TgM strains if compared withC57BL/6 (Supplement data, Table 1). In line 

with our data, a hypertrophic cardiac phenotype could neither be observed in a homologous 

rabbit model which overexpressed M149V mutated rabbit VLC-1 [18] nor in the homologous 

TgM model which overexpressed M149V mutated mouse VLC-1 [19]. Likewise, a heterolo-

gous TgM model overexpressing A57G mutated hVLC-1 (TgMA57G) did not develop the hy-

pertrophic phenotype [20]. In line, stroke volume, ejection fraction, and fractional shortening 

were similar in TgME56G, TgMhVLC-1, and C57BL/6 (Supplement data, Table 1). 

We compared the gene expression profiles of the hearts prepared from three months old male 

TgM
hVLC-1

 or TgM
E56G

 by Affymetrix array experiments (n=4 per group). A total amount of 

32 differentially expressed genes (FDR<0.05, expression levels >2fold) were observed be-

tween both TgM groups (Supplemental data, Table 2). Hypertrophic marker genes were not 

differently expressed. 
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Ventricular single myosin functions TgM
hVLC-1

, TgM
E56G

 , and C57BL/6, mice were investi-

gated using the laser trap technology. Binding of a single myosin motor to the actin filament 

resulted in a pronounced reduction of the Brownian movement (reduction of the variance sig-

nal) of the dumbbell (Figures 2A-2B). Compared to myosin prepared from C57BL/6 (n=16 

motor molecules, 3905 events) the myosin from TgM
hVLC-1

 (n=30 motor molecules, 6789 

events) showed a significantly increased motor stiffness, namely from 1.41 ± 0.09 pN/nm to 

1.67 ± 0.16 pN/nm. These stiffness values are in general agreement with values obtained from 

fiber experiments (rabbit psoas) which revealed myosin stiffness of 1.7 pN/nm [21] as well as 

from optical trap experiments with single myosin molecules (rabbit psoas) demonstrating a 

stiffness value of 1.79 pN/nm [13]. In contrast, 1.4 pN/nm and 0.4 pN/nm for fast and slow rat 

skeletal muscle, respectively [22], and 0.7 pN/nm for rabbit skeletal muscle myosin [23] were 

also reported. The mean stiffness value of myosin with hVLC-1 seems to be underestimated, 

since it may represent mixed data derived from myosin with mVLC-1 and myosin with 

hVLC-1 (ca. 40%). Hence, myosin with hVLC-1 ought to have a higher stiffness than myosin 

with mVLC-1, i.e. ≈2.96 pN/nm in order to be able to increase the observed mean value from 

1.41 pN/nm to 1.67 pN/nm. Compared to TgM
hVLC-1

, ventricular myosin prepared from 

TgME56G revealed a significantly (p<0.001) reduced mean motor stiffness of 1.25 ± 0.09 

pN/nm (n=82 motor molecules, 12847 events) (Figure 2C). On closer examination of myosin 

with hVLC-1E56G, we noticed two subgroups of motors, one with 0.28 ± 0.04 pN/nm (n=19, 

2857 events), significantly lower (p<0.001) than myosin from C57BL/6 or TgMhVLC-1, and a 

second group with 1.60 ± 0.08 pN/nm (n=63, 9990 events), significantly (p<0.001) higher 

compared to myosin from C57BL/6, but not to myosin from TgM
hVLC-1

 (Figure 2B). Binding 

events with high stiffness produced an apparent working stroke of ~5.1 nm (n=242) and the 

binding events with low stiffness produced an apparent working stroke of 2.5 nm (n=622). 

