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LRP2 mediates folate uptake in the developing neural tube

Esther Kur1,*,`, Nora Mecklenburg1,`, Robert M. Cabrera2, Thomas E. Willnow1 and Annette Hammes1,§

ABSTRACT

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2)

is a multifunctional cell-surface receptor expressed in the embryonic

neuroepithelium. Loss of LRP2 in the developing murine central

nervous system (CNS) causes impaired closure of the rostral neural

tube at embryonic stage (E) 9.0. Similar neural tube defects (NTDs)

have previously been attributed to impaired folate metabolism in

mice. We therefore asked whether LRP2 might be required for the

delivery of folate to neuroepithelial cells during neurulation. Uptake

assays in whole-embryo cultures showed that LRP2-deficient

neuroepithelial cells are unable to mediate the uptake of folate

bound to soluble folate receptor 1 (sFOLR1). Consequently, folate

concentrations are significantly reduced in Lrp22/2 embryos

compared with control littermates. Moreover, the folic-acid-

dependent gene Alx3 is significantly downregulated in Lrp2

mutants. In conclusion, we show that LRP2 is essential for

cellular folate uptake in the developing neural tube, a crucial step

for proper neural tube closure.
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INTRODUCTION
The low-density lipoprotein (LDL) receptor-related protein 2
(LRP2), also known as megalin (Saito et al., 1994), is a
multifunctional cell-surface receptor that is structurally related

to the LDL receptor (Nykjaer and Willnow, 2002). Endocytosis
through LRP2 is important for the efficient uptake of several
vitamins and hormones bound to their carrier proteins. Examples

are the re-uptake of vitamin D and retinol from the primary urine
(Christensen et al., 1999; Nykjaer et al., 1999), as well as the
uptake of androgens and estrogens into steroid-responsive cells

(Hammes et al., 2005).

LRP2 plays a crucial role in forebrain development. The
receptor is highly expressed in the neuroepithelium and loss of

receptor activity in the developing central nervous system (CNS)
in gene-targeted mice causes holoprosencephaly (HPE), a failure

of the forebrain hemispheres to separate along the midline
(Spoelgen et al., 2005; Willnow et al., 1996). Patients with

autosomal recessive LRP2 gene defects suffer from Donnai-Barrow
syndrome, a disorder associated with forebrain anomalies (Kantarci
et al., 2007). We previously clarified the molecular mechanism
underlying the HPE phenotype by identifying LRP2 as a novel

component of the sonic hedgehog (SHH) signaling machinery in
the ventral forebrain neuroepithelium (Christ et al., 2012). LRP2
deficiency in mice leads to failure of the neuroepithelium to

respond to SHH and, consequently, to improper specification of
structures of the ventral forebrain midline.

Besides the HPE phenotype, we have also noted additional
cranial neural tube defects (NTDs) in LRP2-deficient mice that
cannot be explained by loss of SHH signaling in the developing

forebrain. The cause of these NTDs in Lrp22/2 embryos is so far
unknown. NTDs are a group of congenital malformations that
occur when the neural tube fails to close during embryonic

development. In human pregnancies, NTDs are the second most
frequent malformations after congenital heart defects (Wallingford
et al., 2013). Among the candidate genes associated with risk for

human NTDs are genes important in folate metabolism.
A functional link between LRP2 activity and endocytic folate

uptake in vitro in kidney sections has been suggested previously
(Birn et al., 2005). The binding of soluble folate receptor 1
(sFOLR1; also known as FBP1 or FBP, for folate binding protein)

to immobilized LRP2 was shown by surface plasmon resonance
analysis, as well as by binding of sFOLR1 to sections of kidney
cortex and uptake of sFOLR1 by BN-16 cells. In this study, we

addressed the question of whether LRP2 expressed in the
developing neural tube is required for the delivery of folate into
neuroepithelial cells during neurulation.

RESULTS
Closure of the rostral neural tube is impaired in LRP2-
deficient mouse embryos
We systematically examined the neural tube closure phenotype of

Lrp22/2 mice and Shh-null mutant mice. In agreement with
previous reports (Chiang et al., 1996; Murdoch and Copp, 2010),
SHH deficiency does not prevent neural tube closure (Fig. 1).
Despite impaired specification of the ventral neural tube, 95.5%

of all somite-stage 17–26 SHH-deficient embryos showed normal
neural tube closure, a number not significantly different from that
of wild-type embryos, where rostral neural tube closure is

completed at the 15-somite stage [embryonic day (E) 9.0; Fisher’s
exact test, P.0.2] (Fig. 1). By contrast, a significant proportion
(38%; Fisher’s exact test, P,0.0001) of LRP2-deficient embryos

exhibited an open rostral neural tube at somite-stages 17–26
(Fig. 1). In all of these cases, the posterior neural tube had closed
and, in most of them, the most anterior portion of the forebrain

was also closed. This pattern indicates a defect in neural tube
closure at the level of Closure 2 (Copp et al., 2003), which is
initiated at the forebrain-midbrain boundary, in Lrp22/2

embryos.

