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Abstract 

Misfolded proteins of the secretory pathway are extracted from the endoplasmic reticulum 

(ER), polyubiquitylated by a protein complex termed the Hmg-CoA reductase degradation 

ligase (HRD-ligase) and degraded by cytosolic 26S proteasomes. The movement of these 

proteins through the lipid bilayer is assumed to occur via a protein conducting channel of 

unknown nature. We show that the integral membrane protein Der1 oligomerises which relies 

on its interaction with the scaffolding protein Usa1. Mutations in the transmembrane domains 

of Der1 block the passage of soluble proteins across the ER-membrane. As determined by 

site-specific photocrosslinking the ER-luminal exposed parts of Der1 are in spatial proximity 

to the substrate receptor Hrd3 whereas the membrane-embedded domains reside adjacent 

to the ubiquitin ligase Hrd1. Intriguingly, both regions also form crosslinks to client proteins. 

In summary our data imply that Der1 initiates the export of aberrant polypeptides from the 

ER-lumen by threading such molecules into the ER-membrane and routing them to Hrd1 for 

ubiquitylation. 

 

Introduction 

Folding of newly synthesised proteins in the secretory pathway is monitored by a quality 

control system that routes terminally aberrant polypeptides from the endoplasmic reticulum 

(ER) into the cytosol where they are polyubiquitylated and degraded by proteasomes. This 

process, termed ER-associated protein degradation (ERAD) 1, 2, is pivotal for the 

maintenance of cellular homeostasis and its mechanistic exploration will contribute to the 

treatment of various neurodegenerative disorders 3-5 and folding diseases like cystic fibrosis 
6, 7. Key components of ERAD are large multi-subunit ubiquitin ligases, which are embedded 

in the ER-membrane 8. In yeast the HRD-ligase promotes the degradation of soluble ER-

luminal as well as membrane-bound substrates. The core of this complex encompasses the 
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RING-finger type ubiquitin ligase Hrd1, which is integrated in the ER-membrane and exposes 

its catalytically active centre into the cytoplasm 9, 10. Hrd1 teams up with the substrate 

receptors Hrd3 and Yos9, which expose large soluble domains into the ER-lumen, and Usa1, 

which facilitates the assembly of the ligase complex 11-15. Intriguingly, another subunit Der1, 

an integral membrane protein with several transmembrane segments that is recruited to Hrd1 

via Usa1, is only required for the turnover of soluble but dispensable for the degradation of 

membrane-bound substrates 16-19. Because Der1 weakly binds client proteins it has been 

speculated that it either resembles a receptor for soluble targets or partakes in the 

dislocation of such polypeptides from the ER 12, 20. How aberrant proteins are exported from 

the ER in the course of ERAD is unknown. Remarkably, fully glycosylated and even partially 

folded ERAD substrates have been shown to traverse the ER-membrane prior to their 

degradation 21. This transport relies on the activity of the ubiquitin ligases and is generally 

believed to involve a proteinaceous channel 22-24. Several candidates for the constitution of 

such a dislocation apparatus have been discussed 25, 26. Here we report that the 

transmembrane domains of Der1 constitute a functional entity that is important for ERAD. 

Furthermore, soluble and membrane-embedded parts of Der1 are in spatial proximity to 

other components of the HRD-ligase and to dislocating substrate molecules. Our data imply 

that Der1 establishes a functional link between the selection of aberrant proteins in the ER-

lumen and their ubiquitylation in the cytoplasm by promoting the insertion of such 

polypeptides into the ER-membrane.  

 

Results 

Usa1-dependent integration of Der1 into the HRD-ligase promotes oligomerisation 

To assess possible functions of Der1 we were first interested on how this protein is 

integrated into the HRD-ligase protein complex. Usa1 links Der1 to Hrd1, which renders the 

ligase competent for the proteolysis of misfolded luminal ER proteins 14, 27. Sequence 

alignment of Der1 and its mammalian homologues, the Derlins, revealed an arrangement of 

conserved residues in the carboxyterminal region (GH179/180 and YY183/184; 

Supplementary Fig. 1a). The mutation of these residues specifically reduced the association 

with Usa1 as determined by co-immunoprecipitation experiments with Usa1-Myc (Fig. 1a and 

Supplementary table 1). Besides its linker function Usa1 also conveys the stability of Der1 14. 