Since F = κ x , with x (the working stroke) being 5.1 nm for high-stiffness motors, force gen-

eration of single myosin molecules with hVLC-1 and mVLC-1 may be around 16 pN and 7.2 
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pN, respectively. The species-specific gain-of-function of hVLC-1-myosin compared to 

mVLC-1-myosin may be based on the different primary sequences of mVLC-1 and hVLC-1 

which exert different myosin-LA interaction properties. Taking a working stroke of 2.5 nm of 

the low-stiffness motors, force generation of single myosin molecules with hVLC
E56G 

may 

only be around 0.7 pN. There was no distinction in life time of all binding events. Besides the 

lever arm [24], the converter domain was suggested to represent an alternative element of 

elastic distortion during force generation [25]. A FHC-related mutation within the converter 

domain substantially decreased myosin stiffness in fibers [26,27]. 3D-analysis of myosin-S1 

suggests close contacts between helix E of ELC with part of the converter domain [2,28], 

suggesting that ELC could modulate myosin stiffness also via converter domain interaction.  

Similar to myosin stiffness and force, in vitro actin sliding velocity of ventricular myosin mo-

tors with different ELC forms decreased in the order hVLC-1 > hVLC-1
E56G

 ≈ mVLC-1. My-

osin prepared from the ventricles of three months old male TgM
hVLC-1

 propelled actin fila-

ments significantly (p<0.001) faster [velocity of filament transportation (Vf) = 2.3±0.13 µm/s; 

n=4 animals, 123 filaments] than myosin prepared from TgM
E56G

 (Vf = 1.7±0.07 µm/s; n=5 

animals, 98 filaments) (Figure 3). Cardiac myosin prepared from C57BL/6 mice revealed an 

in vitro motility of 1.5±0.03 µm/s (n=3 animals, 89 filaments) which was significantly 

(p<0.001) below the Vf observed with ventricular myosin prepared from TgMhVLC-1 mice 

(Figure 3A). These reductions could not be due to an increased expression of β-MyHC, which 

propels actin filaments with a slower velocity than the α-MyHC [11,16]. We could not find 

any change of the ventricular MyHC isoenzyme expression, neither at the mRNA nor at the 

protein level.  

Rather, in vitro actin sliding velocity (Vf) decreases if the duty time (ts) of XBs increases 

since Vf = x/ts [29]. Duty time is determined by the ADP release rate from the catalytic site, 

i.e. ts decreases if the ADP release rate increases [30]. In fact, similar to the shortening veloci-

ty of muscle fibers, Vf decreases with increasing ADP concentrations [31]. Modulation of the 
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ADP release rate from the catalytic site by ELC is already suggested by experimental and 

structural data [32]. The 3D-structures of myosin-S-1 suggest close contacts between helix F 

and the N-terminal antenna of the ELC to the N-Terminus of the myosin-MD [2,28] [3]. Dele-

tion of the N-terminal aa 1-80 of the myosin-MD destroyed normal ADP release rate of myo-

sin II and could not rescue Dictyostelium myosin-II null cells [33]. We, therefore suggest that 

the different ELC forms affects in vitro actin sliding velocity by modulation of the ADP re-

lease rate upon interaction with the N-terminus of the myosin-MD.  

Loss-of-function of myosin and reduced in vitro velocity of actin sliding suggest deteriorated 

cardiac contractile parameters which are critically determined by interaction of myosin XBs 

with actin. Maximal isometric force obtained at maximal calcium activation level (pCa 4.5) of 

skinned fibers prepared from three months old male TgM
E56G

 was 8.3±1.73 mN/mm
2
 (n=10 

fibers), i.e. significantly (p<0.05) lower than the force obtained from TgM
hVLC-1 

(13.9±1.5 

mN/mm
2 ;

n=9 fibers; Figure 3B)). Calcium sensitivities expressed as pCa50 calculated from 

the tension/pCa curves of fibers prepared from TgM
E56G 

and TgM
hVLC-1

 was similar (5.44 and 

5.41, respectively). Accordingly, TgM
E56G

 and TgM
hVLC-1 

fibers had similar Hill coefficient 

(3.5 and 3.2, respectively). The reduced force generation upon expression of hVLC-1
E56G

 is in 

agreement with a recent work showing that force of skinned heart fibers obtained from 

TgMA57G decreased [34]. This predicts a “loss of function” of myosin with hVLC-1A57G simi-

lar to the myosin with hVLC-1E56G investigated herein and, therefore decreased stiffness. By 

contrast myosin stiffness of TgMA57G rose [20], indicating a “gain of function” of myosin with 

hVLC-1
A57G

. The reason for this discrepancy is yet unknown. 

