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Abstract 

 

Objectives: This study is designed to detail the relation between renal T2* and renal tissue 

pO2 using an integrated approach that combines parametric MRI and quantitative 

physiological measurements (MR-PHYSIOL). 

Materials and Methods: Experiments were performed in 21 male Wistar rats. In vivo 

modulation of renal hemodynamics and oxygenation was achieved by brief periods of aortic 

occlusion, hypoxia and hyperoxia. Renal perfusion pressure (RPP), renal blood flow (RBF), 

local cortical and medullary tissue pO2 and blood flux were simultaneously recorded together 

with T2*, T2 mapping and MR based kidney size measurements (MR-PHYSIOL). MRI was 

carried out on a 9.4 Tesla small animal MR system. Relative changes in the invasive 

quantitative parameters were correlated with relative changes in the parameters derived from 

MRI using Spearman’s analysis and Pearson’s analysis. 

Results: Changes in T2* qualitatively reflected tissue pO2 changes induced by the 

interventions. T2* versus pO2 Spearman rank correlations were significant for all 

interventions, yet quantitative translation of T2*/pO2 correlations obtained for one 

intervention to another intervention proved not appropriate. The closest T2*/pO2 correlation 

was found for hypoxia & recovery. The inter-layer comparison revealed closest T2*/pO2 

correlations for the outer medulla and showed that extrapolation of results obtained for one 

renal layer to other renal layers must be made with due caution. For T2* to RBF relation 

significant Spearman correlations were deduced for all renal layers and for all interventions. 

T2*/RBF correlations for cortex and outer medulla were even superior to those between T2* 

and tissue pO2. The closest T2*/RBF correlation occurred during hypoxia & recovery. Close 

correlations were observed between T2* and kidney size during hypoxia & recovery and for 

occlusion & recovery. In both cases, kidney size correlated well with renal vascular 

conductance, as did renal vascular conductance with T2*. Our findings indicate that changes 

in T2* qualitatively mirror changes in renal tissue pO2 but are also associated with 

confounding factors including vascular volume fraction and tubular volume fraction.  

Conclusions: Our results demonstrate that MR-PHYSIOL is instrumental to detail the link 

between renal tissue pO2 and T2* in vivo. Unravelling the link between regional renal T2* and 

tissue pO2 - including the role of the T2* confounding parameters vascular and tubular volume 

fraction and oxyHb dissociation curve - requires further research. These explorations are 

essential before the quantitative capabilities of parametric MRI can be translated from 
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experimental research to improved clinical understanding of hemodynamics/oxygenation in 

kidney disorders.  

 

Keywords: magnetic resonance imaging, BOLD, quantitative MRI, acute kidney injury, 

integrative physiology, MR-PHYSIOL, renal oxygenation, renal perfusion 
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Introduction 

 

Renal tissue hypoperfusion and hypoxia are considered to be pivotal links in the 

pathophysiological chain of events that leads to acute kidney injury (AKI) as well as the one 

that promotes progression from AKI to chronic kidney diseases (CKD) [1-7]. Imbalance 

between renal oxygen supply and demand also appears to play a prominent role in the 

pathophysiology of diabetic nephropathy [8, 9]. Making ultimate statements on the role of 

renal hypoperfusion and hypoxia for these renal disorders is elusive since in vivo assessment 

of renal hemodynamics and oxygenation constitutes a challenge. All modalities available in 

today’s experimental and translational research practice have inherent shortcomings and 

methodological constraints [2, 10-12].  

Obtaining insights into renal perfusion and oxygenation under (patho)physiological 

conditions by means of non-invasive diagnostic imaging is conceptually appealing. Blood 

oxygen level dependent (BOLD) magnetic resonance imaging (MRI) and quantitative 

parametric mapping of the MR relaxation times T2* and T2 are thought to provide surrogates 

of renal tissue oxygenation in preclinical and clinical studies [10, 12-35]. This assumption is 

based upon the T2*/T2 dependence on O2-saturation of hemoglobin (Hb) and motivated by the 

link between O2-saturation of Hb, blood partial pressure of O2 (pO2) and tissue pO2. Although 

T2* and T2 basically reflect the amount of deoxyHb while pO2 represents the concentration of 

oxygen, changes in renal T2*/T2 and tissue pO2 may be closely related. Yet their link is also 

known to be sensitive to the oxyHb dissociation curve, haematocrit, and to the vascular 

volume fraction [2, 11, 36-38]. This added complexity confounds interpretation of BOLD 

weighted MRI and parametric T2* mapping data obtained from patients with AKI and CKD 

[11, 39-41]. For an unambiguous physiological interpretation of renal T2* a calibration with 

quantitative physiological measurements including renal tissue pO2 is required. For this 

purpose an integrative multi-modality approach is essential - as underlined in a recent call for 

further explorations into hemodynamic influences on kidney oxygenation [4] - before the 

capabilities of parametric MRI can be translated from experimental research to an improved 

clinical understanding of hemodynamics/oxygenation in AKI and CKD. 

An integrated approach that combines parametric MRI with quantitative physiological 

measurements is prudent to detail the link between renal T2* and renal tissue oxygenation. 

Quantitative characterization of renal hemodynamics and oxygenation comprises very well 
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established invasive methods that assess perfusion of the entire kidney, regional perfusion and 

regional oxygenation in the intact animal [2, 12, 42]. MRI offers full kidney coverage, 

(sub)millimeter spatial resolution, (sub)minute temporal resolution and support of 

longitudinal studies [10, 12-18, 39, 43]. The validity and efficacy of parametric MRI for 

quantitative and spatiotemporal characterization of renal tissue perfusion and oxygenation 

under different functional conditions has not been systematically examined yet and remains to 

be established. A very limited number of studies attempted to draw a link between established 

invasive methods and T2*-weighted MRI [44-46]. These studies relied on either comparing 

MRI and invasive physiological measurements performed in independent cohorts of animals 

[45, 46] or on T2* and pO2 recorded in the same animal but at different times [33] or in 

different kidneys (contralateral vs. ipsilatereal) [47].  

