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Abstract 

In the development of the mammalian intestine, Notch and Wnt/-catenin signals control stem 

cell maintenance and their differentiation into absorptive and secretory cells. Mechanisms that 

regulate differentiation of progenitors into the three secretory lineages, goblet, paneth or 

enteroendocrine cells, are not fully understood. Using conditional mutagenesis in mice, we 

observed that Shp2-mediated MAPK signaling determines the choice between paneth and goblet 

cell fates and also stem cells, which express the leucine-rich repeat-containing receptor 5 (Lgr5). 

Ablation of the tyrosine phosphatase Shp2 in the intestinal epithelium reduced MAPK signaling 

and led to a reduction of goblet cells while promoting paneth cell development. Conversely, 

conditional mitogen-activatged protein kinase kinase 1 (Mek1) activation rescued the Shp2 

phenotype, promoted goblet cell and inhibited paneth cell generation. The Shp2 mutation also 

expanded Lgr5+ stem cell niches, which could be restricted by activated Mek1 signaling. Changes 

of Lgr5+ stem cell quantities were accompanied by alterations of paneth cells, indicating that 

Shp2/MAPK signaling might affect stem cell niches directly or via paneth cells. Remarkably, 

inhibition of MAPK signaling in intestinal organoids and cultured cells changed the relative 

abundance of Tcf4 isoforms and by this, promoted Wnt/-catenin activity. The data thus show 

that Shp2-mediated MAPK signaling controls the choice between goblet and paneth cell fates by 

regulating Wnt/-catenin activity. 

 

Keywords: PTPN11, crypt, Mek1DD, TCF7L2, RTK  
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Introduction 

The intestinal epithelium of mammals consists of absorptive enterocytes and of three secretory 

cell types, paneth, goblet and enteroendocrine cells, which are continuously replenished from 

stem cells that reside in niches in the lower parts of the crypts (1, 2). The secretory lineages 

differentiate from a common progenitor that emerges to occupy the +5 cell position above the 

stem cell niches (3). Goblet and paneth cells continue to share similar characteristics, while 

enteroendocrine cells develop separately through a divergent mechanism. During differentiation, 

paneth cells move back to the base of the crypts and become interspersed between the stem 

cells, while the other cell types migrate into the villi (1, 2). Paneth cells provide signals for the 

maintenance of stem cells, which are characterized by the expression of the stem cell marker 

Lgr5. Lgr5 is a receptor for R-spondins and participates in canonical Wnt signaling (4). Lgr5+ stem 

cells are reduced but not depleted when paneth cells are lacking (5, 6), which indicates that 

paneth cells are not the sole source of the signals that maintain stem cells. 

Wnt/-catenin signaling, through cooperation of Wnt receptors and Lgr4/5 co-receptors, is 

essential in maintaining the intestinal epithelium, and plays important roles in the generation of 

Lgr5+ stem cells (1). Canonical Wnt signaling also influences secretory cell lineages, since 

overexpression of the Wnt antagonist  dickkopf1 (Dkk1) lead to a loss of all secretory cell types 

(7). However, Wnt/-catenin signaling has different effects on the development of the three 

secretory cell types: paneth cells require Wnt and Lgr4 (8, 9), high Wnt activity interferes with 

goblet cell differentiation (10), while enteroendocrine progenitors are Wnt-independent (11). This 

indicates that additional mechanisms come into play in the differentiation of the secretory 

lineages. One candidate might be MAPK signaling, because conditional expression of oncogenic 

K-ras resulted in intestinal hyperplasia and was accompanied by altered goblet and paneth cell 

numbers (12). 

The non-receptor tyrosine phosphatase Shp2 mediates growth factor and cytokine signals and 

can regulate the activity of the Ras/Mek1/MAPK and other signaling pathways in development 

and disease (13, 14). In mice, a null mutation of Shp2 interfered with the expansion of the 

trophoblast cell lineage and led to implantation deficits (15). Shp2 is also required for the 

development and maintenance of the nervous system, the kidney and other organs (13, 14, 16, 

17); its role in the maintenance of the intestinal epithelium is not fully investigated. Heterozygous 

mutation of Shp2 in an Egfr mutant background resulted in the accumulation of desquamated 

intestinal epithelia (18). Shp2 and the transcription factor Stat3 are activated through the 
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interleukin/gp130 receptor; however, mutation of the Shp2-binding site in gp130 has no major 

effects on intestinal development. Instead, it enlarges the proximal small intestine in aging mice 

and protects intestines from dextran sulphate-induced colitis (19). 