In addition, we investigated in vitro contractility of electrically paced isolated perfused hearts 

in the Langendorff-mode of TgM
E56G

, TgM
hVLC-1 

and C57BL/6. Isovolumetric pressure devel-

opment of left ventricles (LVP) from hearts of TgM
E56G

 (n=10) was 66.2±4.2 mmHg. This 

was significantly lower compared to LVP of TgM
hVLC-1

 (80.0±4.6 mmHg; n=9) (Figure 4A). 

In addition, TgM
E56G

 revealed a significantly reduced maximal rate of isovolumetric pressure 
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development (LVPdtmax 2982.9±194 mmHg/sec) compared with TgM
hVLC-1

 (LVPdtmax 

3613.2
±
144 mmHg/sec) (Figure 4B) and significantly lower maximal rate of isovolumetric 

relaxation (-LVPdtmax) compared with TgM
hVLC-1

 (-LVPdtmax -1678.2±140 mmHg/sec vs. -

LVPdtmax -2465.1±152 mmHg/sec) (Figure 4C). Interestingly, C57BL/6 mice (n=9) revealed 

in vitro contractility parameters significantly lower than the levels observed in TgM
hVLC-1

, i.e. 

LVP (59.3±3.9 mmHg), LVPdtmax (2453.4±183 mmHg/sec) and –LVPdtmax (-1553.2±138 

mmHg/sec) (Figures 4A-4C). Coronary flow of isolated perfused hearts was similar among all 

three groups (2.1±0.1, 1.9±0.3, and 2.2±0.4 ml/min in TgMhVLC-1, TgME56G and C57BL/6, 

respectively. 

The deleterious effects of the E56G mutated hVLC-1 on myosin and cardiac functions de-

scribed herein may represent a valuable molecular pathomechanism provoking the develop-

ment of FHC upon hVLC-1 mutations. Those mutations may weaken the myosin-LA affinity, 

reduce stiffness and unitary force generation of the single myosin molecule, slow down actin 

filament sliding velocity, and depress cardiac performance. The resulting cardiac 

hypocontractility could then activate hypertrophic pathways leading to the FHC phenotype 

[35].  

Taken together, we provide a molecular mechanism which could explain the physiological 

regulation of myosin force generation by ELC forms, namely via distinct myosin-LA affinity 

which may modulate myosin stiffness and, therefore myosin and cardiac functions.  
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Figure Legends 

Figure 1: Generation and characterization of transgenic mouse lines 

Genomic DNA (ear biopsies) of TgMhVLC-1, TgME56G were used for transgene-specific 

PCR yielding a fragment of 989 bp. Construct containing hVLC-1 gene and genomic DNA 

obtained from C57BL/6 were used as positive and negative controls. B) SDS-PAGE (12%) of 

purified ventricular myosin (1-2 µg/lane) of TgM
hVLC-1 

(Lane 1), TgM
E56G

 (Lane 2), and 

C57BL/6 mice (Lane 3); RLC: regulatory myosin light chain. C) Analysis of MyHC 

isoenzyme expression in the myofibrils of left ventricles of male TgMhVLC-1, TgME56G, and 

C57BL/6. A fetal mouse ventricle with both α- and β-used to identify MyHC isoenzymes. 

 

Figure 2: Laser trap analysis 

A) Representative displacement (top) and variance (bottom) records of binding events to ac-

tin-dumbbell of ventricular myosin of TgM
hVLC-1

. Only binding events with high motor stiff-

ness could be observed (cf. Figure 2C). B) Representative displacement (top) and variance 

(bottom) records of two types of binding events to actin-dumbbell observed with ventricular 

myosin of TgM
E56G

. Please note, that myosin motors with both high (hash mark) and low (as-

terisks) stiffness events in the same recording were rare observations (3 motors out of a total 

of 82 motors). C) Motor stiffness of myosin purified from ventricles of 3 months old male 

C57BL/6, TgMhVLC-1, or TgME56G using the variance/co-variance model.26 Values are means 