Other LDL receptor family members might be affected in our

Lrp2-deletion model and might therefore contribute to the NTDs.
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Loss- and gain-of-function mouse models for LRP6 suffer from

compromised neural tube development (Gray et al., 2013; Gray
et al., 2010). We thus measured the expression levels of Lrp1,
Lrp1b, Lrp4, Lrp5 and Lrp6 in the developing brain. As shown in
supplementary material Fig. S1, no differences in expression

levels of these receptors were detected by comparing mutant with
control samples. These results support the idea that the neural
tube phenotype is caused by LRP2 deficiency and not by altered

expression of other LDL receptor family members.

Endocytosis of FOLR1 and folic acid is impaired in LRP2-
deficient mice
One established risk factor for NTDs is impaired uptake of folate
(vitamin B9) bound to folate-binding proteins and disturbed

metabolism of the vitamin (Gelineau-van Waes et al., 2008a;
Piedrahita et al., 1999; Spiegelstein et al., 2004). There are
different routes by which cells take up folate. Relevant for

embryonic development of the nervous system are the

bidirectional solute carrier family 19 (folate transporter)
member 1 (SLC19a1; also known as reduced folate carrier 1,
RFC1) and the folate receptor 1 (FOLR1; also known as
folate binding protein, FBP1), which exists both as a

glycosylphosphatidylinositol (GPI)-anchored and as a soluble
isoform, sFOLR1 (Lacey et al., 1989; Spiegelstein et al., 2000).
FOLR1 regulates folate uptake through endocytic mechanisms

and is important for proper neural tube closure (Piedrahita et al.,
1999; Tang and Finnell, 2003). Because none of the FOLR1
receptor isoforms contains a transmembrane segment, high

efficiency uptake relies on their association with an additional
as-yet-unidentified transmembrane receptor.

We asked whether LRP2 might mediate the uptake of FOLR1

in vivo. To test this hypothesis, we injected adult control and
LRP2-deficient mice with Alexa-Fluor-488 (A488)-labeled
sFOLR1. After 2 hours, the labeled protein was detectable in

Fig. 1. Impaired neural tube closure in LRP2-deficient
mice. (A) Embryos at E9.0, shown in a lateral view (a,d,g),
heads in a frontal view (b,e,h), and coronal sections
counterstained with DAPI (c,f,i). LRP2-deficient embryos at
E9.0 showed an open neural tube at the forebrain-midbrain
boundary. (B) The table indicates the number of embryos
from each genotype at different somite stages and the
incidence of neural tube closure defects. A significant
proportion of Lrp2 mutants (38%) presents with an open
neural tube, whereas no wild-type embryo and only one
Shh-mutant embryo showed a defect in neural tube closure
at E9.0. NT, neural tube.
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intracellular compartments of kidney proximal tubules of control
mice (Fig. 2A). By contrast, no uptake was seen in LRP2-

deficient animals (Fig. 2A), indicating that LRP2 is required for
efficient uptake of sFOLR1 in vivo.

We next tested whether LRP2 is required for cellular uptake of
sFOLR1 in neuroepithelial cells during neurulation stages. To this

end, we cultured control and LRP2-deficient E8.5 embryos before
neural tube closure in medium containing A488-labeled sFOLR1.

After 2 hours of incubation, sFOLR1 could be detected bound to
the surface and within the apical compartment of control
neuroepithelial cells (Fig. 2B). However, no sFOLR1 was
detectable in the LRP2-deficient neuroepithelium (Fig. 2B).

