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Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany

Abstract

Purpose: Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for
self-calibrated parallel imaging.

Methods: For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to
decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to
generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired
simultaneously. SENSE reconstruction was employed.

Results: The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE
was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration
between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The
applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including
accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging.

Conclusion: SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE.
SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for
imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging.
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Introduction

In current clinical cardiac MR (CMR) inversion recovery

prepared black blood fast spin-echo (FSE) techniques [1] are

commonly used for anatomical and morphological imaging of the

heart and large vessels [1,2]. Clinical applications also include

probing for myocardial edema, assessment of amyloidosis and

myocardial tissue characterization using parametric mapping [3–

8]. Black blood FSE imaging of the heart can be time consuming

since it is commonly confined to a single slice per breath-hold due

to the competing constraints of spatial resolution and physiological

motion which dictate the viable window of data acquisition.

Acceleration through parallel imaging seeks to relax the speed

constraints of FSE by using radiofrequency (RF) coil arrays in

conjunction with k-space domain techniques [9] - exemplified by

the original SMASH (SiMultaneous Acquisition of Spatial

Harmonic) and GRAPPA (GeneRalized Autocalibrating Partially

Parallel Acquisitions) algorithms [10,11] - or image domain

techniques - represented by the original Cartesian SENSE

(SENSitivity Encoding) formulation [12] - for unfolding of aliased

voxels that result from undersampling. One practical implication is

that calibration of the component coil sensitivity profiles is

required. Separate calibration using external reference scans prior

to accelerated imaging has been used successfully for breath-hold

and free breathing CMR [13–18] including black blood FSE [19],

though the presence of cardiac and respiratory motion can present

challenges for external sensitivity calibration [20,21].

The potential for motion and hence mis-registration between

calibration scans and accelerated scans have prompted the

development of self-calibrating parallel imaging approaches,

which have seen extensive use in CMR [11,22–24]. Self-

calibration is conveniently incorporated in the time-domain

approaches. Self-calibrated SENSE has been demonstrated for

accelerated spatio-temporal hybrid techniques which rely on

dynamic data [25–31]; a requirement which is not met by

standardized CMR protocols used for single cardiac phase black

blood FSE imaging of the heart [32,33].

Recognizing the needs of cardiac MRI and the opportunities of

black blood FSE imaging it is conceptually appealing to pursue

accelerated, self-calibrated FSE techniques. For this reason this

work proposes a modified FSE variant which uses a split-echo

approach [34,35]. For this purpose the full echo of coherent FSE is

decomposed into two parities, which can be independently phase

encoded (i) using regular sampling to derive coil sensitivity profiles

and (ii) k-space undersampling to accelerate acquisitions. Conse-

quently, reference and undersampled data are acquired simulta-
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neously which makes an external reference scan obsolete. The

proposed FSE variant is referred to self-calibrated, split-echo FSE

(SCSE-FSE) for reasons of brevity. The feasibility of SCSE-FSE is

carefully examined in phantom studies. The immunity of SCSE-

FSE for motion induced mis-registration between reference and

undersampled data is demonstrated in phantom studies using a

dynamic MR compatible left ventricular model [36]. For

comparison, traditional FSE variants [34,37,38] are applied.

The applicability of black blood prepared SCSE-FSE for cardiac

MR is assessed in healthy volunteers and benchmarked versus

traditional FSE. These efforts include accelerated multi-slice per

breath-hold imaging and examination of motion induced mis-

registration. The merits and limitations of SCSE-FSE are

discussed and implications for clinical cardiac MR are considered.

Materials and Methods

MR methodology
The underlying principle of Rapid Acquisition with Refocusing

Echoes/Fast Spin Echo (RARE/FSE) is the acquisition of an echo

train generated by an initial excitation pulse and a train of n

equidistant refocusing pulses (a) whereby each echo is indepen-

dently phase encoded [39,40]. Nutation angles of nominal a?180u

induce a number of coherence pathways giving rise to single odd/

even echo groups [37]. The two echo groups superimpose

coherently provided that (i) a perfect trimming of the frequency

encoding gradient is achieved and (ii) the Carr-Purcell-Meiboom-

Gill (CPMG) condition [41] is satisfied (coherent FSE, [37]). To

eliminate interferences between odd and even echo groups one

echo group can be shifted out of the acquisition window using an

additional crusher gradient along the frequency encoding direc-

tion, which is designated as displaced FSE [37]. Consequently one

echo group does not contribute to the signal.