± SEM. Data were corrected to compensate for lower frequency (10 kHz) recordings40 , 

***p<0.001. 

 

Figure 3: In vitro motility assay and Skinned fiber analysis 

A) Velocities of actin filaments (Vf) sliding of myosin purified from ventricles of 3 months 

old male C57BL/6 (3 animals, 123 actin filaments), TgM
hVLC-1 

(5 animals, 98 actin filaments) 

or TgM
E56G

 (4 animals, 60 actin filaments). B) Isometric force generation expressed in 
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mN/mm2 cross-section of skinned fibers prepared from cardiac ventricles of 3 months old 

male TgM
hVLC-1 

(9 fibers) or TgM
E56G

 (10 fibers). Values are means ± SEM; *p< 0.05, ***p< 

0.001.  

 

Figure 4: Isolated perfused heart (Langendorff) measurements  

A) Maximal left ventricular isovolumetric pressure developments (LVP in mmHg) of 

TgMhVLC-1 (n=10), TgME56G (n=9) and C57BL/6 (n=9). B) Maximal rates of left ventricular 

isovolumetric pressure development (LVP/dt max. in mmHg/s). C) Maximal relaxation rates 

of left ventricular isovolumetric pressure (-LVP/dt max. in mmHg/s). Values are expressed as 

means ± SEM, *p < 0.05, **p < 0.01, ***p< 0.001.  
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Highlights 

 

E56G-mutated essential myosin light chains (VLC-1E56G) bind weakly to the myosin 
lever arm. 
Binding of VLC-1E56G to myosin reduced myosin stiffness and and actin sliding veloci-
ty. 
Reduced myosin functions decreased force generation of cardiac preparations in vi-

tro. 
This could represent a molecular mechanism of the pathogenesis of hypertrophic 
cardiomyopathy.  
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Legend to Graphical abstract 
 
Ventricular myosin-S1 (left) consists of a myosin heavy chain (MyHC, light blue) 
forming the globular motor domain and the a-helical lever arm, which is non-
covalently associated with the human ventricular myosin light chain 1(hVLC-1; dark 
blue) and a regulatory myosin light chain (RLC, turqouis).Single ventricular myosin 
molecules  showed high stiffness and force generating capacity. Introduction of the 
E56G mutation into the hVLC-12 (right; hVLC-1E56G) associated with familial hyper-
trophic cardiomyopathy significantly reduced force myosin stiffness  and force gener-
ation. 
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I) Material and Methods 

I.1. Generation of transgenic mice and genotyping 

All animal experiments were approved by and conducted in accordance with the guidelines 

set out by the State Agency for Health and Social Affairs (LaGeSo, Berlin, Germany, G 

0178/07). Mice were housed at the animal facility of the MDC with a 12 h light/dark cycle 

and provided food and water ad libitum. We generated transgenic mouse (TgM) models 

overexpressing the non-mutated human ven-tricular ELC (hVLC-1) or its E56G mutated form 

(hVLC-1E56G), i.e. TgMhVLC-1 and TgME56G, respectively. The hVLC-1 cDNA clone 

(IRAUp969E0154) was obtained from imaGenes (Berlin, Germany). A single nucleotide 

change producing the E56G mutation was introduced using the QuikChange II site-directed 

mutagenesis kit (Stratagene, Amsterdam, Netherlands). cDNA of the two hVLC-1 variants 

(the hVLC-1 or hVLC-1E56G cDNA (590 bp) with a 630 bp 3´ untranslated poly A region of 

the hGH downstream) were cloned downstream into a 5.5 kb mouse α-MyHC promoter (clone 

26, generously provided by Dr. J. Robbins, Cincinnati Children’s Hospital Medical Center, 

Cincinnati, OH, USA) by HindIII sites. The α-MyHC promoter of the mouse was used to 

allow cardiomyocyte-specific transgene expression. The resulting transgene constructs finally 

contained the heart specific mouse α-MyHC promoter, including the first two noncoding 

exons and part of the third, followed by a Kozak-sequence and the hVLC-1 or hVLC-1E56G 

cDNA (590 bp) with a 630 bp 3´ untranslated poly A region of the hGH downstream. 