Indeed, Der1 was degraded in a Hrd1- and Doa10-dependent manner in cells lacking Usa1 

(Supplementary Fig. 1b). Accordingly, the Usa1 binding-deficient Der1 mutants were 

unstable (Supplementary Fig. 1c). 

Der1 and other components of the HRD-ligase have been recently found to form oligomers 
14, 28. To determine, which factors contribute to this process we monitored the interaction of 
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Der1 equipped with a Myc-tag (Der1-Myc) and untagged Der1 in cells expressing both 

proteins and lacking individual components of the HRD-ligase. By precipitating Der1-Myc 

under native conditions we found that only the deletion of usa1 abrogated Der1-

oligomerisation (Fig. 1b). Mutations in the Usa1 interaction motif also caused the dissociation 

of Der1 oligomers (Fig. 1c). Importantly, Der1-Myc as well as co-expressed Der1 was stable 

in usa1-deleted cells, and thus a loss of oligomerisation cannot be explained by Der1 

instability (Supplementary Fig. 1d). A carboxyterminally HA-tagged version of Der1, which is 

instable in usa1-deleted cells, was also associated with co-expressed Der1 in a Usa1-

dependent manner (Supplementary Fig. 1e). However, overexpression of Der1, for example 

by inducing a cellular stress response pathway termed the unfolded protein response (UPR) 

by Dithiothreitol-treatment 29, 30, partially bypassed the requirement of Usa1 for 

oligomerisation (Fig. 1d). Therefore, Der1, similar to Hrd1 20, exhibits an intrinsic propensity 

to form oligomers. Under unstressed growth conditions, however, efficient oligomerisation of 

both proteins relies on their assembly by Usa1. 

 

Mutation of conserved residues in the transmembrane domains of Der1 block the 

dislocation of CPY* 

Der1 is predominantly involved in the turnover of misfolded ER-luminal proteins but it is 

unknown, how it contributes to this process 16, 17. Because Der1 binds client proteins even in 

the absence of the substrate receptor Hrd3 it was proposed that it constitutes a substrate 

recruitment factor of the HRD-ligase 12, 20, 31. However, the deletion of der1 already 

phenocopied the defect in the turnover of CPY*, a well established ER-luminal ERAD 

substrate, observed in hrd3- or hrd1-deleted cells and the combined deletion of der1 and 

hrd3 did not enhance this effect (Fig. 2a). In der1- and yos9-deleted cells we obtained a 

similar result (Fig. 2b). Moreover, the absence of Der1 could not be compensated by the 

simultaneous overexpression of Hrd1 and Hrd3 (Supplementary Fig. 2a). 

Immunoprecipitation experiments revealed that the amount of CPY* associated with the 

HRD-ligase was strongly reduced in absence of Hrd3, whereas it remained largely 

unchanged in der1-deleted cells (Fig. 2c, lane 11 and lane 10). Overall, these observations 

suggest a function of Der1 in line with rather than parallel to Hrd3/Yos9. 

On the basis of sequence similarity to rhomboid proteases Greenblatt et al proposed six 

transmembrane segments for the mammalian homologue Derlin-1 32. By contrast predictions 

based on hydrophobicity analysis as well as detailed biochemical studies support a topology 

of Der1 that comprises only four transmembrane domains 16. Nonetheless, the position of the 

transmembrane domains one and two is essentially the same in both models. We asked 

whether these segments are solely required for proper integration of Der1 into the HRD 
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ligase or whether they constitute a distinct functional entity for ERAD. Sequence alignment of 

yeast Der1 and its homologues from different organisms revealed conserved hydrophilic 

amino acids particularly in the first and second transmembrane domains (Supplementary Fig. 

1a). We changed some of these residues to alanine or leucine and monitored the effects on 

ERAD (Supplementary table 1). Mutations in the first transmembrane segment (R17L and 

C23L; Der1RC) moderately affected the turnover of the prevalent ERAD substrate CPY* (Fig. 

2d). A stronger defect was observed for the exchange of a conserved asparagine residue 

(N73L; Der1N) in the second transmembrane domain. The combination of R17L with N73L 

(Der1RN) caused a severe delay in CPY*-degradation. Notably, these mutations also stalled 

the turnover of PrA*, another well established soluble luminal ERAD substrate, whereas the 

degradation of 6xMyc-Hmg2, which relies on the HRD-ligase but does not require Der1 33, 

proceeded at similar rates in wild-type and Der1 mutant cells (Supplementary Fig. 2b). 