In split-echo FSE the echo groups are separated by a mis-

trimmed frequency encoding gradient [34,35,42]. This can be

realized by crusher gradients situated about the acquisition epoch

and/or by an imbalanced read dephasing gradient. In split-echo

FSE, odd and even echo groups experience the same phase

encoding and are simultaneously recorded within the acquisition

period.

For self-calibrated, split-echo FSE independent phase encoding

schemes PE1 and PE2 are applied for even and odd echo parities as

illustrated in Figure 1A. One echo group is phase encoded to form

a fully sampled reference data set for determination of B1 coil

sensitive profiles (E1) as outlined in Figure 1A. The other echo

group is phase encoded to generate an accelerated data set with an

Figure 1. Basic scheme of the self-calibrated, split-echo FSE (SCSE-FSE) technique. A) Basic scheme for the first three RF pulses. Unlike
coherent FSE odd (E1) and even (E2) echo groups are separated from each other in SCSE-FSE. Both echo groups are phase encoded (PE1, PE2)
independently. One echo group is used to generate the coil sensitivity map (E1). The other echo group is employed to generate undersampled data
which are unfolded using SENSE reconstruction (E2). B) Extended phase graph together with the position of the PF pulses to illustrate the evolution
of the magnetization in SCSE-FSE for the first five RF pulses.
doi:10.1371/journal.pone.0094654.g001
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undersampling factor of R (E2). This can be achieved by dividing

the moment of the phase encoding gradient used for the reference

data by R. For this purpose a single net phase encoding gradient

with a duration tgrad,300 ms was used in our proof-of-principle

implementation. With this phase encoding scheme odd/even

echoes can serve as reference/undersampled data and vice versa

with a spatial resolution of the reference map of 1/R of the final

image. Figure 1B demonstrates the magnetization pathways based

on the extended phase graph algorithm [43–45] for both echo

groups for the first five echo spacings (ESP).

Image Acquisition and Reconstruction
Image acquisition and reconstruction involved SCSE-FSE and

the conventional FSE variants (coherent FSE, split-echo FSE and

displaced FSE) including regular density and undersampled phase

encoding schemes. Imaging parameters were kept identical for all

FSE variants as outlined in detail in the phantom experiments and

cardiac imaging section.

Raw data were exported from the scanner and reconstructed

offline using an in-house implementation in MATLAB (MA-

TLAB, The MathWorks, Inc., Natwick, USA) and the PULSAR

toolkit [46] for GRAPPA [11] and SENSE [12] reconstruction.

The following strategies were performed to reconstruct the FSE

variants:

N fully sampled coherent FSE and displaced FSE

# magnitude images were derived from element-wise 2D FFT

reconstruction from each coil followed by sum of squares (SOS)

combination [47].

N fully sampled split-echo FSE

# two magnitude images were obtained after extraction of odd

and even echo groups from the raw data followed by 2D-FFT and

SOS. The two images were added up to form a single image.

Figure 2. SNR maps and g-factor maps for coherent FSE and SCSE-FSE. Top) Synopsis of results derived from coherent FSE imaging of a
phantom R = 1 (first column) together with SENSE reconstruction and reduction factors of R = 2 (second column), R = 3 (third column) and R = 4 (last
column). SENSE reconstructed images (A); images scaled in SNR units (B) and g-factor maps (C) derived from SNR maps. SNR was found to be SNR =
(6367) for R = 2, SNR = (5666) for R = 3 and SNR = (3865) for R = 4. Bottom) Synopsis of results derived from SCSE-FSE imaging of a phantom R = 1
(first column) together with SENSE reconstruction and reduction factors of R = 2 (second column), R = 3 (third column) and R = 4 (last column). SENSE
reconstructed images (D); images scaled in SNR units (E); g-factor maps (F) derived from SNR maps. Signal-to-noise ratio was SNR = (2966), SNR =
(2663) and SNR = (2163) for R = 2, R = 3 and R = 4.
doi:10.1371/journal.pone.0094654.g002
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N fully sampled SCSE-FSE,

# odd echoes were used to generate the final image by using 2D

FFT and SOS.