Realizing the challenges and opportunities of using an integrated multi-modality approach for 

detailing the relation between renal T2*/T2 and renal oxygenation we hypothesized that 

simultaneous tracking of invasive physiological parameters and MR parameters derived from 

the same kidney will elucidate to which extent alterations of physiological parameters are 

reflected by changes in renal T2* and T2. To test this hypothesis an integrative hybrid 

approach was employed that combines established invasive measurements including renal 

perfusion pressure, renal blood flow, local blood flux and tissue pO2 with T2*, T2 mapping  

and MR based kidney size measurements (MR-PHYSIOL) [12]. In vivo modulation of renal 

hemodynamics and oxygenation was achieved by standardized (patho)physiologically 

relevant but reversible interventions, including brief periods of aortic occlusion, hypoxia and 

hyperoxia. Relative changes in the invasive quantitative parameters were correlated with 

relative changes in the parameters derived from MRI. 
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Materials and Methods 

 

Animal Preparation 

All investigations were approved by the Animal Welfare Department of Berlin’s State Office 

of Health and Social Affairs in accordance with the German Animal Protection Law. The 

spatial constraints dictated by the MR environment required the use of relatively small rats. 

For this reason, experiments were performed in 21 male Wistar rats (aged 12-13 weeks, body 

mass (BM) 33627 g; Harlan-Winkelmann, Borchen, Germany). The animals were allowed 

ad libitum food (standard diet) and water and were housed under standard conditions with 

environmental enrichment. For anesthesia urethane (20% in distilled water; 6 mL kg
-1

 BM 

i.p.; Sigma-Aldrich, Steinheim, Germany) was used throughout the surgical preparation and 

the MRI examination. This approach provides anesthesia for several hours and leaves 

cardiovascular reflexes largely undisturbed. Body temperature was maintained at 37 °C by 

means of a mat through which warm water circulates.  

Monitoring of absolute arterial blood pressure that corresponds with renal perfusion pressure 

(RPP; in mm Hg) was achieved by placing a catheter into the femoral artery with its tip 

towards the aorta [12]. The catheter was connected to a pressure transducer (DT-XX, Viggo-

Spectramed, Swindon, UK) and amplifier (TAM-A Plugsys Transducer; Hugo Sachs 

Elektronik – Harvard Apparatus GmbH, Mach-Hugstetten, Germany).  

Absolute measurement of renal blood flow (RBF; in mL min
-1

) used an ultra sound transit 

time flow probe (MC2PSB-MRI, Transonic Systems Inc., Ithaca, USA), equipped with a 

customized ceramic reflector, positioned around the left renal artery. Extra care was taken for 

the probe positioning [12] since pressure of the relatively large flow probe on the aorta, the 

renal artery and vein and/or the kidney itself bears the risk to cause ischemia or congestion of 

the kidney. In order to prevent these complications RBF values and the overall condition of 

the kidneys (e.g., surface coloring and its homogeneity) were carefully monitored during the 

entire preparation. After positioning of the animal in the MR scanner a low renal T2* (in 

particular medullary T2*) was used as an additional criterion for early detection of any flow 

probe-induced renal ischemia. In two cases the flow probe was alternatively placed around the 

renal vein. In three animals even this probe position was not feasible so that the probe was 

omitted entirely. To achieve appropriate coupling of the ultrasound flow probe to the tissue, 
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the abdominal cavity was filled with saline via a catheter (38°C; replenished throughout 

experiment).  

Renal vascular conductance [ml min
-1

 mmHg
-1

] (the inverse of resistance) was calculated by 

dividing RBF [ml min
-1

] by RPP [mmHg].” 

Measurement of absolute tissue pO2 (in mm Hg) and erythrocyte flux (arbitrary units) was 

enabled by combined laser-Doppler-flux/pO2 probes (pO2 E-Series Sensor; Oxford Optronics, 

Oxford, UK) that were inserted into the renal tissue. One probe was placed in the medullary 

region, at 4-mm depth. Another probe was placed in the cortical region by advancing it from 

the caudal extremity, centrally through the kidney to the cortical layer of the cranial extremity 

[12].  

For induction of aortic occlusion during the MR study a remotely operated inflatable cuff was 

positioned around the aorta right above the renal arteries [12]. Core body temperature was 

monitored by means of a fiber-optic temperature probe (T1S-02-B05, Neoptix, Quebec, 

Canada) placed in the rectum. 

The flux/pO2 probe extensions were passed through the abdominal wall using a small incision 

in the left inguinal region. All other cables together with the lines for the aortic cuff, for saline 

supply, cables of the perivascular flow probe and fiber-optic connection of the body 

temperature probe were passed through the caudal cutting edge of the median abdominal 

incision. The abdominal wall was closed by a continuous suture. For a more detailed 

description and discussion of the probe implantation and fixation please refer to [12]. 

 

MR Imaging and Parametric Mapping 

MR imaging was carried out on a 9.4 Tesla small animal MR system (Bruker Biosec 94/20; 

Bruker Biospin, Ettlingen, Germany) equipped with a linear polarized birdcage volume 

resonator used for RF transmission in conjunction  with a curved four channel receive surface 

RF coil array (Bruker Biospin, Ettlingen, Germany) customized for rats. T2 weighted pilot 

scans for geometrical planning and slice positioning were acquired first. Local volume 

selective shimming of the magnetic field homogeneity on a voxel accommodating the kidney 

only was conducted using an automatic optimization algorithm based on FID length. To 

visualize the position of the pO2 and Laser-flux probes 3D multi gradient echo (MGE) 

imaging of the entire kidney was performed (repetition time = 20 ms, echo time = 2.85 ms, 

total acquisition time = 2 min 55 s, field of view (FOV) = (38.2 x 48.5 x 21.9) mm
3
, matrix 
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size = 126 x 120 x 72, spatial resolution = (303 x 404 x 304) µm
3
). The same 3D image set 

was used for slice positioning applied in the parametric mapping protocols.  

Interleaved T2* and T2 mapping were performed with respiratory gated (Model 1025, SA 

Instruments, New York, NY, USA) imaging protocols. For T2* mapping a multi gradient echo 

(MGE) sequence (repetition time = 50 ms, number of echoes = 10, first echo time = 1.43 ms, 

echo time increment = 2.14 ms, averages = 4) with a total acquisition time of 1 min 20 s was 

used. T2 mapping employed a multi-echo spin-echo (MSME) sequence (repetition time = 550 

ms, number of echoes = 7, first echo time = 10 ms, echo spacing 10 ms, averages = 1), 

resulting in a total acquisition time of 1 min 40s. A coronal oblique slice was placed across the 

kidney so that the cortical and medullary pO2 and Laser-flux probes were located within the 

imaging plane as illustrated in Figure 1. An in-plane spatial resolution of (226 x 445) µm
2
 

(FOV = (38.2 x 50.3) mm
2
, matrix size = 169 x 113 zero-filled to 169 x 215) and a  slice 

thickness of  1.4–1.5 mm were employed. 