Here we used mouse genetics to demonstrate that Shp2 and Mek1/MAPK signaling control the 

choice between goblet and paneth cell fates. Ablation of Shp2 promotes paneth cell expansion 

while reducing goblet cell formation. Conversely, activation of Mek1/MAPK promotes the 

generation of goblet cells at the expense of paneth cells. We provide evidence that 

Shp2/Mek1/MAPK-mediated regulation of Wnt/-catenin signaling is crucial for the lineage 

decision by which goblet and paneth cells differentiate from a common progenitor cell type.  
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Results 

Shp2 is essential for goblet cell differentiation: 

We aimed to assess the role of Shp2/MAPK signaling in cell fate determination of the intestine. 

By conditional mutagenesis, we generated mutant mice that lacked Shp2 in the intestine using 

villinCre (Shp2lox/lox; villinCre and Shp2lox/+; villinCre, hereafter called Shp2 mutant and control, 

respectively, see Material and Methods (16, 20)). Remarkably, ablation of Shp2 strongly reduced 

goblet cell numbers in the small intestine and the colon, as assessed by alcian blue staining (Fig. 

1 A, B). The intervention was accompanied by a drop in mRNAs of Spdef, Muc2 and Gob5, which 

are typically expressed in goblet cells (21-23), as assessed by qRT-PCR (Fig. 1 C, D). 

Immunohistochemical analysis (IHC) of Spdef and Gob5 proteins confirmed reduced goblet cell 

numbers (Fig. S1 A, B, quantification on the right). The Shp2 mutant phenotype was mildly 

mosaic: goblet cell numbers were reduced in a pronounced manner in large areas that displayed 

high levels of Cre protein and loss of Shp2 expression (Fig. S1 C-E, right panel; residual goblet 

cells only appeared in minor areas with very low or no Cre (C), and with absence of Shp2 

expression (D); yellow arrows point to Shp2-deficient villi and crypts without goblet cells). 

Enteroendocrine cells were not affected by the loss of Shp2, as assessed by IHC for 

ChromagraninA (Fig. S1 F, quantification on the right). The morphology of intestinal villi of Shp2 

mutants was slightly aberrant; some villi appeared to be shortened or thickened (Fig.1 A, upper 

right, Fig. S1 A-D, right). Shp2 mutants also developed diarrhea and anal bleeding, which are 

symptoms of severe colitis, and were growth-retarded (Fig. S1 G). We observed a corresponding 

reduction in mRNA of Aquaporins 7 and 8 in the intestines of Shp2 mutants, as assessed by qRT-

PCR (Fig. S1 H). These genes are known to be downregulated in human and mouse colitis (24). 

The data thus show that the Shp2 mutation in the intestine results in goblet cell deficits and colitis. 

Ablation of Shp2 induces premature differentiation of paneth cells and activates Wnt/-

catenin signaling:  

Differentiated paneth cells that produce lysozyme and matrilysin (MMP7) appear only after birth 

(25) and were thus rare in intestines of control mice at P6 (Fig. 2 A, left). Shp2 mutants, however, 

exhibited a massive increase in paneth cells at this stage (Fig. 2 A, right, quantification in Fig. 2 

B), which indeed appear only in Shp2-deficient crypts (Fig. S2 A, yellow arrow points to Shp2-

deficient crypt with paneth cells, blue arrowhead points to a non-recombined crypt without paneth 

cells). The noted expansion of paneth cells potentially mimics an increase in canonical Wnt 
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signals. Wnt signaling has been implicated in paneth cell differentiation (8), and accordingly, 

administration of Wnt3a increases paneth cell numbers in intestinal organoid cultures (26). 

Increases of paneth cells were also noted after tamoxifen-induced ablation of Shp2 in intestinal 

organoids from villinCreERT2 mice, as assessed by IHC or qRT-PCR for lysozyme (Fig. 2 C, Fig. 