N undersampled coherent FSE,

# displaced-FSE and split-echo FSE data were reconstructed

using a separate reference scan with 32 lines together with SENSE

reconstruction.

For comparison, 31 internal reference lines were used for self-

calibrated GRAPPA reconstruction.

N undersampled SCSE-FSE,

# data were reconstructed using even echoes for coil calibration

and undersampled data derived from odd echoes together with

SENSE reconstruction.

MR-Hardware
Imaging was conducted using a wide-bore 3.0 T MR system

(Magnetom Verio, Siemens Healthcare, Erlangen, Germany). A

body RF coil was applied for signal transmission. For reception a

32 channel head coil (Siemens Healthcare, Erlangen) and a 32

channel cardiac coil array (IN VIVO Corp., Gainsville, USA)

were applied. An MR stethoscope (easyACT, MRI.TOOLS

GmbH, Berlin, Germany) was used for cardiac triggering [48–50].

Phantom experiments
Phantom experiments using conventional FSE variants and

SCSE-FSE were performed using (i) a stationary object and (ii) a

dynamic model of the left ventricle [36]. For the stationary object

a spherical phantom (inner diameter = 15 cm, D165, Siemens

Healthcare, Erlangen, Germany) was used. The phantom is made

of Plexiglas and filled with oil. Imaging parameters were set to:

Matrix size 5126256, echo train length = 16, number of dummy

echoes = 8 [51], in-plane spatial resolution = (0.960.9) mm2,

slice thickness = 5 mm, effective echo time TEeff = 61 ms,

repetition time TR = 1000 ms, receiver bandwidth = 454 Hz/

pixel, nominal refocusing pulse = 180u. For parallel imaging

Figure 3. Point spread function (PSF) for coherent, split-echo, displaced and SCSE-FSE variants. The upper row depicts the k-space
profile for each approach, reflecting the signal intensity of every ky-line via its integral. The FFT of this profile results in the point spread function; its
magnitude is shown in the lower row. No major differences in the PSF were found for SCSE-FSE versus traditional FSE variants including coherent FSE,
split-echo FSE, displaced FSE.
doi:10.1371/journal.pone.0094654.g003
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acceleration factors of up to R = 3 were applied for all FSE

variants.

For the dynamic phantom an MR compatible left ventricle

model was employed [36]. For this purpose an artificial ventricle

was formed of silicon based on the geometric approximation of a

paraboloid. The ventricle model exhibits T1 and T2 relaxation

times that mimic that of the myocardium. A pump system supplied

the ventricle with pulsatile flow of a water/glycerol mixture that

Figure 4. Long and short axis views of a dynamic left ventricle model derived from coherent FSE and SCSE-FSE acquisitions. A) Four
chamber long axis views B) short axis views of a dynamic left ventricle model. A 15 mm movement of the phantom along the long axis of the left
ventricle model was used to mimic bulk cardiac motion. The mis-registration between the external reference scans and the accelerated data derived
from coherent FSE induced severe artifacts in the SENSE reconstructed images for R = 2 (top). The artifacts were pronounced for R = 3. In comparison,
SCSE-FSE was immune to bulk motion induced shifts in the phantom (middle) as was self-calibrated coherent FSE in conjunction with SENSE
reconstruction (bottom). For the latter coil sensitivity maps were deduced from 32 central k-space lines while a decimation factor of R = 2 and R = 3
was employed to generate undersampled data. Imaging parameters were: in-plane spatial resolution = (1.361.3) mm2, slice thickness = 8 mm, TEeff

= 77 ms, receiver bandwidth = 454 Hz/pixel for all data sets.
doi:10.1371/journal.pone.0094654.g004
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exhibited the viscosity of human blood. The pump inflated and

deflated the ventricle to mimic ventricular contraction. Cardiac

triggering was used. Imaging parameters were identical to those

used for the static phantom with the exception of: in-plane spatial

resolution = (1.361.3) mm2, slice thickness = 8 mm, TEeff

= 77 ms, receiver bandwidth = 454 Hz/pixel.

To examine the propensity for mis-registration between

reference data and undersampled data the ventricle model was

moved by 15 mm along the long axis of the phantom after the

acquisition of the reference data.