The presence/absence of blood flow in the major renal blood vessels was confirmed with 

time-of-flight (TOF) MR angiography (MRA) performed at baseline and immediately after 

onset of aortic occlusion and onset of reperfusion. For TOF-MRA a spoiled gradient echo 

technique (2D FLASH, TR = 11 ms, TE = 3 ms, flip angle = 80 degree) with a spatial in-plane 

resolution of (200 x 268) µm
2
) and 15 slices (slice thickness = 1.0 mm) was applied. 

 

Experimental Protocol and Standardized Reversible Interventions 

Throughout the experiments the rats were continuously provided with air (or other gas 

mixtures) at a rate of 1000 mL min
-1

 provided by a respiratory mask placed around the muzzle 

of the spontaneously breathing rat. Following positioning of the rat in the isocenter of the MR 

scanner, scanner adjustments and slice positioning was conducted followed by baseline T2* 

and T2 mapping. Subsequently, short-term reversible interventions were performed: 

hyperoxia, aortic occlusion, and hypoxia, each followed by recovery.  

Aortic occlusion was initiated by inflating the remotely controlled suprarenal aortic occluder 

and verified by absence of the flow-based blood signal in renal TOF-MRA. Occlusion lasted 3 

minutes. One set of T2*/T2 maps was acquired before the occluder was deflated to re-establish 

renal blood flow. The recovery period comprised 9 minutes and three sets of T2*/T2 mapping. 

Hypoxia was induced by decreasing the inspiration fraction of oxygen (FiO2) to 8% via 

changing the gas flow through the respiratory mask to 8% O2 / 92% N2. FiO2 was monitored 
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using a Capnomac AGM-103 (Datex GE, Chalfont St. Gils, UK). T2*/T2 mapping were 

performed twice during hypoxia. The first set was acquired immediately after onset of 

hypoxia, the second set was started 5 minutes after onset of hypoxia. Following hypoxia of 

approximately 12 minutes FiO2 was restored to 21% (normoxia, room air). The recovery 

period of 15 minutes comprised four sets of T2*/T2 maps. Hyperoxia was induced using the 

same protocol, with the exception that FiO2 was increased to 100% by changing the gas 

mixture to pure oxygen. 

Throughout the experiment invasive physiological parameters RPP, RBF, cortical and 

medullary tissue pO2 and Laser-flux were simultaneously monitored together with T2*, T2 and 

kidney size derived from MRI. 

 

Data Processing and Analysis 

Parametric maps of T2* and T2 were calculated by pixel-wise mono-exponential fitting to the 

signal intensities derived from a series of T2* and T2 weighted images acquired at different 

echo times (in-house developed program; MATLAB, R2010a, MathWorks, Natick, WA, 

USA).  

Kidney movement throughout the experiment was corrected by image registration (FLIRT, 

FSL, www.fmrib.ox. ac.uk/fsl). For this purpose the first echo images of the multi echo MGE 

and MSME acquisitions were used. These images were registered onto the baseline scan. The 

resulting spatial transformation matrices were applied to the corresponding parametric maps. 

For quantitative analysis of T2* and T2 regions of interest (ROIs) were defined according to 

the morphological features of the kidney. For this purpose, the layers (cortex (C), outer 

medulla (OM), inner medulla (IM)) were identified and measured in a series of freshly 

extracted rat kidneys [18]. The layers’ dimensions were related to the individual kidney’s 

length and width in the coronal view. From these measurements, a standardized model was 

derived that comprises a rectangular frame that tightly encloses the kidney and predefined 

sizes and positions of the ROIs relative to this frame such that the ROIs were accurately 

located within the respective layer (Figure 2). The positions of nine ROIs were defined:  three 

ROIs in C (C1-C3), three ROIs in OM (O1-O3), and three ROIs in IM (I1-I3) as illustrated in 

Figure 2. The mean size of the ROIs was: C1, C3, O1, O3: 17 pixel, C2, O2: 46 pixel, I1, I3: 

25 pixel, I2: 70 pixel. The segmentation software limited the operator interaction to the 

placement of a rectangular reference frame around the kidney. All ROIs were placed in safe 
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distance from the borders between these kidney layers to avoid any ‘contamination’ from the 

neighboring layers (partial segment effects) and to allow for inter-individual variations in 

morphology without the need to change the ROI position. The earlier described kidney 

segmentation model [18] was adapted for the current study to avoid overlap of the ROIs with 

the locations of the pO2/Laser-flux probes (Fig. 2). Mean T2* and T2 values were calculated 

over the three ROIs placed in each kidney layer. The size of the reference rectangle, which 

tightly encloses the kidney, was used as an estimate for kidney size. 

 The invasively measured physiological data were averaged over the time period of the 

corresponding MR scans with the exception of the Laser-flux signals. Here 5s data intervals 

starting 1 s after the end of the MR acquisitions were used. This approach helped to  exclude 

MR induced artifacts in the Laser-flux signals [12]. 

 

Statistical Analysis 

To test our hypothesis the relation between invasively measured physiological parameters and 

parameters derived from MRI was assessed. For this purpose relative changes in the 

physiological parameters and in kidney size were tested for correlation with relative changes 

in T2* and T2 for all renal layers and for the three interventions. Spearman’s analysis (non-

parametric correlation on ranks) was used, by which the strength of relationships is assessed 

that follow a monotonous function. If such a significant correlation was observed, additionally 

Pearson’s analysis (parametric correlation) was applied, by which the strength and parameters 

of linear relationships are assessed. A p-value p<0.05 was considered to be statistically 

relevant. 
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Results 

 

Animal Preparation  

Notwithstanding the experimental challenges dictated by the space constraints of the small 

bore MR scanner, surgical preparation was successfully performed in 15 out of 21 animals. 

The most frequent complication during surgery was unintended obstruction of renal blood 

flow caused by the vascular flow probe. To identify and exclude invalid data due to surgical, 

technical or physiological reasons all in vivo data were thoroughly examined. MR imaging 

scouts were used to check the positioning of the perivascular flow probe and the cortical and 

medullary Laser-flux/pO2 probes. All renal T2* maps were carefully checked for susceptibility 

artifacts induced by the surgical preparation or by the probes, which yielded data sets free of 

severe susceptibility artifacts for each renal layer for 15 animals. The invasively acquired 

physiological parameters were benchmarked against data and experience derived from our 

previous studies which included physiological measurements in large cohorts of animals [48-

51].  