Transgene constructs were controlled by commercial DNA sequenc-ing (Stratec, Berlin, 

Germany). Transgene constructs were injected into the pronucleus of fer-tilized eggs derived 

from C57BL/6 donor mice and implanted into pseudopregnant foster mothers. Five genotypic 

positive founder mice with the hVLC-1E56G (TgME56G) allele and four genotypic positive 

founders with the human allele of the hVLC-1 (TgMhVLC-1) were identified and each bred 

to C57BL/6 mice.  



To identify animals harbouring the transgene, genomic DNA was prepared from ear biopsies 

and investigated by polymerase chain reaction (PCR). The PCR was performed using a for-

ward primer (5’-ATCTTGGCTCTTCGTCTTC- 3’) located in the α-MyHC promoter and a 

reverse primer (5’- GCTCAGGTGTGAACTCAAT- 3’) located in the transgene coding re-

gion. PCR products were separated by agarose gel electrophoresis (0.8% gel) and led to a pre-

dicted product size of 989 bp for hVLC-1 and hVLC-1E56G positive animals. 

 

I.2. Transcriptome analysis 

Three months old male transgenic mice were anaesthetized using 130 mg/kg ketamine, 20 

mg/kg xylazin, and 250I.U. heparin injected i.p. Total RNA was extracted from ventricles of 3 

month old male TgMhVLC-1 or TgME56G (four animals per group) using TRIzol reagent 

(Invitrogen, Life Technologies, Carlsbad, CA, USA). Total RNA was treated by 

Deoxyribonuclease I (TURBO DNase, Ambion) and purified using the RNeasy Purification 

Kit (Qiagen, GmbH, Hilden, Germany). 100 ng RNA per sample were transcribed into cDNA 

with Two-Cycles Target labelling and Control Reagents (Ambion WT Expression Kit and 

GeneChip WT Terminal Labeling and Hybridization kit, Affymetrix, Santa Clara, CA, USA). 

Non-pooled microarray experiments were performed with cDNA using GeneChip Mouse 

Gene 1.0 ST Array (28,853 genes, Affymetrix). Raw signal intensities for each probe set were 

analyzed using a series of methods implemented in the software package Bioconductor 

(http://bioconductor.org). After passing the quality control for each experiment, a set of 

Robust Multi-array Analysis (RMA) have been produced. The log scale RMA estimates are 

based upon a robust average of log2[B(PM)] (background corrected perfect match 

intensities).[1] To remove genes with low overall intensity or variability, normalized data 

were filtered by 50% intensity (selection of the genes charac-terized by having in at least 50% 

of the array an intensity>100). For cDNA microarrays log transformed ratios were analyzed 

using the Significance Analysis of Microarrays for two-class unpaired data set. For 



comparison of gene lists of different experiments, genes identified by Significance Analysis 

of Microarrays with a False Discovery Rate (FDR) <5% and a fold-change >2 are shown. 

 

I.3. Laser-Trap Analysis 

Actin acetone powder was prepared from rabbit back muscle as described before.[2] Actin 

was isolated from acetone powder, purified and then biotinylated.[3] Biotinylated actin with 

bound rhodamine phalloidin (50 µl) was spun through 200 µl 10% sucrose (70,000g, 30 

minutes) to remove monomeric actin, and resuspended with 0.1 mole Rhodamine phalloidin 

per mole of actin. Myosin II was isolated from mouse heart muscle as described before.[4] 

Optical Trapping: The set-up was based on a Zeiss Axiovert microscope. More details are 

given elsewhere.[5] The positions of the two traps were controlled by electro-optical 

deflectors (EOD), which were used to move the 2 bead-actin filament-dumbbell relative to the 

myosin molecule. In order to allow relatively high tensions to be used at low trap stiffness, we 

used positive feedback from the quadrant detector to the EODs controlling the trap 

position.[6] The stiffness of the traps was determined from the relaxation time of bead 

position during application of square waves to the traps using the EODs. Trap stiffness was 

also measured from the Brownian noise of the experimental traces when the actin was not 

bound to myosin. The bandwidth of the 4-quadrant photo detectors was 35 kHz. Signals were 

sampled at 10 kHz and filtered at 5 kHz. The optical trap was calibrated as described 

previously.[7] In some experiments, we applied a 500 Hz sinusoidal wave to one of the beads 

of the dumbbell allowing for an easier detection of binding events with high compliance.[8] 