S2 B). This led us to examine whether the effects of the Shp2 mutation and the enhanced paneth 

cell differentiation are mediated by activation of canonical Wnt signaling. We performed genome-

wide expression analyses on mutant and control intestines using Illumina microarrays 

(GSE50785), and then used gene set enrichment analysis to compare these with data previously 

obtained on Wnt/-catenin-dependent genes in the intestine (27, 28). Shp2 mutant intestines 

exhibited a marked upregulation of Nol5a, Myc, and Cd44 and several other Wnt/-catenin-

dependent genes (Fig. 2 D, Fig. S2 C). Increases in the expression of Wnt3, the Wnt target gene 

Cd44, and genes encoding Lgr4 and the closely related Lgr5 were also noted in Shp2 mutant 

intestines, as confirmed by qRT-PCR (Fig. 2 E). Thus, Wnt/-catenin signaling is indeed 

enhanced after Shp2 ablation in the murine small intestine. 

Also upregulated in Shp2 mutants was the gene Lgr5, which is normally uniquely expressed in 

stem cells (1). We used the Lgr5-IRES-GFP-CreERT allele to identify Lgr5+ stem cells by IHC for 

GFP (29) and observed an increase in their numbers in Shp2 mutant mice (Fig. 2 F). This was 

confirmed by in situ hybridization for Olfm4, another marker of Lgr5+ stem cells (Fig. 2 G, cf. (30)). 

Next, we compared genes that are deregulated in Shp2 mutant intestines to those of Lgr5+ stem 

cells (31). Remarkably, many stem cell genes were increased in the small intestine of Shp2 

mutants (Fig. 2 H, Fig. S2 D). Further work using qRT-PCR demonstrated an upregulation of stem 

cell genes, including Ascl2, Adora1, Clca4, Aqp1 and Smoc2 in the mutants (Fig. 2 I, marked in 

bold in Fig. S2 D). Thus, ablation of Shp2 in the intestine leads not only to enhanced paneth cell 

differentiation, but also increases a presumptive Lgr5+/Olfm4+ stem cell population. 

Shp2 controls Erk1/2-MAPK signaling in the intestinal crypts: 

In many cell types, Shp2 activates Mek1, which in turn phosphorylates Erk1/2. Immunohistological 

analysis of control intestines demonstrated high nuclear phospho-Erk1/2 levels in goblet cells as 

well in cells located in the lowest part of the villi and in the upper parts of the crypts; phospho-

Erk1/2 levels were strongly reduced in the Shp2 mutant (Fig. 3 A, Insets), reinforcing the notion 

that Shp2 might control goblet and paneth cell differentiation through the regulation of 

Mek1/MAPK signaling. To pursue this, we took advantage of a transgenic mouse strain that 

expresses a gain-of-function variant of Mek1 (Mek1DD) upon removal of a translation stop 
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cassette through Cre-mediated recombination (Fig. S3 A) (32, 33). Mek1DD expression could be 

activated by villinCre in the Shp2 mutant background. In the intestine of Mek1DD; Shp2 double 

mutants at P6, nuclear p-Erk1/2 levels were strongly elevated (Fig. S3 B, right), but overall 

proliferation was not significantly changed, as assessed by Ki67 staining (Fig. S3 C, D). 

Remarkably, the Shp2-dependent reduction of goblet cells both in the small intestine and the 

colon was rescued in Mek1DD; Shp2 double mutants (Fig. 3 B, right, Fig. S3 E). The numbers of 

rescued goblet cells in the intestine were comparable to goblet cell numbers in control mice (Fig. 

S3 F). Further, paneth cells were strongly reduced in Mek1DD; Shp2 double mutants at P6 and 

P16, as shown by Lysozyme staining (Fig. 3 C, Fig. S3 G). Loss of paneth cells was previously 

observed in mice that express an oncogenic variant of K-Ras, and suggested to be caused by 

increased Hes1 expression (12). However, Hes1 expression was not significantly changed in 

Shp2 single and Mek1DD; Shp2 double mutants (Fig. S3 H). Thus, in Mek1DD; Shp2 double 

mutant mice goblet cells are rescued, and this appears to occur at the expense of paneth cells. 