 

Renal T2* and T2  

Figure 3 shows exemplary T2* and T2 maps obtained during baseline, aortic occlusion, 

hypoxia, and hyperoxia together with ΔT2* and ΔT2 difference maps. The latter were 

determined by subtracting T2* and T2 maps acquired at the last time point of the intervention 

phase from baseline. At baseline the inner medulla including the papilla revealed T2*/T2 

values that were markedly higher versus T2*/T2 observed for the cortex and outer medulla. 

Parametric maps showed a cortical intra-layer T2*/T2 pattern that indicates that the spatial 

resolution affords visualization of spatial variability in intra-layer pO2, which is related to the 

distance to the vascular bundles [52, 53].  

Hyperoxia induced rather uniform increase in renal T2* and T2 across the kidney as outlined 

by exemplary maps in Figure 3. Averaged over all animals maximum T2* changes were 

19±3% (C), 22±2% (OM), 7±4% (IM) and maximum T2 changes were 7±1% (C), 9±1% 

(OM), 8±2% (IM). Aortic occlusion caused a T2*/T2 decrease for all renal layers. Averaged 

over all animals maximum T2* changes were -11±2% (C), -42±2% (OM), -17±5% (IM) and 

maximum T2 changes were -17±3% (C), -22±3%  (OM), -6±6% (IM). Hypoxia induced 
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rather uniform reduction in renal T2* and T2 with maximum ΔT2* -47±3% (C), -59±2% 

(OM), and -37±5% (IM)), and maximum ΔT2 -28±3% (C), -36±4% (OM), and -20±6% (IM)).  

 

Time Course of Physiological and MR Parameters during Interventions 

Figure 4 outlines the time course of physiological and MR parameters monitored during 

hyperoxia & recovery. After onset of hyperoxia tissue pO2 started to increase and reached 

240% over baseline in the cortex and 60% over baseline in the medulla. This pO2 increase was 

accompanied by small rises in RPP (7%) and RBF (8%). Laser-fluxes, renal conductance and 

kidney size remained largely unchanged. T2* increased versus baseline with maxima of 19% 

in the cortex, 22% in the outer medulla, and 7% in the inner medulla. T2 maps revealed 

smaller increases (C: 7%, OM: 9%, IM: 8%). After switching to normoxia tissue pO2 slowly 

returned towards baseline. T2* and T2 returned to baseline more rapidly. RBF and RPP even 

fell somewhat below baseline.  

Figure 5 illustrates the time course obtained for physiological and MR parameters during 

aortic occlusion & recovery. With onset of occlusion RBF immediately ceased and kidney 

size decreased by 3.9%. Tissue pO2 rapidly decreased: within 90 seconds cortical pO2 had 

dropped by 90% and medullary pO2 by 97%. T2* became also reduced, but much less than 

pO2. T2* displayed a different time course among the layers. Outer medullary T2* declined 

instantly by 42% while cortical and inner medullary T2* decreased only modestly by 11% and 

17%. After onset of reperfusion cortical and inner medullary T2* initially continued to 

decrease and reached a level of 71% of baseline in the cortex and 69% of baseline in the inner 

medulla before starting to re-increase. Excursions of T2 were even smaller than those of T2*. 

In response to the occluder’s deflation RPP returned to baseline within 5 minutes while RBF’s 

return to baseline was more slowly. Consequently renal conductance started significantly 

below baseline (not measurable during the occlusion) and slowly approximated baseline. 

Kidney size followed this trend and regained baseline within 8 minutes after reperfusion. 

Cortical and medullary pO2 followed the gradual recovery of RBF and reached baseline level 

only 8 minutes into reperfusion. While cortical and tissue pO2 started to improve immediately 

after onset of reperfusion, T2* initially remained unchanged (OM) or was even further 

reduced (C, IM) before restoration to baseline values began.  

Figure 6 depicts the time course obtained for physiological and MR parameters in response to 

the hypoxia & recovery maneuver. With the onset of hypoxia RPP declined by 46% and RBF 

decreased even more (by 70%). Renal conductance dropped by 53% and kidney size by 5%. 
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Tissue pO2 gradually decreased: within 7 minutes of hypoxia medullary pO2 had decreased by 

96% and cortical pO2 by 66%. T2* and T2 changes were found to be in sync with the pO2 

alterations. The drop in T2* and T2 observed during hypoxia was markedly larger than during 

occlusion. During hypoxia T2* fell by 47% in C, 59% in OM, and 37% in IM. After switching 

to normoxia  RPP, RBF, conductance and renal tissue pO2 started to recover immediately and 

returned to baseline. The tissue hypoxia to normoxia transition was faster versus aortic 

occlusion-recovery. T2* and pO2 time courses slightly deviated during recovery from hypoxia 

as cortical and medullary pO2 displayed some oscillations.  

 

Correlations of Physiological and MR Parameters 

Table 1 provides a synopsis of the correlations between physiological parameters and MR 

parameters in response to hyperoxia & recovery, occlusion & recovery, and hypoxia & 

recovery. Significant Spearman rank correlations between T2* and tissue pO2 were observed 

for all interventions and all renal layers as illustrated in Figures 7, 8, and 9. The weakest 

T2*/pO2 correlation was found during hyperoxia & recovery, a closer one in response to 

occlusion & recovery, and the closest T2*/pO2 correlation during hypoxia & recovery (Table 

1). The inter-layer comparison revealed weakest T2*/pO2 correlations for the cortex (Figure 7) 

and closest correlations for the outer medulla (Figure 8).  

Pearson’s analysis revealed significant linear correlations of T2* with outer medullary tissue 

pO2 for all interventions. Cortical T2* and pO2 showed a significant linear correlation during 

occlusion & recovery only. This is plausible since the average O2 saturation of Hb in most 

cortical vessels will be above 75% (i.e. in the non-linear range of the sigmoid oxyHb 

dissociation curve) under most conditions but not during the occlusion period, whereas 

saturation in medullary vessels will be lower (i.e., in the range of the curve that approaches 

linearity). 