Dumbbell Assay. Glass microspheres (1.5 µm) suspended in 0.075% nitrocellulose in amyl 

acetate were applied to 18 mm square cover slips. These were attached to slides with Tesa 

fotostrip (spacing ~5 mm). To ensure actin-myosin interactions were from a single molecule, 

the microscopic flow chambers were sparsely coated with myosin (incubation for 1 minute 

with 1-2 µg/ml myosin in high salt buffer, 25mM HEPES, 4mM MgCl2, 500mM KCl, 2mM 



DTT, pH 7.4) such that events were found only on one out of 3-5 glass beads. The flow cell 

was then blocked with 1mg/ml BSA for 1 minute and a mixture of 0.8 µm neutravidin coated 

polystyrene beads and 1-2 nM biotinylated, Rhodamine-labeled actin was added. Reaction 

conditions were 5µM ATP, 4mM MgCl2, 25mM KCl, 25mM Hepes, pH 7.4 and a 

deoxygenating system (10mg/ml glucose, 15U/ml glucose oxidase, 30µg/ml catalase). 

Dumbbells were assembled by attaching an actin filament to two 0.8 µm beads. The actin was 

stretched taught and presented over a myosin molecule bound to a 1.5 µm glass bead attached 

to a microscope cover slip.[9] Dumbbells were selected for low-compliance links between 

beads and filament such that the ratio of the position variance during free and bound periods 

was around 10 and above.[10] Actomyosin binding events were detected using the variance-

Hidden Markov procedure[10], which also gave estimates of the stiffness of each actin-bead 

linkage and the myosin head. The stiffness of the links was very non-linear and a minimum 

tension, typically 10 pN, was required for significant noise reduction during myosin binding. 

To achieve relatively high link stiffness between latex beads and actin filament we stretched 

the dumbbell by moving the trapped beads apart at a laser power giving a trap stiffness of 

about 0.1 pN/nm. The total stiffness along the x-axis of the free dumbbell was then reduced 

by using a positive feedback system in AC mode as previously described.[6] In some 

experiments, we also applied a sinosoidal wave (500 Hz, 50nm peak to peak) to one side of 

the dumbbell which allowed an easier detection of the weak binding of myosin. 



II) Tables 
Table 1: Morphology and echocardiography of three months old males TgMhVLC-1, 
TgME56G and C57BL/6. 
 

 C57BL/6 TgMhVLC-1 TgME56G 

BW (g) 28.19 ± 0.61 25.9 ± 0.74 28.14 ± 0.59 

LVmass (mg) 122.43 ± 5.88 120.8 ± 4.36 121.12 ± 5.0 

LVmass/BW 4.33 ± 0.14 4.7 ± 0.14 4.29 ± 0.13 

RWT 0.35 ± 0.01 0.35 ± 0.02 0.36 ± 0.02 

HR (bpm) 426.55 ± 16.4 453.25 ± 13.6 482.50 ± 16.5 

IVSd (mm) 0.75 ± 0.02 0.73 ± 0.02 0.73 ± 0.02 

IVSs (mm) 1.10 ± 0.04 1.04 ± 0.04 1.13 ± 0.04 

LVPWd (mm) 0.75 ± 0.02 0.73 ± 0.02 0.73 ± 0.02 

LVPWs (mm) 1.07 ± 0.04 1.05 ± 0.05 1,09 ± 0.03 

LVIDd (mm) 4.31 ± 0.09 4.38 ± 0.05 4.37 ± 0,1 

LVIDs (mm) 3.18 ± 0.09 3.27 ± 0.08 3.09 ± 0.12 

SV (µl) 32.7 ± 1.33 29.9 ± 1.73 35.5 ± 2.08 

FS (%) 26.4 ± 1.05 25.5 ± 1.52 29.6 ± 1.44 

EF (%) 52.2 ± 1.7 55.5 ± 2.4 54.8 ± 2.04 

N 11 15 14 

Bodyweight (BW), left ventricle mass (LVmass), relative wall thickness (RWT; 