Ethics Statement
For the in vivo feasibility study, eight healthy subjects without

known history of cardiac diseases (mean age: 293 years, 6 men, 2

women, mean BMI: 242.3 kg/m2, mean heart rate: 7515 bpm)

were included after due approval by the local ethical committee

(registration number EA1/151/10 Ethikkomission Charité-Uni-

versitätsmedizin, Berlin, Germany). Informed written consent was

obtained from each volunteer prior to the study.

Cardiac imaging
For cardiac imaging slice positioning was carried out following

international consensus. For this purpose the heart was localized in

three orthogonal thoracic slices in each spatial orientation using

low-resolution SSFP scout images. The long axis of the left

ventricle was dissected twice, and finally a stack of short axes was

obtained. These slices provided the basis for planning the standard

long axis views (four-chamber, three-chamber and two-chamber

view) derived from 2D CINE SSFP imaging (in-plane resolution

= (1.761.7) mm2, slice thickness = 6 mm, TE = 1.3 ms, TR

= 2.7 ms, matrix size = 1926192, nominal flip angle = 45u).
Based on the four-chamber view (4CV), a mid-ventricular short

axes view (SAX) parallel to the mitral valve was planned.

For black blood imaging, double inversion recovery prepared

coherent FSE, displaced FSE, split-echo FSE and SCSE-FSE were

conducted. For all FSE variants imaging parameters were set to:

in-plane resolution = (1.261.2) mm2, slice thickness = 5 mm,

TEeff = 54 ms, TR = 1 R-R interval, matrix size = 5126256,

receiver bandwidth = 454 Hz/pixel, ESP = 4.9 ms.

Two strategies were used to examine artifacts due to mis-

registration between reference data and undersampled data in

cardiac imaging:

N The reference map was shifted 5 or 10 pixels parallel to the

long axis of the heart to mimic physiological motion induced

mis-registration.

N Reference data were acquired during systole and under-

sampled image data were acquired during mid-diastole.

Image Quality Assessment
For image quality assessment, signal-to-noise ratio (SNR) and g-

factor maps were calculated using an acceleration factor of up to

R = 4. SNR maps were derived from a time series of images using

SNR = xt(r)/st(r) with xt(r) being the mean signal intensity of

pixel r over time t and st (r) being the standard deviation (SD) of

the signal intensity in pixel r over time t for 16 images. For closer

examination mean SNR values and standard deviation are

reported for a ROI (diameter = 6.6 cm) placed in the center of

an axial slice of the phantom. G-factor maps were extracted

during SENSE reconstruction.

For point spread function (PSF) analysis, static phantom

measurements were conducted with phase encoding gradients

turned off. The full-width-half-maximum (FWHM) was calculated

as a measure for the quality of the PSF.

Figure 5. Four chamber long axis views and short axis views of the heart obtained with all FSE variants. A) Four chamber long axis
views B) short axis views of the heart derived from double inversion recovery prepared acquisitions using coherent, split-echo, displaced and SCSE-
FSE in conjunction with R = 1 (left), R = 2 (middle) and R = 3 (right). Imaging parameters were: in-plane resolution = (1.261.2) mm2 slice thickness
= 5 mm, TEeff = 54 ms, matrix size = 5126256, echo spacing 4.9 ms, receiver bandwidth = 454 Hz/pixel for all data sets.
doi:10.1371/journal.pone.0094654.g005
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Results

Phantom Experiments
T2 weighted imaging using all FSE variants and the static

phantom was performed successfully. For regular k-space density

sampling coherent FSE and split-echo FSE yielded SNR

= 107610 for a ROI (D = 6.6 cm) placed in the center of an

axial slice of the phantom. For the same ROI, displaced FSE and

SCSE-FSE provide SNR = 49611 which is half of coherent FSE

since only one echo group is used for the generation of the final

image. For SCSE-FSE the extra phase encoding gradients PE1 and

PE2 did not diminish image quality compared to coherent FSE as

demonstrated in Figure 2A and 2D.

SNR maps and g-factor maps derived from accelerated

coherent FSE and SCSE-FSE imaging are shown in Figure 2

using an acceleration factor up to R = 4. For a ROI placed in the

center of an axial slice through the phantom coherent FSE yielded

SNR = (6367), SNR = (5666) and SNR = (3865) for R = 2,

R = 3 and R = 4. In comparison, SCSE-FSE provided SNR =

(2966), SNR = (2663) and SNR = (2163) for R = 2, R = 3 and

R = 4. SCSE-FSE revealed noise amplification which matches that

of parallel imaging with conventional FSE.