Fig. 2. Uptake studies for sFOLR1 and folic acid
in whole-embryo cultures. (A) Immunohistological
detection of LRP2 (red) and sFOLR1–A488 (green)
on kidney sections from adult Lrp2mutants (n52) and
wild-type controls (n52) injected with sFOLR1–A488.
The absence of LRP2 in mutant mice results in
impaired binding to and uptake of sFOLR1 at the
apical surface of kidney proximal tubule cells. Scale
bars: 20 mm. (B) Immunohistological detection of
LRP2 (red) and sFOLR1–A488 (green) on coronal
sections from E8.5 whole-embryo cultures incubated
with sFOLR1–A488. No sFOLR1–A488 signal was
seen in Lrp2-mutant embryonic neural folds (n56),
compared with a robust signal in control littermates
(n527). The pictures show neuroepithelial tissue from
coronal sections of rostral neural folds. Scale bars:
20 mm. (C) Adding anti-LRP2 antibody as a
competitor in sFOLR1-uptake studies completely
blocked internalization of sFOLR1–A488 in
neuroepithelial tissue from control embryos (n55),
whereas neuroepithelial tissue without competitor
showed uptake of sFOLR1–A488 (n55). The pictures
show coronal sections of rostral neural folds before
closure at E8.0 and E8.5. Scale bars: 50 mm. Nuclei
are stained with DAPI (blue) in A–C.
(D) Immunohistological detection of sFOLR1–A488
(green) and folic-acid–Cy3 (red) on coronal sections
of E8.5 whole-embryo cultures incubated with folic-
acid–Cy3 and sFOLR1–A488. Robust uptake was
seen in wild-type samples (n512) compared with
Lrp22/2 rostral neural folds (n53), which showed no
detectable signals for sFOLR1–A488 and very weak
signals for folic-acid–Cy3. For each genotype, higher
magnification of the rostral neural folds are shown in
the lower panels. Scale bars: 50 mm (upper panels),
25 mm (lower panels). (E) Immunohistological
detection of LRP2 (blue) and folic-acid–Cy3 (red) on
coronal sections of E8.5 whole-embryo cultures
incubated with folic-acid–Cy3. Robust uptake was
seen in wild-type rostral neural folds (n57) compared
with Lrp22/2 neural folds (n54), which showed only
weak signals for folic-acid–Cy3. Lower panels show
higher magnification of the coronal section of the
neural folds. Scale bars: 50 mm (upper panels),
25 mm (lower panels).
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Furthermore, adding inhibitory anti-LRP2 antibody blocked
sFOLR1 uptake in wild-type neuroepithelial cells (Fig. 2C). These

results indicate that LRP2, expressed in the neuroepithelium, is
required for the cellular uptake of sFOLR1 during neurulation. To
exclude the possibility that LRP2 facilitates endocytosis of the A488
tag we incubated wild-type embryos with sFOLR1–Alexa-Fluor-

647 (A647) and GST–A488. No uptake of GST–A488 was seen in
these experiments, whereas uptake was seen for sFOLR1–A647
(supplementary material Fig. S2).

We next examined whether LRP2-mediated uptake of FOLR1
results in the simultaneous uptake of folic acid bound to this
carrier. To do so, whole-embryo cultures were incubated with Cy3-

labeled folic acid complexed with sFOLR1–A488. Uptake
experiments showed intracellular signals both for sFOLR1–A488
and Cy3-labeled folic acid in the neuroepithelial tissue of E8.5

wild-type mouse embryos. However, no sFOLR1–A488 uptake,
and severely reduced internalization of folic-acid–Cy3, was
observed in the rostral neural folds of Lrp22/2 littermates
(Fig. 2D). Thus, LRP2 appears to present the main uptake

pathway for this vitamin in the neural tube. To explore sFOLR1-
independent uptake of folic acid, we incubated embryo cultures
with folic-acid–Cy3 without adding soluble FOLR1, under serum-

free conditions. In this scenario, the GPI-anchored FOLR1 should
be able to mediate vitamin uptake both in wild-type and mutant
embryos. However, also in this case, LRP2-deficient neural folds

showed reduced uptake of folic acid compared with wild-type
tissue (Fig. 2E), indicating that internalization of the complex
formed by folic acid and GPI2FOLR1 is also dependent on LRP2

(see model, Fig. 5).
Taken together, these experiments demonstrate that efficient

cellular uptake of folic acid and its binding proteins sFOLR1 and
GPI–FOLR1 is mediated in a LRP2-dependent manner at the

apical surface of the developing neuroepithelium. Importantly,
our results suggest that endocytosis of a vitamin-binding protein,
in this case FOLR1, by LRP2 directly influences crucial events

during embryonic development, as cellular uptake of folate is
required for the normal progression of neural tube closure.