Mutations in the first luminal loop or in other regions of Der1 did not derogate ERAD 

(Supplementary Table 1). Der1N, Der1RN and Der1RC are stably expressed at levels 

comparable to the wild-type protein (Supplementary Fig. 2c). Moreover, as determined by 

immunoprecipitation the ability to form oligomers and the association with components of the 

HRD-ligase were not affected (Supplementary Fig. 2d and 2e).  

In cells deleted for der1 or expressing Der1RN we were unable to detect significant amounts 

of ubiquitylated CPY* (CPY*-Myc-Ub; Fig. 2e, lanes 10, 12). Because protein ubiquitylation is 

exclusively catalysed in the cytoplasm, the export of substrates from the ER appeared to be 

disturbed. Indeed, we found that most of CPY* was protected from Proteinase K treatment in 

lysates of these cells indicative for a localisation within a membrane bound compartment 

(Fig. 2f). By contrast, Der1RC cells contained low amounts of ubiquitylated CPY* and 

displayed a partial sensitivity of CPY* to Proteinase K corresponding to the milder 

degradation defect in this mutant (Fig. 2e, lane 11; Fig. 2f).  

 

Spatial proximity of Der1 to components of the HRD-ligase 

To get further insights in the function of the Der1 transmembrane domains we employed an 

in vivo site-specific photocrosslinking approach 34, 35. Der1-Myc was labelled in living cells 

with the photoreactive amino acid analogue p-Benzoylphenylalanine (pBpa) by 

overexpressing plasmid-encoded constructs that harbour a single amber stop codon at 

defined positions. The expression of a suppressor tRNA charged with pBpa allowed the 

incorporation of this crosslinker at the specified locations. Upon irradiation of cells with ultra 

violet (UV) light pBpa was activated and crosslinked to neighbouring proteins. Der1-Myc was 

then precipitated with anti-Myc antibodies from cell lysates and the samples were analysed 

by immunoblotting. We focussed our studies on positions in the transmembrane domains as 
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well as the first luminal loop of Der1 because these parts appeared to be most conserved. 

Notably, the overexpression of Der1 does not significantly interfere with the degradation of 

luminal substrates (Supplementary Fig. 3c) 14, 20. Furthermore, we conducted most of these 

experiments in cells expressing a catalytically inactive variant of the ERAD-specific ubiquitin 

conjugating enzyme Ubc7 (Ubc7C/S) to abrogate ERAD and thereby adjust the cellular 

levels of substrate molecules.  

We found prominent crosslinking products with Hrd1 at several positions in the 

aminoterminal part of the first and less intense crosslinks at few positions in the second 

transmembrane region of Der1 (Fig. 3; positions V25, S27, L29, S31, R33 and V35; F66, 

W68, I72 and F75). In cells lacking the Der1 adaptor Usa1 we were unable to detect such 

crosslinks demonstrating the specificity of the reaction (Fig. 4a). Crosslinks to Usa1 were 

almost exclusively observed for positions in the region around amino acids 146 to 152, which 

is consistent with the notion that the downstream part of Der1 is required for the binding to 

Usa1 (Fig. 3; positions I146, V148, P150 and I152). Surprisingly, we also detected major 

crosslinks to the putative substrate receptor Hrd3 predominantly for residues in the first ER-

luminal loop of Der1 (Fig. 3; positions G38, L46, K50 and Q52) whereas reactions to the 

Hrd3-associated lectin Yos9 were not found (Supplementary Fig. 3a). Again, the crosslinking 

reactions depended on the recruitment of Der1 to the HRD-ligase via Usa1 (Fig. 4b). A 

functional variant of Hrd3 that is deleted for the transmembrane region and only comprises 

the luminal domain (Hrd3 1-769) 12 also formed crosslinks with the pBpa-labelled Der1 

variants demonstrating a close spatial proximity between the luminal parts of both proteins 

(Fig. 4c). Some of the Der1-Hrd3 crosslinks involved residues that were calculated to map to 

the integral membrane domains of Der1 (Fig. 3; positions R33 and D62). Although we cannot 

formally rule out that the position of the transmembrane segments slightly differs from their 

predicted location, this indicated that the Hrd3 luminal domain is capable to immerge into the 

membrane-embedded part of Der1. By co-expressing pBpa-labelled Der1-Myc and 

unlabelled Der1-HA we detected crosslinking products of these proteins primarily for 

positions in the transmembrane regions (Fig. 4d). This finding confirms oligomer-formation of 

Der1 as suggested by the immunoprecipitation experiments and implies a tight association of 

the membrane-embedded segments within this assembly.  