Figure 3 provides a synopsis of the results observed for PSF

analysis. The upper row depicts the k-space profile for each

approach, reflecting the signal intensity of every ky-line via its

integral. The FFT of this profile results in the point spread

function; its magnitude is shown in the lower row. No major

Figure 6. Illustration of mis-registration between reference data and undersampled data. The propensity to cardiac motion induced mis-
registration between reference and undersampled data is demonstrated for four chamber (top) and short axis- views (bottom) of the heart derived
from double inversion recovery prepared acquisitions using accelerated (R = 2, R = 3) coherent FSE and SCSE-FSE. A) Without mis-registration
between reference data and undersampled image data. The images obtained for coherent FSE and SCSE-FSE compare well. B) With mis-registration
by shifting the reference data 5 pixel parallel to the long axis of the heart, C) by shifting the reference data 10 pixel parallel to the long axis of the
heart. Accelerated imaging (R = 2 and R = 3) with self-calibrated FSE was free of parallel imaging artifacts while aliasing artifacts were obtained for
coherent FSE (white arrows). SENSE reconstructed, self-calibrated coherent FSE was immune to bulk motion induced shifts.
doi:10.1371/journal.pone.0094654.g006
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differences in the point spread functions FWHM were found for

the FSE variants used.

The propensity of coherent FSE and SCSE-FSE for bulk

motion induced mis-registration between reference and under-

sampled data was examined using a dynamic model mimicking a

cardiac left ventricle. Figure 4 illustrates the results obtained for

long axis and short axis views of the dynamic phantom using

coherent FSE together with an external reference scan. For a

15 mm mismatch in position along the long axis of the phantom

between B1 calibration and accelerated imaging significant mis-

registration artifacts were observed for coherent FSE. These

artifacts were already present for two-fold accelerations and

further pronounced for R = 3 for SENSE reconstruction as

demonstrated in Figure 4.

In comparison, self-calibrated parallel imaging with SCSE-FSE

using R = 2 and R = 3 was found to be immune to the 15 mm

displacement as was self-calibrated coherent FSE using SENSE

reconstruction.

Cardiac imaging
Four chamber long axis views and short axis views of the heart

obtained with all FSE variants are shown in Figure 5. For parallel

imaging acceleration factors of up to R = 3 were applied. The

results indicate that SCSE-FSE imaging exhibits contrast proper-

ties which match that of the traditional FSE variants. Figure 5

demonstrates that SNR reduction intrinsic to SCSE-FSE versus

coherent and split-echo FSE does not present a challenge for black

blood imaging protocols given by the clinical guidelines [32].

The immunity of SCSE-FSE for cardiac motion induced mis-

registration between reference data and undersampled data is

illustrated in Figure 6. For this purpose, the reference map was

shifted 5 or 10 pixels parallel to the long axis of the heart to mimic

a physiological motion induced mis-registration. For this setup,

accelerated coherent FSE yielded severe artifacts for SENSE

reconstruction using an external reference scan. In comparison, no

image artifacts were observed for SCSE-FSE using self-calibration

and SENSE reconstruction. SENSE reconstructed, self-calibrated

coherent FSE was immune to bulk motion induced shifts.

For further examination of mis-registration artifacts, external

reference data were acquired in systole and undersampled image

data were recorded during diastole. Figure 7 demonstrates mis-

registration induced artifacts for coherent FSE in conjunction with

SENSE reconstruction using an external reference scan for B1

calibration acquired during systole while accelerated data were

acquired during diastole. Self-calibration together with GRAPPA

reconstruction of coherent FSE and SCFSE-FSE in conjunction

with SENSE reconstruction provided images free of artifacts since

the internal reference data were acquired during the same cardiac

cycle than the accelerated data.

The speed gain of SCSE-FSE is demonstrated in Figure 8 using

short axis views of the heart. For this purpose three slices were first

derived from single breath-hold per slice acquisitions using

coherent FSE and SCSE-FSE. For comparison the same three

slices were derived from three-fold accelerated single breath-hold

acquisitions using (i) coherent FSE in conjunction with SENSE

reconstruction and (ii) SCSE-FSE. This approach resulted in an

effective examination time advantage of a factor of approximately

six (assuming a 15 sec recovery after a breath-hold) over fully

sampled single breath-hold per slice FSE acquisitions.