Decreased folate concentrations in Lrp22/2 embryos
To investigate whether the impaired uptake of FOLR1 caused
by LRP2 deficiency in the neuroepithelium influences folate
concentrations in the embryonic neuroepithelium, we determined

tissue folate levels in E9.5 Lrp22/2 embryos and somite-matched
control littermates. Folate concentrations were significantly lower in
tissue samples isolated from LRP2-deficient embryonic anterior

neural tube compared with samples derived from control embryos
(Fig. 3A). This finding is consistent with an impaired uptake of folic
acid and FOLR1 in the neuroepithelium of LRP2-deficient embryos.

FOLR1 and LRP2 have overlapping expression domains in the
developing neural tube
To provide further evidence for a functional link between FOLR1
and LRP2, we carefully compared the expression pattern and
protein localization in the developing brain of E9.5 and E10.5
embryos (supplementary material Fig. S3). The most prominent

overlap for LRP2 and FOLR1 was seen in the dorsal neuroepithelial
midline, which corresponds to the site where Closure 2 is initiated,
and in the ventral midline of the midbrain neuroepithelium.

Folr1 and Slc19a1 expression in Lrp22/2 mutants
We next asked whether the impaired uptake of folate and

decreased tissue folate concentrations are primary consequences

of LRP2 deficiency rather than of defects in the expression of
folate receptors and carriers. We thus examined the expression of

FOLR1 (protein and mRNA) and Slc19a1 (mRNA) in Lrp2

mutants and in control littermates. Using in situ hybridization
and immunohistochemistry, we showed that the expression
pattern of FOLR1 in the neural tube of LRP2-deficient embryos

was comparable to that of wild-type controls (Fig. 3B). The
expression levels of Folr1 and Slc19a1 were significantly
increased in Lrp22/2 embryonic heads compared with their

expression in control samples (Fig. 3C,D), a fact that could be
explained by a compensatory upregulation of folate receptors and
folate carriers in response to LRP2 deficiency.

In the kidney, where LRP2 mediates the uptake of sFOLR1
into proximal tubule cells (Fig. 2A), the expression pattern of
Folr1 mRNA and the immunohistological detection of FOLR1

protein was not different between Lrp22/2 and control kidneys
(Fig. 3E,F). Thus, a loss of expression of the established folate
receptors or carriers does not account for the defects in folate
metabolism seen in LRP2-deficient organisms.

Expression of the folate-dependent gene Alx3 is reduced in
LRP2-deficient embryos
Little is known about the mechanisms underlying the rescue
of neural tube closure defects by folate. Recently, it was shown
that expression of the gene Alx3 (aristaless-family homeobox

transcription factor 3) is specifically dependent on folate, and that
ALX3 is important for neural tube closure (Kessaris et al., 2006;
Lakhwani et al., 2010).

In situ hybridization analysis and quantitative RT-PCR showed
that Alx3 mRNA expression was reduced in LRP2-deficient
embryos compared with controls (Fig. 4A,C). Interestingly,
expression of the Alx3-related folate-independent transcription

factor Alx4 (Lakhwani et al., 2010) was unchanged in LRP2-
deficient embryos (Fig. 4B,C). Importantly, impaired Alx3

expression in LRP2-deficient embryos is unlikely to be a

downstream effect of aberrant SHH signaling, because we
detected normal expression patterns and mRNA levels of Alx3

in Shh-mutant embryos (Fig. 4A,C). These findings suggest that

in the absence of LRP2, the endocytosis of folate is impaired,
leading to alterations in the expression of folate-dependent genes
including Alx3, ultimately contributing to the pathogenesis of
NTDs.

DISCUSSION
Over the past years it became well accepted that members of the

LDL receptor family, including LRP2, play an important role in
signaling during embryonic development. Here, we show that
LRP2 is essential for the uptake of folic acid and folate receptors

in the developing neural tube. Our results also demonstrate that
LRP2 deficiency leads to impaired cellular uptake of folate
during neurulation and impaired expression of the transcription

factor Alx3, which likely contributes to rostral neural tube closure
defects in Lrp22/2 embryos.

LRP2 is a multifunctional endocytic receptor expressed early
in embryonic development on the apical surface of the

neuroepithelium. In our recent work, we established a role for
LRP2 in the ventral midline of the rostral diencephalon, where
the receptor mediates SHH signal transduction in the early

embryo, acting as a co-receptor for patched1 (Christ et al., 2012).
However, the function of LRP2 in other neural tube domains
during embryonic development remained unclear. Here, we

postulate that LRP2 plays a role in the process of neural tube
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closure, because 38% of LRP2-deficient embryos showed
impaired rostral neural tube closure, which is unlikely to be
linked to loss of SHH signals (Fig. 1) (Chiang et al., 1996;
Murdoch and Copp, 2010).