Significant Spearman correlations of T2* to RBF were deduced for all renal layers and for all 

interventions (Figures 7-9). The closest correlation was observed for the outer medulla 

followed by the cortex and the inner medulla. The T2*/RBF correlations for cortex and outer 

medulla were even superior to those between T2* and tissue pO2. The closest T2*/RBF 

correlation occurred during hypoxia & recovery.  

T2*/RPP correlations were similar to T2*/RBF correlations as outlined in Table 1. Surprisingly 

close correlations were observed between T2* and kidney size during hypoxia & recovery and 
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for occlusion & recovery. In both cases, kidney size correlated well with renal vascular 

conductance (Table 2), as did renal vascular conductance with T2* (Table 1). Significant 

correlations of RBF to tissue pO2 were observed for all kidney layers during hypoxia & 

recovery and for occlusion & recovery (Table 2). These correlations were superior to the 

T2*/pO2 correlations observed for occlusion & recovery and hypoxia & recovery.  
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Discussion 

Our results demonstrate that MR-PHYSIO is instrumental to detail the link between renal 

tissue pO2 and T2* in vivo. This is of essence to address the weakness of MRI, its qualitative 

nature, by benchmarking the surrogate MRI biomarkers against invasive methods while 

putting MRI’s ability to non-invasively capture the physiological heterogeneity between and 

within the renal layers to good use. The technical challenges and practical obstacles of the 

MR environment were successfully offset. Remotely controlled standardized interventions 

were implemented in the MR scanner in order to systematically examine the validity and 

efficacy of parametric MRI as a surrogate marker for renal oxygenation. These efforts are of 

high relevance for research into the pathogenesis of renal diseases that are induced or 

promoted by renal tissue hypoperfusion and hypoxia. 

Our findings indicate that changes in T2* qualitatively reflect changes in renal tissue pO2 

induced by hyperoxia, aortic occlusion, and hypoxia. This is in alignment with the link 

between T2*, O2-saturation of Hb, blood pO2, and tissue pO2. A closer examination of the 

quantitative relation between relative changes in T2* and in tissue pO2 revealed discrepancies 

that point at factors other than the known shifts of the deoxyHb dissociation curve and 

changes in haematocrit, which may also confound the renal T2*/ tissue pO2 relationship. 

Major differences in the T2*/pO2 correlations together with the stark differences in the linear 

regression of T2*/pO2 indicate that simple translation of quantitative results obtained for one 

intervention of renal hemodynamics and oxygenation to another intervention is falling short 

from being appropriate. Also, taking the perfusion and oxygenation heterogeneity within any 

given kidney layer into account, extrapolation of results obtained for specific renal regions to 

other renal areas must be made with due caution. 

Hyperoxia & recovery yielded weak correlations for tissue pO2 changes versus T2* changes 

for all kidney layers. This observation is plausible since almost all of the available Hb in 

arterial blood is already O2 saturated under normoxic conditions. Increasing the inspiratory 

oxygen fraction to 100% barely lifts the O2 saturation of Hb in arterial blood. It does 

substantially increase arterial blood pO2 though, which enhances the driving force for O2 

diffusion from vessels to tissue so that renal tissue pO2 increases dramatically. The difference 

in the pO2 increase between cortex and medulla is likely due to arterio-venous diffusive O2 

shunting, which reduces the oxygen content of arterial blood that perfuses the medulla [3, 38, 

52]. Benchmarked against the massive pO2 increase T2* changes were much smaller. 

Hyperoxia-induced increase of arterial blood oxygen content are barely detectable by T2*-
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mapping since the deoxyHb concentration is virtually unaffected. However, hyperoxia 

increases blood pO2 in intrarenal veins due to increasing arterio-venous oxygen shunting in 

case of a higher arterio-venous pO2 difference [3, 38]. As renal venous Hb is far from being 

completely saturated with O2 under normoxic conditions hyperoxia induced increase in 

venous blood pO2 translates into the small increase in T2* observed in our study.  

Aortic occlusion & recovery showed closer tissue pO2/T2* correlations for all renal layers 

versus those observed in response to hyperoxia & recovery. Occlusion of the suprarenal aorta 

results in abrupt cessation of blood flow into the kidney while renal O2 consumption remains 

unaltered at this early stage. This leads to a rapid and massive decline in renal tissue pO2, 

which reduces blood pO2 and O2 saturation of Hb in the intrarenal (micro-)vasculature. This 

intrarenal Hb deoxygenation is aggravated by a progressive rightward shift of the oxyHb 

dissociation curve during the occlusion due to intrarenal accumulation of CO2. The increase in 

deoxyHb is reflected by the T2* decrease observed during occlusion for all layers. The T2* 

decrease was mild and slow as compared to the decline in pO2 though, and displayed different 

characteristics for the kidney layers. These findings can be attributed to blood volume fraction 

changes which occurred during occlusion. While blood flow into kidney is abruptly stopped 

by the occlusion, outflow of blood via the renal vein will continue until pressures in intra-

renal vessels and in the vena cava are equalized. This results in a reduction of intrarenal blood 

volume [54] and manifests itself in the immediate drop in kidney size shown here. Since the 

total volume of the other renal fluid compartments including the tubular, interstitial, and 

cellular fraction is probably largely unchanged, the blood volume fraction becomes markedly 

reduced. As T2* is linked to the volume fraction of deoxyHb, the reduction in blood volume 

fraction compensates some of the increased deoxyHb blood concentration induced changes in 

T2*. Consequently, the T2* decrease turns out to be smaller than the actual change in blood 

(and tissue) oxygenation. It is plausible that this effect is much more pronounced in the cortex 

than in the medulla, due to the much larger blood volume in the cortex [4, 38]. T2* in the 

cortex follows the declining blood (tissue) pO2 less closely than in the outer medulla. The 

inner medulla’s metabolism is largely anaerobic [55], hence the remaining oxygen in the 

stationary blood is sufficient for a longer time span so that pO2 and T2* decline only slowly. 

By deflating the aortic occluder the kidney is reperfused. Complete restoration of RBF took 

about 8 minutes so that oxygen delivery recovers only gradually. At the same time, 

glomerular filtration, which was arrested during occlusion, is gradually restored. The ensuing 

restoration of tubular reabsorption necessitates higher O2 consumption. Limited oxygen 

delivery and increased demand result in the observed slow recovery of tissue pO2. The 
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substantial O2 extraction from the freshly inflowing blood is embodied by a low T2*. 