[(IVSd+LVPWd)/LVIDd]), heart rate (HR) in beats per minute (bpm), interventricular septum 

thickness during diastole (IVSd) and systole (IVSs), left ventricle posterior wall thickness 

during diastole and systole (LVPWd, LVPWs, respectively), left ventricular internal diameter 

during diastole and systole (LVIDd, LVIDs, respectively), SV (stroke volume), FS (fractional 



shortening), EF (ejection fraction) of 3 months old male TgMhVLC-1, TgME56G, or 

C57BL/6 mice. Values are expressed as means ± SEM. N = number of animals investigated. 



Table 2: Microarray analysis (Affymetrix) of differentially expressed genes in TgME56G (n=4) 
or TgMhVLC-1 (n=4). FDR: False Discovery Rate. A fold-change < 0 means that the gene is 
down regulated in TgME56G compared to TgMhVLC-1.  
 

Gene Symbol  Description  FDR  Fold Change  

U5  U5 spliceosomal RNA  0,046694 -4,33572 
Uprt  uracil phosphoribosyltransferase (FUR1) homolog  0,0361973 -3,32899 
Uprt  uracil phosphoribosyltransferase (FUR1) homolog  0,0407105 -2,77093 

2410024N13Rik  RIKEN cDNA 2410024N13 gene  0,039736 -2,73971 
2210407C18Rik  RIKEN cDNA 2210407C18 gene  0,0143476 -2,67208 

Mir22hg  Mir22 host gene (non-protein coding)  0,0144842 -2,3936 
Mpdz  multiple PDZ domain protein  0,00657453 -2,38032 

Slc31a2  solute carrier family 31, member 2  0,035194 -2,34809 
Sike1  suppressor of IKBKE 1  0,031291 -2,26305 
Acot2  acyl-CoA thioesterase 2  0,0338651 -2,15197 
Snx12  sorting nexin 12  0,0375959 -2,12907 

SNORD50  Small nucleolar RNA SNORD50  0,0113246 -2,10452 
Il2rg  interleukin 2 receptor, gamma chain  0,0317988 -2,09221 

Snora34  small nucleolar RNA, H/ACA box 34  0,0428091 -2,09132 
Nudt22  nucleoside diphosphate linked moiety X-type motif 22  0,0450101 -2,03719 

Sly  Sycp3 like Y-linked  0,0107666 2,41232 
Iqgap2  IQ motif containing GTPase activating protein 2  0,0276604 2,72585 

Sly  Sycp3 like Y-linked  0,0255466 2,76581 
Gm9789  predicted gene 9789  0,0497478 2,82639 

E330014E10Rik  RIKEN cDNA E330014E10 gene  0,0457196 3,3962 
Srsy  serine-rich, secreted, Y-linked  0,0216916 4,3202 
Srsy  serine-rich, secreted, Y-linked  0,0367881 4,47968 

Speer4d  spermatogenesis associated glutamate (E)-rich protein 4d  0,0384464 4,57186 
Gm10722  predicted gene 10722  0,0493894 5,37452 

SNORD115  Small nucleolar RNA SNORD115  0,0474845 8,04517 
Ssty2  spermiogenesis specific transcript  0,00911056 8,18771 
Sly  Sycp3 like Y-linked  0,0362431 9,56756 

Gm10716  predicted gene 10716  0,0429258 10,3715 
SNORD115  Small nucleolar RNA SNORD115  0,0360559 12,5072 
LOC382133  Ssty1 family member  0,00649441 13,0578 

Srsy  serine-rich, secreted, Y-linked  0,0259107 16,8086 
Vmn1r-ps79  vomeronasal 1 receptor, pseudogene 79  0,02185 26,0049 
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