Folic acid (vitamin B9) is known to reduce the risk of human
NTDs, and mouse models with loss-of-function mutations
affecting the Folr1 or Slc19a1 genes show NTDs and embryonic

lethality (Blom et al., 2006; Cabrera et al., 2004; Gelineau-van
Waes et al., 2008a; Piedrahita et al., 1999; Zhao et al., 2001). LRP2
has been shown to mediate the uptake of many hormones and

vitamins bound to their respective carrier proteins, including
vitamin D-binding protein (DBP), retinol-binding protein (RBP)

and sex hormone-binding globulins (SHBG). Impaired uptake of
these complexes in LRP2-deficient mice affects adult vitamin
homeostasis (DBP and RBP) as well as late embryonic and early
postnatal development (SHBG) (Christensen et al., 1999; Hammes

et al., 2005; Nykjaer et al., 1999).
A functional link between LRP2 activity in the kidney and

endocytic uptake of folic acid and the folate receptor has been

suggested (Birn et al., 2005). Additional evidence for the role of
LRP2 in folate uptake in embryonic tissue comes from a study by
Gelineau-van-Waes and colleagues, showing that components of

the LRP2–cubilin receptor complex are upregulated in SLC19a1-
deficient embryos (Gelineau-van Waes et al., 2008b). Thus,

Fig. 3. Reduced tissue folate concentrations in
Lrp22/2 embryos are not caused by impaired Folr1

or Slc19a1 expression. (A) Cranial tissue folate (FA)
concentrations in E9.5 Lrp22/2 embryos were
significantly lower compared with samples derived
from somite-matched control embryos. Wild-type and
heterozygous littermates were pooled because they
showed identical phenotypes. Lrp22/2, n513;
Lrp2+/+, n517; Lrp2+/2, n521. The mean6s.e.m. is
indicated; **P50.0017. (B) In situ hybridization
analyses on whole-mount E9.5 embryos (upper panel)
and on sagittal E9.5 brain paraffin sections (middle
and lower panels) demonstrate the expression pattern
for Folr1 in the ventral neural tube (asterisk) and in the
dorsal forebrain (arrowhead), which shows no
difference between Lrp22/2 embryos (n510) and
somite-matched controls (n512). Immunohistological
detection of FOLR1 on sagittal E9.5 brain paraffin
sections confirmed the expression pattern data seen in
ISH experiments (see also supplementary material
Fig. S3). Scale bar: 50 mm. (C,D) Quantitative RT-PCR
analyses on head mRNA samples from E9.5 embryos
(21–24 somites) revealed significantly higher
expression levels of Folr1 and Slc19a1 in Lrp2

mutants compared with wild-type controls. Lrp2+/+,
n517; Lrp22/2, n516. The mean6s.e.m. is indicated;
*P50.0254 (C), *P50.0385 (D). (E,F) In E16.5 and
adult kidneys from Lrp22/2 mice, Folr1 mRNA is
correctly expressed as demonstrated in ISH
experiments. The protein is localized on the apical
surface of proximal tubule cells in LRP2-deficient mice,
comparable to controls, as shown in
immunohistological analyses on sagittal kidney
sections (10 mm paraffin sections). Scale bars:
100 mm.
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increased expression of Lrp2 could compensate for the lack of

folate uptake through SLC19a1 by increasing the folate uptake
through FOLR1 and LRP2. Our results demonstrate that LRP2
plays an essential role in the uptake of folic acid and its binding

protein FOLR1 in the developing neural tube (Fig. 2). LRP2
deficiency leads to impaired cellular uptake of folate during
neurulation, which might consequently contribute to NTDs in
Lrp22/2 embryos.

The weak uptake of folic acid seen in Lrp22/2 tissue (as shown

in Fig. 2D,E) might be explained by the internalization of folic
acid through LRP2-independent routes. For example, folic acid
can enter the cell by the folate carrier SLC19a1. Expression levels

for this folate carrier are upregulated in LRP2-deficient embryos
(Fig. 3C,D), indicating a compensatory effect as a consequence
of impaired LRP2- and FOLR1-mediated uptake of folate.
However, considering the weak uptake of folic acid in LRP2-

deficient tissue, the SLC19a1-mediated folic acid uptake and
alternative routes for the uptake of sFOLR1 or GPI–FOLR1
(depicted in Fig. 5) seem to play a minor role in the efficient

uptake of folic acid in the neural folds. This further supports the
hypothesis that efficient uptake of folate is dependent on co-
receptor-mediated endocytosis of sFOLR1 and GPI–FOLR1.