Although tissue pO2 started to improve immediately after onset of reperfusion, cortical T2* 

continued to decline even further before it started to recover. Again, this discrepancy most 

probably relies on a change in the blood volume fraction. With reperfusion renal blood 

volume increases while the total volume of the other fluid compartments is largely 

unchanged. Increased blood volume fraction at the onset of reperfusion leads T2* to an 

overestimation of tissue hypoxia. The increase in blood volume is somewhat attenuated by 

renal vasoconstriction triggered by renal autoregulatory mechanisms [56], as evident from 

renal vascular conductance being significantly below baseline right after the onset of 

reperfusion. The attenuated recovery of intrarenal blood volume is also mirrored by the 

somewhat delayed restoration in kidney size. 

Hypoxia & recovery revealed the strongest renal tissue pO2/T2* correlation for all 

interventions applied. Switching the inspiratory oxygen fraction to 8% resulted in arterial 

hypoxemia so that tissue pO2 gradually decreased and reached a steady state. The major 

reason behind the pronounced decrease in medullary pO2 is that the medulla is predominantly 

perfused by blood that had already traversed the cortex, where blood oxygen content is 

lowered by oxygen extraction and arterio-venous oxygen shunt diffusion [3, 4, 38, 52]. As 

expected, the pO2 decrease during hypoxia was slower and with regard to the cortex also less 

pronounced than during aortic occlusion. In contrast, the T2* response to hypoxia was 

significantly more pronounced versus aortic occlusion. It is evident that aortic occlusion must 

lower intrarenal blood oxygenation much more and faster than hypoxia. In addition, intrarenal 

pCO2 increases during occlusion due to CO2 accumulation, but decreases during hypoxia due 

to hyperventilation triggered by systemic hypoxemia [57]. Decreased pCO2 shifts the 

deoxyHb dissociation curve to the left so that at given pO2 the O2 saturation of Hb is larger. 

Increased pCO2 induces opposite effects. For all these reasons, T2* decrease should be more 

pronounced during aortic occlusion versus hypoxia. Our results indicate that the T2* response 

to FiO2 8% overestimates the actual degree of blood (and tissue) hypoxia. The decrease in 

renal conductance during hypoxia suggests that renal vasoconstriction lowered intrarenal 

blood volume. Yet the vasoconstriction-related drop in renal blood volume during hypoxia is 

most likely smaller versus the outflow-induced drop during aortic occlusion. Intriguingly, the 

decrease in kidney size was somewhat larger during hypoxia than during occlusion. This 

observation points at an additional volume loss of renal tissue compartments other than blood. 

Contrary to aortic occlusion, where glomerular filtration ceases and with it the pressure 

gradient that drives tubular fluid toward the renal pelvis, filtration and tubular fluid flow will 
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decrease but not cease during hypoxia. The outflow lowers tubular volume. Moreover, 

reabsorbed fluid cannot be drained by peritubular capillaries during occlusion because of the 

arrested blood flow such that the sum of the tubular plus interstitial volumes remains constant. 

As peritubular capillary blood flow is not arrested during hypoxia, reabsorbed fluid is 

continued to be drained from the interstitium. Since the decrease in tubular volume is not 

counterbalanced by an increase in the interstitial volume, the sum of both volumes decreases. 

This translates into a larger decrease in the blood volume fraction during occlusion versus 

hypoxia which might explain the discrepancies in the T2* and pO2 response to hypoxia and 

aortic occlusion.  

Significant rank correlations of RBF to T2* were observed for all renal layers and for all 

interventions. These correlations were closer than those of tissue pO2 to T2* for the cortex and 

outer medulla. Tissue pO2 primarily reflects the balance between O2 supply and O2 demand. 

Due to O2 shunt diffusion, blood pO2 in larger arterial and venous vessels exceeds that in 

capillaries and tissue pO2. The amount of O2 that is shunted depends on O2 consumption but 

also on RBF and arterial O2 content [3, 4, 38, 52]. In the cortex, the effect of changes in RBF 

on shunting appears to be enhanced: the correlations of RBF to cortical tissue pO2 were much 

weaker than those of RBF and medullary tissue pO2. When comparing RBF/T2* versus 

pO2/T2* it should be taken into account that the pO2 probes cover a rather small tissue volume 

(r120 µm) subjacent to the probes’ tip [2, 12]. The individual position of a given probe in 

relation to larger vessels versus capillaries will therefore determine the individual absolute 

pO2 values, and may also impinge on the relative changes during interventions. Unlike pO2 

measurements RBF measurements are unaffected by intrarenal spatial variabilities.  

To summarize, this work presents valuable insights into the mechanisms behind alterations in 

renal T2* by detailing the link between renal T2* and renal tissue pO2. Yet, a singular report 

eloquently refers to simultaneous measurements of renal R2* (R2* = 1/T2*) and tissue pO2 

[47]. The authors modulated FiO2 (range: 5-70%) in pigs and reported R2*changes to be 

linearly related with pO2 changes. This conclusion appears somewhat premature, since T2* 

was measured in the contralateral kidney with the pO2 probe being placed in the ipsilateral 

kidney. It should be also noted that correlation analysis was based upon group means rather 

than individual data pairs as used here.  

The overall qualitative agreement of T2* and pO2 changes observed in the present study 

encourages further research into calibration of renal T2* alterations using MR-PHYSIOL. 

Notwithstanding this success, our findings generated novel questions about the renal 
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T2*/tissue pO2 relation. It stands to reason that T2* is directly related to the amount of 

deoxyHb per tissue volume and hence linked with tissue pO2 via blood pO2 and the oxyHb 

dissociation curve. However, the T2* to tissue pO2 correlation differences between the 

interventions and our renal vascular conductance and kidney size data indicate that changes in 

the blood volume fraction considerably influence renal T2*. Renal vascular conductance 

changes point at changes in intrarenal blood volume that occur by passive circular distension 

induced by changes in the transmural pressure gradient, or by active vasomotion. Changes in 

kidney size may stem from volume changes in any of the renal fluid compartments. There are 

at least two compartments besides the vascular one that can experience rapid volume changes, 

which in turn modulate the blood volume fraction: the interstitial and the tubular 

compartment, with the latter being a particularity of the kidney. The tubular volume fraction 

is quite large and can rapidly change due (i) changes in filtration, (ii) alterations in tubular 

outflow towards the pelvis, (iii) modulation of the transmural pressure gradient, and (iv) 

changes in resorption. A recent report recognized that changes in blood volume fraction 

induced by changes in tubular volume may impact renal T2* [17] by showing that the renal 

T2* response indicated an increased oxygenation immediately after x-ray contrast agent 

administration rather than decreased oxygenation [17]. The dependence of R2=1/T2 on 

alterations in tubular volume has also been observed upon administration of vasoactive 

substances [58]. 