This is reminiscent of the phenotype observed after overexpression of the Ets transcription factor 

Spdef; Spdef overexpression promoted goblet cell differentiation at the expense of paneth cells 

(22). In control mice, goblet and paneth cells produce the Ets transcription factor Spdef, as 

assessed by IHC (Fig. 3 B, marked by arrows on the left). In Shp2 mutants, Spdef production was 

observed in the few residual goblet cells (Fig. 3 B, located in villi) as well as in paneth cells (located 

in crypts, middle panel). In Mek1DD; Shp2 double mutants, the production of Spdef was limited 

to the rescued goblet cells in the villi (Fig. 3 B, right). Apparently, Mek1 activity in intestinal 

epithelial cells does not change the cell type-specific expression pattern of Spdef. Overall, we 

conclude that Mek1/MAPK signaling regulates the choice between goblet and paneth cell 

differentiation.  

The Shp2 mutation does not only affect goblet and paneth cell fates, but also increases the 

presumptive Lgr5+ stem cells (see above, Fig. 2 F). We therefore analyzed stem cells in Mek1DD; 

Shp2 double mutants, and observed downregulated expression of Lgr5, Olfm4 and Ascl2 by in 

situ hybridization and qRT-PCR (Fig. 3 D, Fig. S3 I). Thus, Shp2/MAPK signaling also controls 

the number of stem cells.  

Shp2/Mek1 signaling regulates the secretory cell fate switch by interfering with -

catenin/Tcf4 signaling: 

The transcription factor Tcf4 activates Wnt/-catenin targets genes and is critical for the 

maintenance and differentiation of intestinal epithelia (34, 35). Since mutation of the Tcf4 gene in 
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the adult small intestine induced a paneth to goblet cell transition (35), we analyzed Tcf4 

production in the small intestine by immunohistochemistry. Nuclear Tcf4 protein was observed 

throughout the entire crypt-villus axis, with the strongest levels in the crypts (Fig. S4 A). Goblet 

cells in controls also showed strong nuclear Tcf4 (Fig. S4, inset a). However, no difference in Tcf4 

production was observed between control and Shp2 mutants (Fig. S4 A). However, Tcf4 splice 

variants with different transcriptional capacities might be differentially produced (36) and regulate 

cell fate decisions in the intestinal crypts. To analyze this, we took advantage of organoid cultures 

of the small intestine, which finally consist mainly of crypt structures. Organoids with ablated Shp2 

or activated Mek1DD confirmed the inverse correlation of paneth cells and pErk activities, as 

assessed by immunofluorescence and Western blotting (Fig. 4 A, B). Two major Tcf4 protein 

isoforms were produced in control organoids but remarkably, Shp2 mutant organoids showed 

reduced amounts of the shorter isoform, which was rescued by the Mek1DD allele (Fig. 4 B, the 

shorter Tcf4 isoform is marked by an arrow). The longer isoform at 70kDa is Tcf4E, which harbors 

a binding site for the transcription factor carboxy-terminal binding protein (CtBP) and an extended 

C-terminal domain including a C-clamp, which is a further DNA binding domain (37). In contrast, 

the shorter Tcf4 band at 50kDa (arrow in Fig.4B) corresponds to the Tcf4M and S isoforms, which 

lack the binding sites for CtBP and carry no or an incomplete C-clamp (37). The Tcf4M and S 

isoforms can therefore bind to Wnt response elements on the DNA but lack the capacity of 

promoter activation, for instance of the Wnt target gene Axin2 (37). The different amounts of the 

Tcf4 isoforms by changed MAPK signaling is regulated on the translational level, since the 

mRNAs for the Tcf4 isoforms were not altered between control and mutant organoids (Fig. S4 B). 

Moreover, in human HT29 colon cancer cells, pharmacological inhibition of MEK1/2 by the small 

molecule U0126 also produced reduced amounts of the shorter TCF4M/S isoforms in 

concentration and time-dependent manners (Fig. 4 C, Fig. S4 C, D). Reduction of the TCF4M/S 

isoforms was rapid, starting already at 3h, and was significantly reduced at 6h of MEK1/2 inhibition 

(Fig. 4 D, S4 E), at time-points when the large TCF4 isoform was not significantly altered. 

Importantly, pharmacological inhibition of MEK1/2 by U0126 also rapidly increased the expression 

of the canonical Wnt target gene AXIN2, already at 3h (Fig. 4 E, left). However, upregulation of 

the paneth cell differentiation marker Lysozyme occurred only after 24h of MEK1/2 inhibition (Fig. 