Strikingly, pBpa-labelled Der1 could also be crosslinked to the ERAD substrate CPY*-HA. 

The most prominent crosslinks involved the luminal loop one and the luminally orientated 

parts of the Der1 transmembrane segments one, two and four (Fig. 3 and Supplementary 

Fig. 3b, e.g. positions R33, G38, K50, I60, D62 and I146). Position G38, which maps to the 

first ER-luminal loop of Der1, was of special interest because this residue appeared to be 

localised in close proximity to substrate as well as to the substrate receptor Hrd3. Unlabelled 

Der1-Myc did not form crosslinks with CPY*-HA or components of the HRD-ligase (Fig. 3; 
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outmost left lanes). Moreover, no crosslinks were detected when the UV-treatment was 

omitted. The modification of Der1 with pBpa did not affect the stability of the protein and had 

no significant effect on the activity of Der1 (Supplementary Fig. 3c). Furthermore, pBpa-

labelled Der1 variants were properly assembled into the HRD ligase as determined by the 

immunoprecipitation of selected constructs (Supplementary Fig. 3d). These results identified 

Der1 as a central factor in the HRD-ligase protein complex and implied that ER-luminal as 

well as membrane-embedded regions of Der1 reside in close contact to a soluble 

degradation substrate.  

 

Der1 directly binds substrate molecules 

Previous work indicated that Der1 exhibits a weak but specific substrate binding activity 12. 

We therefore wanted to determine the impact of the substrate receptor Hrd3 on the Der1-

CPY* crosslinks. To level out cellular protein amounts of CPY*-HA we conducted these 

experiments in Ubc7C/S cells (see above). The amount of CPY* that crosslinked to specific 

positions in the luminal loop of Der1 was substantially increased in the hrd3-deleted strain, 

which correlates to previous studies 31 (Fig. 5a). Likewise, the release of Der1 from the HRD-

ligase in cells lacking Usa1 mildly affected substrate crosslinking at positions in the luminal 

loop (Supplementary Fig. 4a). Notably, due to the overexpression of Der1 in the crosslinking 

setup the oligomeric state of the protein is still intact despite the deletion of usa1 

(Supplementary Fig. 4b, compare lanes 5 and 6). Consistently, substrate binding to Der1-

Myc or Der1-HA neither depended on Usa1 nor on Hrd3 as determined by 

immunoprecipitation in Ubc7C/S cells (Fig. 5b, compare lanes 6, 7 and 8; Supplementary 

Fig. 4c, compare lanes 5 and 6). To substantiate the specificity of the Der1-CPY* crosslinks 

we compared wild-type and ubiquitylation-deficient Ubc7C/S cells in the crosslinking 

experiments. The overall crosslinking pattern to Hrd1, Usa1 or Hrd3, which form a stable 

complex with Der1, was not affected by the activity of the ligase (Fig. 5c, Supplementary Fig. 

4d and 4e). However, the amount of crosslinking products was increased in Ubc7C/S cells 

possibly due to up-regulation of the HRD-ligase components by the UPR 30 (Supplementary 

Fig. 4f). In wild-type cells the amount of crosslinked CPY*-HA was clearly reduced albeit the 

relative intensity was almost identical for selected Der1 positions. This observation matched 

the idea that in the course of substrate processing no prevalent degradation intermediate of 

CPY*-HA accumulated at Der1. Intriguingly, this pattern was changed in the Ubc7C/S cells 

indicating that substrate molecules arrested in a particular constitution at the HRD-ligase 

(Fig. 5c). We also observed crosslinks of the ERAD substrate PrA*-HA to defined positions of 

Der1. The pattern of these crosslinks correlated with those observed for CPY*-HA 

suggesting that both substrates arrested in the same fashion at Der1 (Fig. 5d).  
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Importantly, pBpa-Der1-Myc could not be crosslinked to properly folded CPY-HA (Fig. 5e) or 

stable ER resident proteins like Kar2, an Hsp70-type ER-luminal chaperone 36, or Sec61, a 

membrane-bound component of the protein import apparatus 37 (Supplementary Fig. 4g) 

demonstrating that only proteins that are targeted for degradation by the HRD-ligase come 

into spatial proximity to Der1.  