Discussion

This work demonstrates the feasibility of self-calibrated, split-

echo FSE imaging in a stationary phantom, a dynamic cardiac left

ventricle model, and in healthy volunteers. SCSE-FSE obviates the

need of external reference scans for SENSE reconstructed parallel

imaging with FSE. The application of independent phase

encoding for both echo parities affords the simultaneous acquisi-

tion of (i) reference data used for B1 calibration and (ii)

undersampled data. The self-calibrated approach reduces -the

risk for mis-registration between external reference scans and

accelerated acquisitions which frequently occurs in the presence of

body or physiological motion when using external reference scans.

In today’s clinical CMR practice self-calibration is conveniently

incorporated in black blood FSE using k-space domain approaches

for reconstruction. Clinical implementations of self-calibrated

black blood FSE often come with no sacrifice in scan time for

the acquisition of calibration signals and with no sacrifice for net

acceleration. The scan time needed for the regular density

acquisition of low frequency k-space calibration lines is however

Figure 7. Illustration of mis-registration effects due to data
acquisition during different cardiac phases. Four chamber long
axis views derived from double inversion recovery prepared acquisi-
tions using coherent FSE and SCSE-FSE (R = 2–3) in conjunction with
SENSE and GRAPPA reconstruction. For the ‘‘without mis-registration’’
mode reference and accelerated data were acquired during the same
cardiac phase (diastole). For the ‘‘with mis-registration’’ mode external
reference data were acquired during systole for SENSE reconstruction
while internal reference data used for self-calibration and under-
sampled data were recorded during diastole. For ‘‘self-calibration’’
reference and accelerated data were acquired during the same cardiac
phase (diastole).
doi:10.1371/journal.pone.0094654.g007
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commonly compensated by increasing the undersampling rate for

higher frequency k-space lines. This approach comes at the cost of

increased noise amplification which is inherent to parallel imaging.

This challenge is pronounced for cardiac FSE imaging where it is

common to use a small matrix size along the phase encoding

direction. This shifts the scan time weight to the number of

calibration lines, in particular if half-Fourier or inner volume FSE

techniques adapted to the size of the left ventricle or adjusted to

the geometry of large vessels are applied. Our work adds to the

literature by demonstrating that self-calibration can be conve-

niently incorporated into SCSE-FSE together with image domain

SENSE reconstruction with no sacrifice in scan time and no

compromise in the net reduction factor. Unlike the conventional

approach the proposed SCSE-FSE approach does not exhibit the

net-acceleration drawback of the conventional approach. SCSE-

FSE does not use an increase in the undersampling rate for higher

frequency k-space lines to compensate for the net acceleration

penalty of conventional self-calibration techniques and hence does

not suffer from the extra noise amplification induced by the higher

undersampling rate for higher frequency k-space lines.

SCSE-FSE does not show additional noise amplification versus

parallel imaging with conventional FSE. The basic concept using

two independently echo groups of SCSE-FSE can be also applied

to k-space domain reconstruction algorithms.

SCSE-FSE helps to address some of the limitations of previous

self-calibrated approaches using SENSE reconstruction tech-

niques. These approaches are commonly based upon spatio-

temporal hybrid algorithms - a concept behind techniques such as

UNFOLD-SENSE, TSENSE, auto-SENSE, and k-t SENSE -

which are applied on a frame-by-frame basis [25–31]. These

techniques share the need of a time series of data (for example

CINE imaging or first pass bolus perfusion imaging) and hence do

not support single cardiac phase black blood FSE imaging of the

heart per se.