4 E, right). shRNA-mediated knockdown of SHP2 in HT29 cells did not affect MEK1/2 activity (Fig. 

S4 F), which is in line with the fact that HT29 cells harbor an oncogenic B-RAF mutation (38) that 

activates MAPK signaling downstream of SHP2. Furthermore, shSHP2 interference did not alter 

the expression of the TCF4 isoforms (Fig. S4 F), indicating that the alterations of the TCF4M/S 

isoforms are regulated by MEK1/2 signaling and not via other SHP2-mediated events. Co-
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immunopreciptiation of TCF4 with -catenin from nuclear fractionations showed that the 

interaction of -catenin with TCF4E was persistent upon MEK1/2 inhibition (Fig. S4 G). To pursue 

further the mechanism of the MEK1/2-dependent reduction of TCF4M/S proteins, we inhibited 

proteasome protein degradation with MG132. Remarkably, this inhibition prevented the MEK1/2-

dependent reduction of the shorter TCF4M/S isoforms (Fig. 4 F, quantification in Fig. 4 G), 

indicating that MEK1/2 activity protects the shorter isoforms from proteasomal degradation. In 

conclusion, MEK1/2 inhibition appears to affect canonical Wnt signaling by rapidly changing the 

relative abundance of the TCF4 isoforms, i.e., suppressing the transcriptionally inactive/inhibitory 

isoforms, while leaving the activating form unchanged. These data thus suggest that 

Shp2/Mek1/MAPK signaling regulates the choice between goblet and paneth cell fate by 

regulating Wnt/-catenin signaling through interfering with the protein stability of particular Tcf4 

isoforms.  
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Discussion  

Goblet and paneth cells represent two secretory cell types in the intestinal epithelium. Here we 

show that in mouse intestinal development, the tyrosine phosphatase Shp2 promotes the 

generation of goblet cells at the expense of paneth cells. Conditional Shp2 ablation in the 

intestine, which decreases MAPK signaling, reduces the numbers of goblet cells and increases 

the numbers of paneth cells. In contrast, sustained activation of MAPK signaling by the Mek1DD 

allele has the converse effects. Paneth and goblet cells express overlapping sets of genes (22, 

39), and cells with initially intermediary phenotypes have indeed been described (35, 40). Paneth 

and goblet cells are thus closely related and originate from a common precursor (scheme in Fig. 

S5, left). The third secretory lineage, enteroendocrine cells, is generated independently of Shp2 

and MAPK activity, and is believed to diverge from secretory precursors at an earlier stage of 

development (Fig. S5, left) (41). Overall, our data thus show that the level of Shp2/MAPK signaling 

determines the choice between goblet and paneth cell fates. 

 

We also found that Shp2/MAPK attenuates canonical Wnt signaling, which may mediate the effect 

of Shp2/MAPK on the goblet/paneth cell fate changes: goblet cells differentiate, when MAPK and 

Wnt activity are high and low, respectively, whereas paneth cells differentiate, when MAPK and 

Wnt signals are low and high, respectively (Fig. S5, left). Our analysis of mutant intestinal organoid 

cultures and of HT29 colon cancer cells using pharmacological interference is supporting such a 

model and provides mechanistic insights: MAPK inhibition increases Wntcatenin signaling and 

promotes paneth cell characteristics, whereas high MAPK activity or inhibition of Wnt signaling 

favors goblet cell properties (Fig. S5, right). 

 

The Shp2 mutation also triggers colitis and reduced body weight, which are fully rescued by MAPK 

activation. Shp2/Mek1DD double mutant mice are viable and develop no diarrhea or anal 

bleeding. For function, Shp2 is recruited to several tyrosine kinase receptors and other cell 

surface receptors (13). Compound Egfrwa-2; Shp2+/- mutants exhibited intestinal defects, like 

desquamated epithelia and shortened villi (18), which are also observed in mild form in conditional 

Shp2 mutants. Furthermore, Egfr activity is known to control the maturation of goblet cells (42), 

whereas ErbB2, ErbB3 and ErbB4 receptors promote the recovery from chemically induced colitis 

