Supplemental Information, Ragancokova et al., 2013

Supplemental Figure 1
Supplemental Figure 1

Gene targeting of *Tshz1* by classical and conditional mutagenesis and *Tshz1* expression in the developing OB in *Tshz1* mutants. (A) The targeting vector strategy to generate the *Tshz1GFP* allele is shown. The GFP cassette (green box), a self-excision cre-neomycin cassette (SEcre Neo) for removal in the male germline, and a diphtheria toxin (DTA) cassette for negative selection are shown. The 3′ end of the *Tshz1* coding sequences (white box), the 3′-UTR of exon 2 (UTR) and *loxP* sites (red arrowheads) are also indicated. The sizes of *EcoRI* restriction enzyme fragments recognized by a probe 5′ of the targeting vector are also indicated. (B) Southern blot analysis of *EcoRI*-digested genomic DNA from ES cells (left panel, lane 1, wild type; lanes 2,3, heterozygote colonies) and newborn mice (right panel, lanes 4,6, heterozygote; lane 5, homozygote mutant) using the 5′ probe. (C) The targeting vector used to generate the conditional *Tshz1flo* allele is shown at the top. *loxP* and *frt* sites are shown as red and black arrowheads, respectively. The neo-cassette was removed after crossing chimeric mice animals carrying the Flp-e deleter allele. Germline deletion using a cre-deleter strain was used to generate the *Tshz1Δ* allele. (D) Southern blot analysis of *EcoRI*-digested genomic DNA from ES cells (left panel, lane 1, wildtype; lane 2, heterozygous colony) and PCR analysis of mice (center panel, lanes 3-5, homozygous wild type, heterozygous *Tshz1flo/+* and homozygous *Tshz1flo/flo* mutant, respectively, using primers indicated in blue in (C), asterisk indicates a heteroduplex formed by annealing of wild type and mutant DNA strands; right panel, lane 6, heterozygous *Tshz1flo/+* and lane 7, heterozygous *Tshz1Δ/+* mutant, using primers indicated in black in C. Coronal sections of E18.5 OBs were examined by immunohistology (E,F,H-J) or in situ hybridization (G). The detection of Tshz1 expression by anti-GFP antibodies (green) in control mice revealed a ring of expression in the outer granule cell layer (E-J arrowheads) directly abutting the TSHZ2⁺ mitral
cell layer (E,F, red, double arrowheads), and in scattered cells throughout the RMS/subventricular zone of the OB. The staining against the GFP reporter, with a phenotype identical in homozygous $Tshz1^{GFP/\Delta}$ (E) and coTshz1 (F) mutant mice, revealed scattered GFP+ cells as well as GFP+ aggregates (arrowheads marked by asterisks) located mainly within the inner granule cell layer/subventricular zone of the bulb. (E,F) Co-expression of the GFP reporter was visible in some of the TSHZ2+ mitral cells in control and mutant mice; the organization of the mitral cell layer appeared however unaffected in mutant animals at E18.5. (G) Detection of $Tshz1$ mRNA in control and $Tshz1$ homozygous mutants. (H) Staining for TSHZ1 protein (green) in control and coTshz1 mutant animals. (I,J) Immunostaining of OBs with antibodies directed against tyrosine hydroxylase revealed a loss of this marker in the granule cell layer of mutant mice (arrowheads) while its expression in the glomerular layer was unchanged (arrows). Scale bar: 200 µm (E-J).
Supplemental Figure 2

Phenotypic characterization of coTshz1 mice. (A) At P0.5, both control and coTshz1 mutants had suckled, as indicated by the presence of milk in the stomach (arrows). (B) Control (upper) and coTshz1 mutant animal (lower) at P21. (C) Body weight in control and coTshz1 mutant mice over time. (D) Body weight and brain weight (upper and lower panels, respectively) in cohorts of male and female control and coTshz1 mutant mice at 12 weeks of age. Scale bar: 1 cm. *P < 0.05, ***P < 0.001.
Supplemental Figure 3

Analysis of neuroblasts in the RMS along their route from the lateral ventricle towards the OB in postnatal control and coTshz1 mutant mice. (A-C) Coronal sections of brains were analyzed by
in situ hybridization with probes against *Gfp*. The morphology of the SVZ/RMS (arrows) prior to entering the OB appeared unaffected in coTshz1 mutant mice. aSVZ, pSVZ, refer to anterior and posterior regions of the subventricular zone, respectively. Scale bar: 1 mm.
Differentiation of postnatally born granule cell layer neurons is disrupted in coTshz1 mutants. (A) Following a BrdU pulse with a subsequent chase of two weeks, coronal sections of OBs were analyzed by immunostaining for NeuN (green) and BrdU (red). Shown are close-ups of the NeuN⁺ granule cell layer of controls (left panels) and coTshz1 mutants (right panels) (B) The fraction of BrdU⁺NeuN⁻ cells (i.e. those cells that had not yet differentiated into neurons) was determined as a percentage of the total BrdU⁺ population. Scale bar: 50 µm. ***P< 0.001.
Supplemental Figure 5