 

Mutations in the Der1 transmembrane domains affect the crosslinking to HRD-ligase 

components and CPY*-3xHA 

In the following we employed the ERAD-deficient Der1RN mutant in the crosslinking 

experiments. Although this mutant protein appeared to be properly integrated into the HRD-

ligase as determined by immunoprecipitation, the amount of most crosslinking products with 

Hrd1, Usa1 and Hrd3 was significantly reduced indicating moderate structural changes in 

Der1 (Fig. 6a,b and Supplementary Fig. 5a). By contrast, the crosslinking products with 

CPY*-HA were increased predominantly at positions in the luminal loop of Der1 (Fig. 6a and 

6b, right panel, compare lanes 5 and 7). Noteworthy, the cellular level of this substrate 

remained unchanged (Supplementary Fig. 5b). Moreover, the individual pBpa-labelled Der1 

variants precipitated equal amounts of CPY*-HA, indicating that their ability to bind substrate 

molecules was not affected (Supplementary Fig. 5b). This strongly implied that ERAD 

substrates were unable to enter a dislocation complex in Der1RN cells, which in turn caused 

their accumulation at the luminal-exposed parts. Importantly, the crosslinking pattern of Der1 

and Der1RN to CPY*-HA was almost identical upon the release of these proteins from the 

HRD-ligase in cells deleted for usa1 (Fig. 6c, compare lanes 5 and 7 with Fig. 6a, lanes 5 

and 7). Thus, the accumulation of a particular degradation intermediate of CPY*-HA 

depended on the correct integration of Der1 into the HRD-ligase.  

 

Discussion 

Prior to their degradation misfolded proteins of the secretory pathway are routed from the ER 

into the cytoplasm. Intriguingly, these proteins are often modified by complex glycans, 

contain disulfide bridges and may be partially folded. This poses special requirements for the 

movement of such polypeptides through the ER-membrane. Previous work indicated that 

mammalian Derlin-1, a homologue of Der1, is involved in this process 38, 39. When 

overexpressed in mammalian cells, Derlin-1 and also the closely related Derlin-2 and -3 

proteins were shown to form oligomers, which are associated with ERAD ligases 40-42. 

Moreover, a protein complex containing Derlin-1 bound to client proteins before and after 

their extraction from the ER 38. Concordantly, the release of a model substrate from 

microsomes in a reconstituted system was efficiently inhibited by the addition of Derlin-1-
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specific antibodies 43. Although similar in size and topology Der1 and the Derlin proteins 

exhibit functional differences. The Derlins share certain amino acid motifs with inactive 

rhomboid proteases and contain a so-called SHP-box motif in their cytoplasmic 

carboxyterminal domain for direct binding to the AAA-ATPase p97, which are less conserved 

or not present in Der1 32. Moreover, the mammalian Derlin proteins are involved in the 

turnover of soluble and membrane-bound proteins, while Der1 is almost exclusively required 

for the degradation of soluble, ER-luminal substrates 38, 44, 45.  

Our data now provide strong evidence that yeast Der1 directly partakes in the extraction of 

aberrant proteins from the ER-lumen. First, upon Usa1-dependent assembly into the HRD-

ligase Der1 forms oligomers in the ER-membrane, which may be a prerequisite to enable the 

transit of substrate-proteins across a lipid layer. Second, the exchange of conserved polar 

residues in the transmembrane domains of Der1 abolishes export of polypeptides from the 

ER without affecting the overall topology of the HRD-ligase. Third, client proteins form 

crosslinks to ER-luminal as well as membrane-embedded parts of Der1 indicating that they 

are in close proximity to Der1 during dislocation from the ER. We are aware that the in vivo 

crosslinking approach allows the unspecific incorporation of pBpa into proteins that are 

naturally terminated by an amber stop-codon, which causes the production of abnormal 

species with carboxyterminal extensions. Still, we did not observe physiological alterations in 

pBpa-labelled cells and were unable to detect crosslinking products to unlabelled Der1-Myc. 

Fourth, the efficiency of pBpa-Der1 crosslinking to substrate molecules depends on the 

activity of the ligase and the assembly of Der1 into the ligase complex. And fifth, Der1 is 

located in the immediate vicinity of the substrate receptor Hrd3 as well as the ubiquitin ligase 

Hrd1 and is therefore at a prominent position to functionally link substrate selection in the 

ER-lumen with the ubiquitylating activity at the cytoplasmic face of the ER. 