Unravelling the link between regional renal T2* and tissue pO2 - including the role of the T2* 

confounding parameters vascular and tubular volume fraction and oxyHb dissociation curve - 

requires further research. Blood volume fraction, tubular volume fraction and oxyHb 

dissociation curve T2* contributions must be differentiated from renal BOLD T2* changes in 

order to provide quantitative means for interpretation of renal hemodynamics/oxygenation. 

These efforts should make use of the advanced capabilities of MR-PHYSIOL by including 

parallel imaging techniques to improve the temporal resolution [59-62],  by investing into 

dual contrast techniques for simultaneous T2*/T2 weighted MRI [63], by driving T2* mapping 

techniques free of image distortion [64] but also MR based assessment of renal blood volume 

[65] and by probing tubular volume fraction using diffusion weighted or intra-voxel 

incoherent motion techniques [43, 66-69], while blood sampling may be employed to examine 

the role of shifts in the oxyHb dissociation curve. These explorations are essential before the 

quantitative capabilities of parametric MRI can be translated from experimental research to 

improved clinical understanding of hemodynamics/oxygenation in kidney disorders. 
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Figure Captions 

 

Figure 1:  

Coronal T2* weighted image of a rat kidney (left) used for control of the perivascular flow 

probe and the cortical and medullary Laser-flux/pO2 probes position during the in vivo 

experiments. For this purpose the imaging slice was positioned such that both probes were 

located within the imaging plane. The T2*map obtained for the same coronal view of the 

kidney map (middle) also shows the position of the perivascular flow probe and the cortical 

and medullary Laser-flux/pO2 probes. Schematic view of the positions used for the 

perivascular flow probe and the cortical and medullary Laser-flux/pO2 probes (right). 

 

Figure 2:  

Kidney segmentation model overlaid onto a photograph of a freshly excised rat kidney in 

coronal view (A) and superimposed to a T2*-map of a rat kidney (B). During analysis the 

rectangular reference frame is manually positioned around the kidney, followed by an 

automated drawing of the diagonals (yellow). After their intersections with the kidney borders 

are defined manually, the ROIs (I1-I2, O1-O3, C1-C3, I: inner medulla, O: outer medulla, C: 

cortex) are automatically placed at pre-defined relative positions with regard to these 

references. The numbers shown on the horizontal and vertical axis as well as on the diagonals 

signify percentages of the reference frame dimensions and of the diagonals.  

 

 

Figure 3:  

A,B) Examples of renal T2* maps (A) and T2 maps (B) derived from baseline and during 

aortic occlusion, hypoxia and hyperoxia. C,D) Corresponding ΔT2* (C) and ΔT2 (D) maps 

which represent the pixel-by-pixel T2* and T2 difference between the last time point of each 

intervention phase and baseline.  

 

Figure 4:  
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Time courses of physiological and MR parameters throughout baseline, hyperoxia and 

recovery: relative changes of RPP (n=15), RBF (n=10), renal conductance (n=10), kidney size 

(n=15), cortical/medullary Laser-flux (n=11/13), cortical/medullary pO2 (n=12/10), 

cortical/outer medullary/inner medullary T2* (n=15/15/15), and cortical/outer medullary/inner 

medullary T2 (n=14/15/14). Hyperoxia started at t = 0. Its duration is indicated by the grey 

shading. Absolute parameter values at baseline are used to provide quantitative guidance. 

 

Figure 5:  

Time courses of physiological and MR parameters throughout baseline, aortic occlusion and 

recovery: relative changes of RPP (n=15), RBF (n=10), renal conductance (n=10), kidney size 

(n=15), cortical/medullary Laser-flux (n=12/13), cortical/medullary pO2 (n=12/9), 

cortical/outer medullary/inner medullary T2* (n=15/15/15), and cortical/outer medullary/inner 

medullary T2 (n=14/15/14). Aortic occlusion started at t = 0. Its duration is indicated by the 

grey shading. Absolute parameter values at baseline are used to provide quantitative guidance. 

 

Figure 6:  

Time courses of physiological and MR parameters throughout baseline, hypoxia and 

recovery: relative changes of RPP (n=13), RBF (n=8), renal conductance (n=8), kidney size 

(n=13), cortical/medullary Laser-flux (n=11/13), cortical/medullary pO2 (n=9/8), 

cortical/outer medullary/inner medullary T2* (n=13/13/13), and cortical/outer medullary/inner 

medullary T2 (n=12/13/12). Hypoxia started at t = 0. Its duration is indicated by the grey 

shading. In two rats the hypotensive response was so pronounced that hypoxia had to be 

stopped prematurely, therefore their data are not included here. Absolute parameter values at 

baseline are used to provide quantitative guidance. 

 

Figure 7:  

Parametric correlation analysis (Pearson’s analysis) between relative changes of cortical T2* 

and relative changes of cortical pO2 (left) or renal blood flow (right) for aortic occlusion & 

recovery (top), hypoxia & recovery (center) and hyperoxia & recovery (bottom). The 

coefficient of determination for Pearson (Rp
2
) is given together with the Spearman coefficient 
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(Rs
2
); ** denotes p<0.01 The linear regression curve is shown only for significant Pearson’s 

correlations of p<0.05. 

 

Figure 8:  

Parametric correlation analysis (Pearson’s analysis) between relative changes of outer 

medullary T2* and relative changes of medullary pO2 (left) or renal blood flow (right) for 

aortic occlusion & recovery (top), hypoxia & recovery (center) and hyperoxia & recovery 

(bottom). The coefficient of determination for Pearson (Rp
2
) is given together with the 

Spearman coefficient (Rs
2
); ** denotes p<0.01. 