Increased cell death in the OB of coTshz1 mutant mice. (A) Representative pictures show TUNEL-stained apoptotic cells (green) in coronal sections of control and coTshz1 mice. (B) Quantification of average number of apoptotic cells per section. Scale bars: 500 µm (A), 50 µm (insets). ***P<0.001.
Supplemental Figure 6
Supplemental Figure 6

Immunohistological analysis of coronal sections of the OB in control (A) or coTshz1 mutants (B) stained with antibodies against GFP (green) or PAX6 (red), and counterstained with DAPI (cyan). Within the glomerular layer of control mice, expression of the GFP reporter and PAX6 was seen in non-overlapping populations of periglomerular neurons (A). In coTshz1 mutants, the number of GFP+ cells around glomeruli was reduced, with many clustering on the inner side of the glomeruli apposing the external plexiform layer (B, quantified in C). Furthermore, some of these GFP+ cells also expressed PAX6, implying that Tshz1 may act to antagonize Pax6 expression in subsets of periglomerular neurons. Scale bars: 200 µm (A-B), 50 µm (insets). ***P<0.001.
Supplemental Figure 7

Behavioral testing of olfaction in control, coTshz1 mutant mice and heterozygous Tshz1^{flox/-}. (A)

The response of animals to a single presentation of the odor TMT on a filter paper at the concentration indicated, following three presentations of a filter soaked with solvent alone, was
determined. Note that the threshold for detection of TMT in control animals was 3×10^{-11} M, whilst coTshz1 mutants failed to respond to this odor, even when presented at a 100-fold higher concentration. (B) Buried food test with and without vanillin (64 µM) compared between wild type and heterozygous $Tshz1^{GFP/flox}$ mice. Values indicate mean± SEM, *$P<0.05$, **$P<0.01$.
Supplemental Figure 8

Expression of Prokr2 in control and coTshz1 mutant adult mice and experimental steps prior to ChIP experiments. (A-C) Coronal sections of brains showed no marked changes in Prokr2 expression in the RMS (arrows) prior to entering the OB in coTshz1 mutant mice. aSVZ, pSVZ, refer to anterior and posterior regions of the subventricular zone, respectively. (D) Western blot
analysis with anti-TSHZ1 antiserum that was subsequently used for ChIP experiments detected a protein with the expected size of TSHZ1 (115 kDa) that was present in wild type OB and absent in coTshz1 mutants. (E) Sonication of cross-linked DNA from OB tissue for ChIP yielded DNA fragments with sizes up to 1000 bp. Scale bar: 1 mm (A-C).
Supplemental Methods

Generation of mice

A 129/SvEvTac mouse BAC clone (RPCI22 library, resource C.H.O.R.I. BACPAC) containing Tshz1 was identified by Southern hybridization with a Tshz1 cDNA. A 15 kb DNA fragment containing exon 2 of the Tshz1 gene was isolated by gap repair (1). Homologous recombination in bacteria was used to generate a targeting vector in which a GAP43-EGFP cassette (kindly provided by U. Mueller, The Scripps Research Institute, La Jolla, CA) was fused in-frame following the first five codons of exon 2, while removing most of the open reading frame of Tshz1 (2.83 kb were deleted) (Supplemental Figure 1A). The encoded fusion protein contains the first 18 amino acids of TSHZ1 (ending in YVPE encoded at the start of exon 2), followed by the N-terminal 23 amino acids of GAP43 and EGFP sequences, ending with the termination codon of EGFP. The targeting vector also included a self-excision cre-neo cassette (2) cloned 3´ of the GAP43-EGFP cassette and an MC1-diphtheria toxin A cassette at the 3´-end of the vector for positive and negative selection, respectively. E14.1 ES (129/Ola) cells were electroporated, and colonies that had incorporated the targeting vector into their genome were selected by G418 and analyzed for homologous recombination by Southern blot using 5´ and 3´ sequences situated outside the targeting vector (Supplemental Figure 1B, left panel). C57BL/6 blastocysts were injected with ES cells from heterozygous clones and chimeras mated to C57BL/6 females in order to identify germline transmission (Supplemental Figure 1B, right panel). The Tshz1GFP/+ heterozygous strain, in which the self-excision cre-neomycin cassette had been eliminated, was expanded by crossing with C57BL/6 females. Genotypes of offspring were verified by PCR and confirmed by Southern blot hybridization. Tshz1GFP/+ mice were viable and fertile, and were used to generate homozygous mutant mice. Tshz1GFP/GFP (Tshz1-/-) mutant animals were born at
the expected Mendelian frequency, but contained air in their gastrointestinal tract (aerophagia),
failed to suckle, and died within the first day after birth. Similar observations using an
independently generated null allele of Tshz1 have been reported previously (3).