Based on these observations we propose the following model for Der1 activity (Fig. 7). 

Malfolded proteins engage Hrd3 and Yos9 where they are selected for degradation. Those 

receptors then pass substrates to Der1, which acts downstream. Der1 contains regions in the 

ER-lumen that are in close proximity to Hrd3 and weakly bind aberrant polypeptides. This 

activity does not bypass the requirement for Hrd3 and Yos9 in ERAD. Rather, the access to 

Der1 appears to be restricted to client molecules that were pre-selected by Hrd3/Yos9. In the 

absence of Hrd3 Der1 probably binds polypeptides with low affinity, which does not suffice to 

trigger their degradation. Interestingly, mutations in the ER-luminal part of mammalian Derlin-

1 abolished its function in ERAD 32. We did not observe a similar effect for the corresponding 

positions in Der1 but we did not systematically investigate this issue. Next, Der1 initiates the 

insertion of substrate molecules into the ER-membrane. The assembly of multiple Der1 

subunits may generate a flexible funnel that supports immersion of even folded client 

proteins. Importantly, this step guides the substrates in spatial proximity to Hrd1 and 
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arranges them for ubiquitylation. The subsequent movement through the membrane may 

involve a proteinacious pore that contains Der1 and other proteins. Recently, the ubiquitin 

ligase Hrd1 has been implicated in the formation of such a conduit 14, 20. Hrd1 contains six 

transmembrane segments and also forms oligomers. While a mild 5-10 fold overexpression 

of Hrd1 failed to compensate for a loss of Der1 (Supplementary Figure 2a), strong 

overexpression of this protein partially substituted the function of Der1, Usa1, Hrd3 or Yos9 
20. Moreover, arrested dislocation intermediates could be crosslinked to Hrd1, which 

depended on the catalytic activity of the HRD-ligase 20. By contrast, crosslinks of substrates 

with Der1 were increased in a ubiquitylation deficient mutant. Since ubiquitylation was found 

to be mandatory for protein extraction from the ER this modification most likely prevents the 

dissociation of client proteins from Hrd1 and drives their export via the ubiquitin-dependent 

AAA-ATPase Cdc48/p97 46. Still, mutations in the Hrd1 transmembrane segments, which 

blocked the degradation of membrane-bound targets, had no impact on the turnover of 

soluble client proteins 47. Hence, further studies are needed to elucidate the detailed 

composition of the conduit that channels soluble ERAD substrates through the ER-

membrane.  
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Figure legends 

Figure 1 

The carboxyterminus of Der1 is required for oligomerisation and integration into the HRD-

ligase.  

a, Total cell extracts from Usa1-Myc Δder1 Δubc7 cells expressing various plasmid-encoded 

Der1 point mutants were solubilised with Digitonin and subjected to immunoprecipitation with 

antibodies against the Myc-epitope. The precipitates were analysed by SDS-PAGE and 

immunoblotting using specific antibodies. b, Der1-Myc was precipitated from cell lysates of 

yeast strains deleted for the given genes under non-denaturing conditions and the samples 

were analysed as described above. c, Yeast cells expressing Der1-Myc were transformed 

with plasmids encoding the given Der1 mutants. Der1-Myc was precipitated and the samples 

analysed as above. The asterisk denotes unspecific reactivity with the heavy chains of the 

antibody used in the immunoprecipitation. d, Yeast cells expressing Der1 and Der1-Myc 

were treated with 2 mM Dithiothreitol (DTT) for 2 hours to induce the unfolded protein 

response. Der1-Myc was then precipitated from cell lysates prepared under non-denaturing 

conditions and the samples were analysed as above. The asterisk denotes unspecific 

reactivity of the antibody as in c. 

 

Figure 2 

Mutations in the transmembrane domains of Der1 abolish the dislocation of luminal ERAD 

substrates.  

a,b, Pulse chase experiment to monitor CPY* turnover in the indicated yeast strains. Error 

bars represent standard deviation of three independent experiments. c, Microsomes were 

prepared from cells of the indicated genotype and solubilised with NP40. HA-tagged Hrd1 

was immunoprecipitated with anti-HA antibodies and the bound proteins were analysed by 

SDS-PAGE and immunoblotting. d, Graphical presentation of three independent experiments 

monitoring CPY* degradation in the indicated Der1 mutant strains by pulse chase analysis as 

in a. e, CPY*-Myc was immunoprecipitated from total cell lysates with anti-Myc antibodies. 