 

Figure 9:  

Parametric correlation analysis (Pearson’s analysis) between relative changes of inner 

medullary T2* and relative changes of medullary pO2 (left) or renal blood flow (right) for 

aortic occlusion & recovery (top), hypoxia & recovery (center) and hyperoxia & recovery 

(bottom). The coefficient of determination for Pearson (Rp
2
) is given together with the 

Spearman coefficient (Rs
2
); * denotes p<0.05, ** denotes p<0.01. The linear regression curve 

is shown only for significant Pearson’s correlations of  p<0.05.  
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Table 1 

 

Hyperoxia & 
Recovery   R

2
s R

2
p 

f(x) = m x  + n 

 m n 

T2* vs pO2 

C 0.14** 0.01   

OM 0.19** 0.16** 0.16 0.88 

IM 0.21** 0.13** 0.16 0.88 

T2* vs RBF 

C 0.43** 0.50** 0.84 0.24 

OM 0.43** 0.50** 0.92 0.18 

IM 0.17** 0.18** 0.51 0.53 

T2* vs RPP 

C 0.50** 0.49** 0.92 0.16 

OM 0.40** 0.43** 1.01 0.1 

IM 0.10** 0.06* 0.36 0.69 

T2* vs Laser-flux 

C 0.28** 0.28** -0.39 1.45 

OM 0.02 0.01   

IM 0.05* 0.03   

T2* vs kidney size 

C 0.24** 0.26** 4.87 -3.81 

OM 0.24** 0.27** 5.72 -4.64 

IM 0.11** 0.09** 3.12 -2.08 

T2* vs conductance 

C 0.00 0.00   

OM 0.01 0.00   

IM 0.00 0.00   
 

Occlusion & 
Recovery   R

2
s R

2
p 

f(x) = m x  + n 

 m n 

T2* vs pO2 

C 0.24** 0.23** 0.13 0.83 

OM 0.54** 0.59** 0.4 0.56 

IM 0.28** 0.24** 0.23 0.71 

T2* vs RBF 

C 0.33** 0.18** 0.16 0.78 

OM 0.66** 0.58** 0.41 0.49 

IM 0.09* 0.06   

T2* vs RPP 

C 0.32** 0.14** 0.15 0.78 

OM 0.60** 0.53** 0.45 0.41 

IM 0.10** 0.07* 0.15 0.73 

T2* vs Laser-flux 

C 0.02 0.03   

OM 0.44** 0.45** 0.32 0.54 

IM 0.03 0.02   

T2* vs kidney size 

C 0.45** 0.38** 3.68 -2.71 

OM 0.54** 0.45** 6.17 -5.28 

IM 0.13** 0.12** 2.83 -1.92 

T2* vs conductance 

C 0.55** 0.35** 0.58 0.42 

OM 0.45** 0.10* 0.85 0.11 

IM 0.17* 0.34** 0.50 0.46 
 



page 27 

 
 

 

 

Hypoxia & 
Recovery   R

2
s R

2
p 

f(x) = m x  + n 

 m n 

T2* vs pO2 

C 0.25** 0.03   

OM 0.67** 0.67** 0.43 0.44 

IM 0.60** 0.63** 0.33 0.59 

T2* vs RBF 

C 0.74** 0.74** 0.59 0.38 

OM 0.84** 0.81** 0.74 0.21 

IM 0.53** 0.49** 0.44 0.51 

T2* vs RPP 

C 0.77** 0.74** 0.98 -0.02 

OM 0.64** 0.68** 1.14 -0.23 

IM 0.41** 0.36** 0.62 0.33 

T2* vs Laser-flux 

C 0.03 0.01   

OM 0.05 0.07   

IM 0.01 0.00   

T2* vs kidney size 

C 0.55** 0.43** 4.65 -3.75 

OM 0.57** 0.40** 5.48 -4.63 

IM 0.39** 0.31** 3.57 -2.64 

T2* vs conductance 

C 0.27** 0.34** 0.51 0.39 

OM 0.44** 0.47** 0.71 0.16 

IM 0.27** 0.27** 0.42 0.49 

 

Table 1:  

Summary of the coefficients of determination for correlation analyses of MR versus 

physiological parameters according to Spearman (R
2

s) and Pearson (R
2

p) for three 

interventions (hyperoxia & recovery, aortic occlusion & recovery, hypoxia & recovery) and 

three kidney layers (C = cortex, OM = outer medulla, IM = inner medulla); *: significant 

correlations with p<0.05, **: significant correlations with p<0.01. The slope (m) and intercept 

(n) of the linear regression equations are shown for significant Pearson’s correlations at 

p<0.05. 
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Table 2 

 

 

 

Hyperoxia & 
Recovery          R

2
s R

2
p 

f(x) = m x  + n 

 m n 

RBF vs pO2 
C 0.15** 0.04* 2.56 -0.25 

M 0.26** 0.12** 1.27 -0.1 

RBF vs Laser-flux 
C 0.20** 0.28** -0.68 1.74 

M 0.01 0.00   

Laser-flux vs pO2 
C 0.00 0.01   

M 0.04* 0.02   

 Kidney size vs 
Conductance 

 0.03 0.06   
 

Occlusion & 
Recovery          R

2
s R

2
p 

f(x) = m x  + n 

 m n 

RBF vs pO2 
C 0.46** 0.43** 0.78 0.08 

M 0.68** 0.58** 0.8 0.11 

RBF vs Laser-flux 
C 0.10** 0.20** 0.68 0.45 

M 0.62** 0.69** 1.04 0.09 

Laser-flux vs pO2 
C 0.05** 0.08** 0.26 0.46 

M 0.27** 0.32** 0.5 0.25 

 
Kidney size vs 
Conductance 

 0.46** 0.37** 0.08 0.92 

 

Hypoxia & 
Recovery          R

2
s R

2
p 

f(x) = m x  + n 

 m n 

RBF vs pO2 
C 0.27** 0.02   

M 0.86** 0.79** 1.34 -0.3 

RBF vs Laser-flux 
C 0.14** 0.12** 0.4 0.44 

M 0.07* 0.18** 0.42 0.44 

Laser-flux vs pO2 
C 0.02 0.01   

M 0.06* 0.03   

 
Kidney size vs 
Conductance 

 0.45** 0.43** 0.10 0.90 

 

Table 2:  

Summary of the coefficients of determination for correlation analyses of physiological 

parameters according to Spearman (R
2

s) and Pearson (R
2

p) for three interventions (hyperoxia 

& recovery, aortic occlusion & recovery, hypoxia & recovery) and two kidney layers 

(C=cortex, M=medulla); *: significant correlations with p<0.05, **: significant correlations 
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with p<0.01. The slope (m) and intercept (n) of the linear regression equations are shown for 

significant Pearson’s correlations at p<0.05. 
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