In order to circumvent the embryonic lethality of homozygous Tshz1 null mutants, we
established mice with a Tshz1flox allele. The 15 kb subclone of Tshz1 (see above) was modified
by insertion of a mini targeting vector containing a floxed kanamycin/neomycin resistance
cassette (with a dual eukaryotic/prokaryotic promoter) cloned 3′ of the 3′-UTR of the second
exon of Tshz1 (Supplemental Figure 1C). Following expression of cre recombinase in E.coli, the
resistance cassette was removed, leaving behind a single loxP site and an additional EcoRI site.
A second mini targeting vector carrying an \textit{frt}-flanked kanamycin/neomycin cassette was
inserted 5′ of the second exon. The resulting targeting vector was electroporated into R1 ES
cells, the correctly targeted ES cell clones identified by Southern hybridization and injected into
C57Bl/6 blastocysts (Supplemental Figure 1D, left panel). Chimeric mice were crossed with Flp-
e-deleter female mice (4) to remove the neomycin cassette and the offspring used to establish the
Tshz1floxflo strain (Supplemental Figure 1D, center panel). This was crossed with the germline
cre-deleter strain (5) to yield heterozygous animals carrying the Tshz1Δ allele (Supplemental
Figure 1D, right panel), as well as with animals harboring the \textit{nestin-cre} transgene (6) to
generate postnatal coTshz1 mutants. Tshz1 expression in controls and coTshz1 mutants
(Tshz1GFP/flo and \textit{nes-cre}; Tshz1floxflo/+, respectively) was analyzed also by immunohistology and in
situ hybridization to verify the cre-dependent ablation of Tshz1 (Supplemental Figure 1). In
contrast to Tshz1/-/ mutants, which died within the first 24 hours after birth accompanied by
severe aerophagia (see above), coTshz1 mutants could suckle and survive during the early
postnatal period (Supplemental Figure 2), however a large proportion (approx. 70%) died before
analysis during the first four postnatal weeks. coTshz1 mutants weighed around half that of their littermates (e.g. at P17, control: 9.7 ± 0.5 g, n=19; mutant: 4.7 ± 0.3 g, n=9; P<0.0001), and were fed softened food to increase their chances of survival beyond weaning (three to four weeks of age). We used animals of a mix of CD1, 129/Ola, and C57BL/6 for the analysis presented here.