A putative co-receptor for FOLR1 had not yet been identified.
Our data suggest that the endocytosis of soluble FOLR1
and membrane-anchored GPI–FOLR1 requires the interaction

of these proteins with the single-spanning transmembrane
endocytic receptor LRP2 (Fig. 5). This ‘dual-receptor complex’
hypothesis for the uptake of folate is analogous to the uptake of
renal and intestinal vitamin B12 bound to intrinsic factor through

cubilin, a peripherally attached glycoprotein. Internalization of
the cubilin–ligand complex strongly relies on the interaction with
LRP2 (Denz-Penhey and Murdoch, 2009; Horbinski et al., 2009).

Gene defects and environmental factors, or a combination
thereof, can cause NTDs. Studies on animal models have
identified a large number of candidate genes involved in the

etiology of NTDs (Harris and Juriloff, 2010). In humans,
however, little is known about the interaction of most of these
risk genes and the maternal factors. Therefore, further
experiments will be required to elucidate the mechanisms

underlying the protective effects of maternal folic acid
supplementation for the embryo (Blom et al., 2006; Finnell

Fig. 4. Reduced Alx3 expression in LRP2-deficient embryos. (A) Whole-mount in situ hybridization analyses demonstrate reduced Alx3 expression in the
rostral forebrain of Lrp22/2 embryos at E9.5 (arrowhead) compared with wild-type controls and Shhtm1(EGFP/cre) mutant embryos. Lrp2+/+, n55; Lrp22/2, n54;
Shh+/+, n54; Shh2/2, n54. (B) The expression pattern of Alx4 is unchanged in the neural tube of Lrp22/2 embryos at E9.5 compared with that of
controls, as shown by whole-mount in situ hybridization. n53 for both genotypes. (C) Quantitative RT-PCR analyses on embryonic head samples at somite-stages
21–24 from Lrp22/2 mutants, Shhtm1(EGFP/cre) mutants and controls confirmed that there were significantly reduced levels of Alx3 expression in LRP2-deficient
embryonic heads compared with those of littermate controls. Lrp2+/+, n52; Lrp2+/2, n53; Lrp22/2, n55. **P50.0031. By contrast, Shh-null mutants showed no
significant difference in Alx3 expression levels compared with those of controls. Shh+/+, n55; Shh+/2, n52; Shh2/2, n56. P50.7261. No difference in Alx4

expression levels was seen between Lrp2-mutant and control samples. Lrp2+/+, n512; Lrp22/2, n511. P50.9558. Wild-type and heterozygous littermates were
pooled in these experiments because they showed identical phenotypes. Data are shown as the mean6s.e.m.; n.s., non-significant.

Fig. 5. Model depicting the possible routes of folic acid uptake into
neuroepithelial cells. Soluble FOLR1 (sFOLR1) and GPI-anchored FOLR1
bind to folic acid, and the uptake of the complex is mediated through
endocytic mechanisms. High-efficiency internalization of sFOLR1 and GPI–
FOLR1 relies on their interaction with a co-receptor spanning the plasma
membrane, which, according to our results, is likely to be LRP2 (route 1 and
2). Less-efficient uptake is probably mediated by alternative routes (3), which
are not yet well understood (Mayor and Riezman, 2004). Carrier-mediated
uptake of folic acid (4) occurs through SLC19a1.
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et al., 2010; Wallingford et al., 2013). Moreover, to better
understand the molecular mechanisms of LRP2-dependent NTDs,

it remains to be investigated whether other factors, such as altered
morphogen pathways, cilia function and apico-basal polarity of
neuroepithelial cells (Eom et al., 2011), function in addition to the
impaired folate uptake to modulate the NTD phenotype in LRP2-

deficient mice.