(43, 44). Thus, Shp2 might act downstream of tyrosine kinase receptors like the Egfr in intestinal 

development and prevention of disease. Moreover, we show that MAPK acts downstream of Shp2 

in intestinal development, since activation of MAPK signaling fully rescued the Shp2 phenotypes, 
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i.e. the deficits in goblet/paneth cell fate determination and the colitis. Loss of paneth cells and an 

increase of goblet cell numbers were also observed in intestines after conditional overexpression 

of oncogenic K-rasG12D (12). In addition, K-rasG12D produced hyperplastic polyps and severely 

distorted crypt architecture, which we do not observe in the Mek1DD mutants. The loss of paneth 

cells was attributed to Ras-mediated expression of the transcription factor Hes1 (12). In contrast, 

we did not observe changes in Hes1 expression in Mek1DD or Shp2 mutants. In Ras mutant 

intestines, no effect on Wnt signaling has been reported (12). In contrast, oncogenic Ras acted 

synergistically with canonical Wnt signaling in APC mutant intestines (45). Apparently, oncogenic 

K-Ras controls larger sets of downstream signaling events than Shp2 and Mek1, which may 

explain the additional phenotypes.  

 

We observed that Shp2/MAPK signaling affected canonical Wnt activity in the intestinal 

epithelium: high Shp2/MAPK activity decreased Wnt/-catenin signals and promoted goblet cell 

differentiation, whereas Shp2 ablation increased Wnt/-catenin activity and promoted paneth cell 

differentiation (Fig. S5, right). Canonical Wnt signals downstream of MAPK thus appear to control 

the choice between goblet and paneth cell differentiation, as is also indicated by genetic analysis 

of Tcf4 (35). A common secretory precursor has recently been located at the +5 position in small 

intestines (3). Cells at the +5 position are believed to receive intermediary levels of Wnt/-catenin, 

and our data show that these cells also display intermediary MAPK activity. In contrast, highest 

canonical Wnt activity is observed at the base of the crypts (46), whereas MAPK signaling (as 

assessed by nuclear pErk1/2 distribution) is high in the upper part of the crypts. We therefore 

suggest that the balance between Wnt/-catenin and Shp2/MAPK activities controls the choice 

between goblet/paneth cell differentiation in these precursors.  

 

To define mechanisms by which Shp2/MAPK exert a negative effect on Wnt/-catenin activity, we 

analyzed intestinal organoids genetically, and colon cancer cells using pharmacological inhibition. 

We observed that Shp2 and MAPK signaling interfere with the production of Tcf4 isoforms. Tcf4 

transcription factors are critical for the differentiation and maintenance of intestinal epithelia (34, 

35). Different variants of Tcf4 proteins exist that are generated from differentially spliced mRNAs, 

and exhibit different transcriptional activation capacities (36, 37). The shorter isoform corresponds 

to Tcf4M/S, which lack the CtBP-binding and transactivation motifs (37). In contrast, the longer 

Tcf4E isoform exhibits the unique capacity of promoter recognition and activation, based on the 

extended C-terminal domain. Tcf4E and Tcf4M/S proteins are produced in intestinal organoids 

and colon cancer cells, and reduction of MAPK markedly decreased the levels of the short 
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Tcf4M/S isoforms, i.e. reduced the production of the Tcf4 isoforms with the lower/inhibitory 

potential of Wnt target gene activation. Inhibition of proteasomes prevented the degradation of 

the TCF4M/S isoform, indicating that active MAPK signaling stabilizes this TCF4 isoform, 

presumably by affecting an E3 ligase that targets TCFM/S for degradation. Thus, MAPK signaling 

can influence Wnt target gene activation by regulating the protein stability of isoforms of TCF4 

transcription factors. It has been shown that changes in the relative abundance of Tcf4 variants 

can indeed fine-tune target gene expression in a cell context-dependent manner (47).  Since the 

Tcf4M/S proteins can bind -catenin, we assume that by reducing these isoforms by MAPK 

inhibition, more -catenin becomes accessible for canonical Wnt target gene activation through 

the large Tcf4E transcription factor. Thus, we provide here evidence for a unique mechanistic link 

between MAPK and canonical Wnt signaling in intestinal secretory progenitors. 