In situ hybridization, histology and immunohistology

Single and double in situ hybridization and immunohistological analyses were performed as previously described (7). For in situ hybridization, brains were freshly embedded into OCT compound and 12 µm frozen sections were cut. Probes for Tshz1, Prokineticin 2 (PK2), Prokineticin receptor 2 (Prokr2), Syntabulin (Sybu), Sorting nexin 7 (Snx7), G-protein γ-4 subunit (Gng4), Krox20 (Egr2), Artemin, Arc (activity-regulated cytoskeleton-associated protein), Dlk1 (delta-like 1), Notch3, Gfap (glial fibrillary acidic protein), Doublecortin (Dcx), Huntingtin associated protein-1 (Hap1), c-Kit ligand/Stem cell factor (Kitl/SCF), Gad1 and potassium channel Kcnj4 were amplified from total brain cDNA, or from genomic DNA in the case of single-exon probes. Probes for calbindin, parvalbumin and calretinin were amplified from cDNA of P15 dorsal root ganglia. Probes for reelin and tyrosine hydroxylase (TH) were gifts from Tom Curran, Memphis, USA, and H. Baker, New York, USA, respectively. For immunohistological analysis, adult mice were perfused with 4% paraformaldehyde in 0.1 M sodium phosphate buffer, pH 7.2, tissue was dissected, post-fixed with 4% PFA/phosphate buffer for 2 to 3 hours, cryoprotected in 30% sucrose in PBS, and sectioned at 12 µm. Tissue from embryos and early postnatal mice was dissected, fixed with 4% PFA/phosphate buffer for 2 hours, followed by cryoprotection and sectioning. We employed the following primary antibodies: rat anti-GFP (1:2000, Nacalai Tesque), rabbit anti-PAX6 (1:5000, Chemicon), mouse
anti-NeuN (1:500, Chemicon), goat-anti DCX (1:1000, Santa-Cruz Biotechnology), rabbit anti-GABA (1:5000, Sigma), sheep anti-tyrosine hydroxylase (1:1000, Chemicon), rabbit anti-calretinin (1:3000, Swant), rabbit anti-calbindin (1:3000, Swant) and mouse anti-BrdU (1:200, Sigma). Guinea pig anti-TSHZ1, rabbit anti-TSHZ1 and rabbit anti-TSHZ2 antisera were generated against approximately 100 amino acid fragments (guinea pig and rabbit anti-TSHZ1, codons 592-694; rabbit anti-TSHZ2, codons 551-655), obtained by cloning the corresponding cDNA into pET14b, introducing into BL21 (DE3) pLysS cells and purifying the products with TALLON-Metal-Granulate. Antisera generation was performed by Charles River Laboratories (Sulzfeld). Sections were stained with Cy2-, Cy3- and Cy5-conjugated secondary antibodies (1:500, Jackson Immunoresearch) and counterstained with the nuclear marker DAPI (0.5 µg/ml, Sigma). Fluorescence was imaged on a Zeiss LSM 5 Pascal confocal microscope, and images were processed in Adobe Photoshop. For visualization of the anatomy of the entire RMS in sagittal sections using Gfp and Dcx in situ hybridization (see Figure 3A,B), micrographs of serial sections were superimposed.

Behavioral tests on mice

The buried food test measures the ability of mice to locate familiar food hidden underneath bedding as described (8). Male and female adult mice (> 12 weeks; n≥ 12 per genotype, food without vanillin, n≥ 4 per genotype, food with 64 µM vanillin) were used. Briefly, naive mice received for three consecutive days in addition to their normal food and water, either cereals alone (“Choco Krispies”, Kellogg’s) or cereals soaked in an aqueous solution containing 64 µM vanillin (Sigma). Mice were then given access to water on the third night, and the next day were introduced into a clean cage containing a 4 cm-thick layer of bedding, underneath which a single
piece of cereal had been hidden. The latency to find this food was recorded in seconds. If the animal failed to find the food within the 15-minute test period, the animal was placed back into its home cage containing food, and the latency score was set to 900 seconds.

The preference test is designed to identify abilities to sense attractive or aversive odors as described (9, 10) with minor modifications. Male adult mice (>12 weeks; n ≥6 per genotype) were used. Briefly, odors, H₂O (neutral), 2-methyl butyric acid (0.9 M, aversive) or peanut butter (10 % w/v aqueous solution, attractive) were introduced to animals in a random order. Each odor (0.5 ml on a 2 cm x 2 cm filter paper) was presented for 3 mins, with an interval of one minute between changes of odor. The total time that the animal spent sniffing at the filter paper within the three-minute test period was recorded in seconds.

The habituation/dishabituation test is designed to determine an animal’s ability to habituate to different odors, each of which is presented consecutively three times in a defined order. Mice were exposed three times to one odor, to which they habituated i.e. spent less time sniffing with each consecutive round of presentation. Upon the first presentation of a new odor, the time spent sniffing was typically increased, with habituation being seen during the next two exposures to the same odor. Male adult mice (>12 weeks, n=5 per genotype) were used. Animals were initially exposed to cotton swabs soaked in water, followed by non-social odors (vanilla or cinnamon essence (DM Chemists) or social odors (male and female urine), each odor being presented three times for three minutes, with one minute intervals between presentations, as previously described (8). The total time spent sniffing in each test period of three minutes was recorded in seconds. For the threshold test, the response of animals to a filter paper soaked with differing concentrations of solvent or odor was determined (10). Animals were exposed three times for three minutes (1 min intervals between presentations) to filter paper (2 cm x 2 cm)
containing 20 µl of an aqueous control solution of the organic solvent DEP (Merck), followed by a single presentation of 20 µl of a solution of the odor TMT (PheroTec, Delta, stock solution dissolved at 0.1% v/v in DEP). The animals were exposed on each day of testing to a single concentration of TMT (3 x 10^{-12} M, 3 x 10^{-11} M, or 3 x 10^{-9} M in ascending order). Data were analyzed by an unpaired t-test to determine significance between the investigation time of the third and fourth trials.

Supplemental References