MATERIALS AND METHODS
Mouse models
The generation of mice with targeted disruption of the Lrp2 gene has

been described previously (Willnow et al., 1996). Analyses of the

embryonic neural tube defects were carried out in LRP2-deficient and in

somite-matched wild-type and heterozygous littermates on a C57BL/6N

background. Wild-type and heterozygous littermates show no differences

in any of the analyses, and both genotypes are therefore referred to as

controls in the experiments. sFOLR1-uptake studies in the kidney were

performed on LRP2-deficient mice on an inbred FVB/N genetic

background, because surviving adult LRP2-deficient mice can be

obtained on this genetic background. Shhtm1(EGFP/cre) mutant mice

(Harfe et al., 2004), kindly provided by Clifford Tabin (Harvard

Medical School, Boston, MA) were used to analyze the neural tube

phenotype in SHH-deficient embryos and wild-type somite-matched

littermates. All experiments involving animals were performed according

to institutional guidelines following approval by local authorities.

Uptake studies
sFOLR1–A488, sFOLR1–A647 and GST–A488 were generated by labeling

folate-binding protein from bovine milk (F0504, Sigma) and GST using the

Alexa Fluor 488 or Alexa Fluor 647 protein labeling kit (A10235, A20173,

Life Technologies). Cy3–PEG-folic acid was obtained from Nanocs (PG2-

FAS3-3k). E8.0 and E8.5 embryos were incubated in their yolk sacs in

DMEM containing 5 mg/ml sFOLR1–A488, sFOLR1–A647, GST–A488 or

folic-acid–Cy3 at 37 C̊ under 5% CO2 and 95% humidity. Folic-acid–Cy3

was incubated with sFOLR1–A488 for 30 minutes at room temperature

before adding both reagents to the embryo culture. The yolk sac and amnion

were opened by an incision to enable the diffusion of proteins. After 2 hours

of incubation, the yolk sac and amnion were removed, and embryos were

fixed in 4% paraformaldehyde (PFA) for 15 minutes. Embryos were

cryosectioned at 10 mm. LRP2 receptor activity was blocked by incubation

with goat anti-LRP2 antiserum (1:100); controls received goat non-immune

serum (1:100).

To test sFOLR1 uptake by kidney proximal tubule cells, sFOLR1–

A488 was injected into the tail veins of adult mice (300 ng/ml in PBS;

180 ml total volume). After 90 minutes, animals were sacrificed and

kidneys were isolated and fixed in 4% PFA (at room temperature for

90 minutes). Kidneys were cryosectioned at 12 mm.

Measurement of reduced folate concentrations in mouse
embryonic tissue
Folate to total protein ratios (nmole/g) were determined for head tissue

samples from LRP2-deficient embryos (n513; 23–26 somites) and

somite-matched heterozygous (n521) and wild-type (n517) controls.

The assay procedure used to identify the concentration of folate in tissue

samples was a modification of the folate-inhibition assay (Cabrera et al.,

2008). Briefly, 50 mg/ml bovine folate-binding protein (Sigma Aldrich,

St Louis, MO), diluted in 100 mM NaHCO3 pH 8.3, was printed onto the

plate surface in 2 ml volumes at 4 C̊ overnight. Sample tissues were

suspended in 150 ml of lysis buffer [16 PBS, 0.1% Tween (v/v), 1%

ascorbate (w/v)]. Samples were homogenized mechanically and placed

in a boiling water bath for 10 minutes. Samples were then spun at

14,000 g for 7 minutes, and the supernatant was collected. A volume

of 2 ml of 5% NaOH (w/v) was added for neutralization of the solution.

Unlabeled folic acid was spiked by serial dilution (250–0.244 ng/ml)

in PBS-Tween buffer in order to generate a standard regression curve

for the determination of relative folate concentrations in samples.

Standard and sample solutions were mixed 1:5 with horseradish

peroxidase (HRP)-labeled folic acid solution (FA–HRP; Ortho-Clinical

Diagnostics, Raritan, NJ) and incubated in sample wells for 2 hours.

Plates were washed six times with 16 PBS-Tween, and the HRP signal

was detected with SuperSignal ELISA Femto Substrate (Pierce). The 96-

well plates were imaged and analyzed on a Q-view chemiluminescent

imager (Quansys Biosciences). Data were analyzed in GraphPad Prism

(GraphPad Software) using a Student’s t-test.

Immunohistological analysis
Standard immunohistochemical analysis was performed by incubation of

tissue sections with the following primary antibodies at the indicated

dilutions; sheep anti-LRP2 antiserum (1:5000; kindly provided by Renata

Kozyraki, Institute De La Vision, Paris) and rabbit anti-FOLR1 (1:500;

Abcam). Bound primary antibodies were visualized using secondary

antisera conjugated with Alexa Fluor 488, 555 or 647 (1:500; Invitrogen).