 

Ablation of Shp2 in the intestine triggers both an increase in paneth cells and an increase in the 

number of epithelial stem cells, as assessed by gene enrichment profiling and histological 

analyses. This connection is interesting because the control of the small intestinal stem cell niches 

has generally been assigned to paneth cells, which provide Wnt signals known to be essential for 

the maintenance of stem cells (4). Paneth cells do not seem to be solely responsible for this, 

however: sustained activation of MAPK resulted in the complete loss of paneth cells, decreasing 

but not completely eliminating the presumptive Lgr5+ stem cells. Thus, the absence of paneth 

cells did not completely disrupt the stem cell niches. This confirms recent work that noted a 

decrease but not complete loss of Lgr5+ stem cells after genetic ablation of paneth cells (5, 6). 

By contrast, in organoid cultures the interaction between the two cell types is crucial: Lgr5+ stem 

cells are only able to generate organoids in the presence of paneth cells (4, 26). This difference 

suggests that in vivo, additional cell types such as stromal components might produce factors that 

allow stem cell maintenance in the absence of paneth cells (5, 6). Ablation of Shp2 could increase 

the numbers of Lgr5+ cells indirectly, i.e. by increasing the numbers of paneth cells that in turn 

produce factors that stimulate stem cells. This view is supported by experiments that stimulation 

of Wnt signaling produced supernumerary paneth and Lgr5+ cells (26). Alternatively, increased 

Wnt signaling might allow the maintenance of supernumerary Lgr5+ stem cells or impair their 

differentiation. Further work is required to identify the factors that paneth cells and other cell 

populations provide to stem cells in the small intestine.  
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Methods 

Breeding conditions and genotyping of the mouse strains, Shp2lox, villinCre, villinCreERT2 and 

Lgr5-EGFP-IRES-creERT2, have been described (16, 20, 29). All animal experiments were 

conducted according to regulations established by the Max Delbrück Center together with the 

Landesamt für Gesundheit und Soziales (LAGeSo) and the European Union. Mouse intestines 

were fixed in 4% (wt/vol) formaldehyde and immunohistochemistry, immunofluorescence and in 

situ hybridization were performed on 5-μm paraffin sections. Primary antibodies were anti-

pErk1/2, pStat3 (Cell Signaling), Shp2, Mmp7 (Santa Cruz), Lysozyme (Dako), Gob5, ChroA 

and GFP (Abcam), Ki67 (Neolabs), Cre (Novagen) and SPDEF (kindly provided by JA Whitsett, 

Cincinnati Children's Hospital Medical Center, USA). For immunofluorescence, cyanine-labeled 

secondary antibodies (Jackson Immunoresearch) and for immunohistochemistry, HRP-

conjugated polymer and DAB reagent (DAKO) were used. In situ hybridization was performed 

using digoxygenin-labeled (DIG) RNA probes (Roche, Indianapolis, IN). Western blotting was 

performed as described (16) on organoid and cell culture lysates, and blots were probed with 

anti-Shp2 (Santa Cruz), pErk1/2 (Sigma), Lysozyme (Dako), -catenin (BDbioscience), Erk1/2 

and TCF4 (Cell Signaling) antibodies. 

Nuclei from HT29 cells were enriched as described before (48) followed by brief sonification, and 

co-immunoprecipitions were performed at 4°C with anti--catenin antibody (BDbioscience) and 

Protein-G-sepharose (GEhealthcare). Beads were washed four times with PBS/NP40 (0,1%), and 

immunoprecipitated proteins were analyzed by Western blotting. RNA was isolated from pieces 

of proximal small intestine, which was processed for gene profiling (Illumina) according to the 

manufacturer’s protocol (Illumina total prep, Ambion, Life Technologies). Gene set enrichment 

analysis was performed using GESA software from the Broad Institute (27). 

Cells were cultured in DMEM supplemented with 10% FCS (Gibco) and treated with 10µM U0126 

(Calbiochem) for 3h-24h or as indicated. Proteasomes were inhibited for 6h by 25µM of MG132 

(Sigma) with or without 10µM U0126. Organoid culture (49) was performed with supplement from 

HEK293 cells, which overexpressed recombinant R-spondin1. The R-spondin1 plasmid was a gift 

of Christof Niehrs, Mainz. Tamoxifen-inducible Shp2 mutant organoids were split two days before 

treatment with 400nM 4-hydroxitamoxifen (4-OHT) (Sigma) for two consecutive days and were 

cultured for further 4 days.  
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Figure legends 

Fig. 1: (A, B) Reduction of goblet cells in the small intestine (A) and colon (B) of villinCre-induced 

Shp2 loss-of-function mutant mice at P9, as seen on paraffin sections stained with alcian blue. 