The speed gain offered by SCSE-FSE promises to extend the

capabilities of black blood imaging of the heart from a single slice

to multiple slices per breath-hold acquisitions. One practical

implication is that SCSE-FSE would help to reduce examination

times while improving both operator convenience and patient

comfort. This is not limited to imaging anatomy and morphology

of the heart and the large vessels but can be also put to good use

for myocardial tissue characterization and probing of myocardial

microstructure using apparent diffusion coefficient (ADC), T2 or

T2
* mapping [3] or susceptibility weighted imaging and quanti-

tative susceptibility mapping of the heart [52]. Susceptibility

sensitization can be achieved in FSE by inserting an extra delay t
between the initial 90u excitation pulse and the first refocusing

pulse [53]. Susceptibility sensitization introduces unknown phase

shifts, which would lead to destructive interference between odd

and even echo groups in case of coherent FSE and hence renders it

unsuitable for T2
* weighted imaging/mapping. SCSE-FSE runs

the advantage that odd and even echo groups are separated from

Figure 8. Transfer of enhanced imaging speed into improved heart coverage per breath-hold. Three short axis views of the heart derived
from single breath-hold per slice acquisitions using coherent FSE and SCSE-FSE are shown. For comparison the same three short axis views of the
heart were derived from three-fold accelerated single breath-hold acquisitions using coherent FSE and SCSE-FSE. The latter offers an effective
examination time advantage of a factor of approximately six (assuming a 15 sec recovery after a breath-hold) over the single slice per breath-hold
approach.
doi:10.1371/journal.pone.0094654.g008
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each other, which helps to overcome the incompatibility of

susceptibility weighted preparation experiments and conventional

coherent FSE. SCSE-FSE provides also means for accelerating T2

mapping using multi-echo FSE techniques [54] or for dual

contrast FSE [55].

The availability of multiple frames in a series of diffusion, T2 or

T2
*-weighted FSE images affords the opportunity to vary

acquisition trajectories from image to image and to perhaps use

spatio-temporal correlations measured from FSE training data

[56,57] to reassemble image components that are distributed in

time and space. To this end, SCSE-FSE offers the simultaneous

acquisition of training data and undersampled data without a scan

time penalty. Provided that phase encoding is applied properly

and that the same readout size is used for training and

undersampled data, the training data can be even incorporated

into the k-space of the undersampled data prior to reconstruction

to preserve or enhance SNR, contrast and temporal fidelity

[58,59].

It is a recognized limitation of the proposed SCSE-FSE

approach that the separation of odd and even echoes together

with the use of only one echo group for image reconstruction

comes with a SNR penalty of factor 2 versus coherent FSE, where

both echo groups contribute to the signal. This caveat can be

relaxed by using many element coil arrays tailored for cardiac MR

[60–64] or by moving to CMR at magnetic field strengths of

B0$3.0 T [64–69].

The literature shows that the displacement of the epix or of the

coronary arteries attached to the myocardium is about 2–4 cm

across the cardiac cycle (diastole versus systole). The movement of

the diaphragm that shifts the heart up and down is in between 3–

5 cm across a respiratory cycle. Taking these physiological

motions into account we opted for a close-to-reality scenario for

the phantom experiments and used a 15 mm movement to

demonstrate the effect of mis-registration. For the in vivo data a 5

and 10 pixel (which corresponds to approximately 5 mm and

10 mm) displacement was chosen with the corresponding results

being shown in Figure 6. When using a smaller mismatch the

displacement artifacts are shifted parallel to the long axis of the

heart, but are still visible. Aliasing artifacts are more pronounced

with a higher mismatch.

This study was designed to examine the feasibility and

applicability of self-calibrated SCSE-FSE. Hence we decided not

to apply any filter to the reference maps used for SENSE

reconstruction and worked with the virgin raw data. Extra

processing on the coil sensitivity maps might reduce artifacts

caused by the mismatch between external reference scans and

accelerated scans.

Furthermore, 3D volumetric acquisitions would serve to recover

SNR via noise averaging [70,71]. To this end, 3D volumetric

acquisitions can benefit most from two-dimensional parallel

imaging [16,70], which would be supported by the proposed

SCSE-FSE approach. SCSE-FSE is not limited to Cartesian phase

encoding but is also compatible with non-cartesian FSE k-space

trajectory variants [72]. SCSE-FSE supports double inversion

recovery and triple inversion recovery preparation modules. To

generalize, the initial excitation pulse can be substituted by any

spin preparation that provides transverse magnetization. The self-

calibrated, split-echo approach works with a FSE readout but

would be also compatible with a GRASE imaging module [73].

In conclusion, self-calibrated, split-echo FSE is feasible for

accelerated black blood imaging of the heart and of large cardiac

vessels. The proposed SCSE-FSE approach is not limited to

cardiovascular imaging but also meets the needs of brain,

abdominal or liver imaging.
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