Nuclei were counterstained with DAPI (1:8000; Roche). Alternatively,

bound primary antibodies were visualized with secondary antisera

conjugated with biotin (1:300), avidin–biotin complex (ABC; 1:300;

Vectastain) or diaminobenzidine (DAB; Sigma Aldrich). Analyses were

performed using a Leica SPE confocal microscope and Leica DMI6000B.

In situ hybridization
Whole-mount in situ hybridization (WISH) was performed as described

previously (Hammes et al., 2001). In situ hybridization (ISH) on sections

was performed as described previously (Travers and Haas, 2004). Plasmids

were purchased from Source Bioscience: FolR1, IRAKp961N1711Q;

Alx3, D230004L08; Alx4, IRAVp968G0971D.

Quantitative RT-PCR
Total RNA from E9.5 embryo heads was extracted using an RNeasy

Micro kit (Qiagen). cDNA was synthesized by using the High Capacity

RNA-to-cDNA kit (Life technologies), and quantitative PCR was

performed using an ABI7900. The expression of Alx3, FolR1 and

Slc19a1 was normalized to that of Gapdh (Mm99999915_g1; Life

Technologies). The following gene expression assays were used: Alx3,

Mm01204737_m1; Alx4, Mm00431780_m1; Folr1, Mm00433355_m1;

Slc19a1, Mm00446220_m1; Lrp1, Mm00464608_m1; Lrp1b,

Mm00466712_m1; Lrp4, Mm00554326_m1; Lrp5, Mm01227476_m1;

and Lrp6, Mm00999795_m1 (Life Technologies). Data were analyzed in

GraphPad Prism (GraphPad Software) using an unpaired Student’s t-test.
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Fig. S1. Expression levels of LDL receptor family members in Lrp2−/− embryos compared to wild type controls. Quantitative RT-
PCR on E9.5 head samples revealed no difference in the expression levels between genotypes for Lrp1 (A), Lrp1b (B), Lrp4 (C), Lrp5 
(D), and Lrp6 (E).



Fig. S2. sFOLR1 uptake experiments in whole embryo cultures. Immunohistological detection of LRP2 (blue) and sFOLR1-A647 
(red) on coronal sections of E8.5 whole embryo cultures incubated with sFOLR1-A647 and glutathione S-transferase (GST)-A488. 
sFOLR1-A647 was internalized whereas no uptake of GST-A488 was seen in the neuroepithelium of control mice (n=7). Coronal 
sections of rostral neural folds, scale bar=10  µm.



 Fig. S3. FOLR1 and LRP2 expression pattern in the developing neural tube. (A) Folr1 in situ hybridization, and immunohis-
tological detection of LRP2 on serial coronal paraffin sections of E9.5 and E10.5 embryonic heads. At E9.5 and E10.5 regions with 
Folr1 expression and LRP2 localization on the neighbouring section correspond to the dorsal midline of the telencephalon (tel) and 
diencephalon (di) indicated by arrowheads, to the zona limitans intrathalamica (zli) indicated by the asterisks, and to the ventral mid-
brain (arrow). The upper rows for zE9.5 and E10.5, respectively, show the whole coronal head section (scale bar=100  µm). The two 
lower rows show details of these sections at higher magnification (scale bars=50  µm). (B) Immunohistological detection of FOLR1 
(red) and LRP2 (green) on coronal cryostat sections of the forebrain (fb), midbrain (mb), and hindbrain (hb) at E9.5 (scale bars 100  
µm). Overlapping signals for FOLR1 and LRP2 are seen in the apical compartment of the neuroepithelial monolayer at the dorsal 
midline. The right panel presents higher magnification details of the dorsal midline (scale bars=25  µm). (C) Folr1 in situ hybridization 
and immunohistological detection of LRP2 on neighbouring sagittal paraffin sections of E9.5 and E10.5 embryonic heads. Dorsal fore-
brain (arrowhead) and ventral midbrain (asterisk) show Folr1 expression and LRP2 localization (scale bars=100  µm). (D) Immuno-
histological detection of FOLR1 (red) and LRP2 (green) on sagittal brain paraffin sections of E10.5 embryos with overlapping signals 
for FOLR1 and LRP2 in the dorsal forebrain (arrowhead) and the ventral midbrain (asterisk). Both panels to the right represent higher 
magnification details of the sagittal sections in the left panel (scale bars=50  µm).
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