(C, D) Reduction of goblet cell-specific mRNA expression in the small intestine (C) and the colon 

(D) in Shp2 mutant mice at P9, assessed by qRT-PCR (n=5, significance calculated with T-Test; 

*:p<0,05, **:p<0,01). Counterstaining; nuclear fast red. Scale bars, 100µm. 

 

Fig. 2: (A) Increase of paneth cells in Shp2 mutants at P6, in comparison to controls, as seen on 

paraffin sections stained by immunofluorescence for Shp2 and Mmp7. (B) Quantification of 

lysozyme-postive paneth cells from the experiment in (S2 A) (n=4). (C) Increase of paneth cells 

in organoid cultures of tamoxifen-inducible Shp2 mutants and controls, stained for Lysozyme by 

immunofluorescence; counterstain was with DAPI. (D) Gene set enrichment analysis (GSEA): 

plot of enrichment score of control versus Shp2 mutant intestinal tissues at P6 for the Wnt/-

catenin gene signature. (E) qRT-PCR for mRNAs of Wnt signaling components in the small 

intestine of Shp2 mutant and control mice at P6 (n=5). (F) Identification Lgr5+ cells by 

immunohistochemistry for GFP in Shp2 mutants and controls crossed with Lgr5-IRES-GFP-

CreERT. (G) In situ hybridization for Olfm4 in Shp2 mutants and controls; red asterisks mark 

crypts. (H) GSEA: plot of enrichment score of control versus Shp2 mutant intestinal tissues at P6 

for the Lgr5 stem cell signature. (I) Confirmation of stem cell-associated genes by qRT-PCR at 

P6 (n=5). Scale bars, 100µm. Significance calculated with T-Test; *:p<0,05, **:p<0,01, 

***:p<0,001. 

 

Fig. 3: (A) Immunohistochemistry of phospho-Erk1/2 (for activated Mek1/2 signaling) at P6 on 

sections of control and Shp2 mutant small intestines. (Insets) Magnifications. (B and C) Rescue 

of goblet cell and paneth cell switches in Shp2 mutants by the MekDD1 allele, as shown by 

staining for goblet cells with alcian blue and Spdef (B) and for paneth cells with Lysozyme (C). 

Arrows in B point to Spdef-stained nuclei. Spdef signals are in part overlapping with strong alcian 

blue staining in Mek1DD mutants. (D) Rescue of Olfm4 mRNA expression in Shp2 mutants by 

MekDD1, as shown by in situ hybridization. (Scale bars, 100µm.) 
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Fig. 4: (A) Paneth cell switch in organoid cultures of tamoxifen-inducible Shp2 mutants, Mek1DD; 

Shp2 double mutants and controls, stained for Lysozyme; counterstain was with DAPI. (B) MAPK-

dependent regulation of Tcf4M/S (marked by arrow) production in organoid cultures of tamoxifen-

induced Shp2 and Mek1DD mutants, as analyzed by Western blotting for Shp2, Lysozyme, Tcf4, 

and pErk. (C) MEK1/2 inhibition in HT29 cells with U0126 for 3h and 12h particularly decreased 

the shorter TCF4 (TCF4M/S) splice variant (arrow). (D) Quantification of the time-dependent 

decrease of the TCF4M/S isoforms  in U0126 treated (green bars) and control (grey bars) HT29 

cells. (E) Upregulation of the Wnt target gene AXIN2 (left) and of Lysozyme (right) in HT29 cells 

through MEK1/2 inhibition (green bars) in time-dependent manner (n=3). (F) Prevention of 

degradation of the TCF4M/S isoforms in U0126-treated HT29 cells by inhibition of proteasomes 

with MG132 for 6h. (G) Quantification of the alterations in TCF4M/S proteins following MG132 

treatment (n=3).Significance was calculated with T-Test; *:p<0,05, **:p<0,01, ***:p<0,001. 
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