The precipitates were analysed by SDS-PAGE and immunoblotting using anti-ubiquitin 

antibodies. Rpt4R refers to a yeast strain expressing a dysfunctional version of the 

proteasomal AAA-ATPase Rpt4, which causes the accumulation of ubiquitylated proteins. 

The asterisk denotes unspecific reactivity with the heavy chains of the antibody used in the 

immunoprecipitation. f, Protease-protection assay to monitor the export of CPY* from the ER. 

Cells of the indicated genotypes were incubated with cycloheximide for 1 hour and lysed 

under conditions that allowed the formation of vesicles (see Methods). The samples were 
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treated with Proteinase K and Triton-X 100 or left untreated. Proteins were precipitated and 

analysed by SDS-PAGE. Immunoblotting with anti-Kar2 antibodies serves as control for the 

integrity of the vesicles. The processing of the ER luminal protein Kar2 to a protease-

resistant fragment (*) in absence of Triton-X 100 indicates a leakage of some vesicles. 

 

Figure 3 

pBpa-labelled Der1 forms crosslinks with components of the HRD-ligase.  

Yeast cells deleted for der1 and expressing HA-tagged CPY* as well as catalytically inactive 

Ubc7 (Δder1 CPY*-HA Ubc7C/S) were transformed with high-copy plasmids encoding Der1-

Myc variants controlled by the CUP promoter and containing the photoreactive amino acid 

analogue pBpa at the indicated positions (derived from pMM075). To determine the 

specificity of the crosslinking reaction the experiment was performed with an unmodified 

version of Der1-Myc (wt) (pMM075). After UV irradiation the cells were lysed and Der1-Myc 

was immunoprecipitated. Proteins crosslinked to pBpa-labelled Der1 were detected by 

immunoblotting with specific antibodies. The relative position of the Der1 transmembrane 

segments according to Hitt et al. 16 is given by green bars (see also Supplementary Figure 

1a). 

 

Figure 4 

The pBpa-labelled Der1 variants are properly integrated into the HRD-ligase.  

a, Der1-Myc constructs (derived from pMM075) containing photoreactive probes at positions 

which show prominent crosslinks with Hrd1 were expressed in Δder1 Ubc7C/S CPY*-HA 

cells lacking Usa1 where indicated and subjected to in vivo photocrosslinking as described 

(see Methods). The asterisks mark signals that cross-react with the anti-Myc antibody. b, As 

in a but the photoreactive probes were placed at positions which were found to display 

intense crosslinks with Hrd3.c, As in abut the labelled Der1-Myc constructs were transformed 

into Δder1 cells that either express full length Hrd3 or the luminal domain of Hrd3 (1-767).d, 

Δder1 Ubc7C/S cells were transformed with pBpa-labelled Der1-Myc constructs (derived 

from pMM075) and a high-copy number plasmid encoding Der1-HA (pMM079). Upon UV 

irradiation and cell lysis Der1-Myc was precipitated and crosslinks to Der1-HA were detected 

by anti-HA antibodies via immunoblotting. 

 

Figure 5 

pBpa-Der1 crosslinks to luminal ERAD substrates.  

a, Der1-Myc labelled with pBpa at positions in the first luminal loop (G38, Y42) and in the 

second transmembrane region (S70) (derived from pMM075) were expressed in Δder1 

CPY*-HA Ubc7C/S cells that lacked Hrd3 where indicated. After UV irradiation Der1-Myc 
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was immunoprecipitated from cell lysates and analysed as in Figure 3. The asterisks mark 

signals that cross-react with the antibodies. b, Microsomes from cells of the indicated 

genotype were solubilized with NP-40 and Der1-Myc was precipitated with anti-Myc 

antibodies. To adjust the cellular levels of substrate molecules the experiment was 

performed in cells deleted for ubc7 (lanes 4 and 8) or expressing a catalytically inactive 

mutant of this enzyme (Ubc7C/S) (lanes 1-3 and 5-7). c, As in a but Der1-Myc was either 

expressed in Δder1 CPY*-HA cells (wt) or in Δder1 CPY*-HA Ubc7C/S cells. d, Δubc7 cells 

expressing either properly folded CPY-HA (wt) or the misfolded variant (mut) were 

transformed with Der1-Myc constructs that incorporated the photoreactive crosslinker pBpa 

at positions in the first luminal loop (G38) and in the second transmembrane domain (D62, 

S70) (derived from pMM075). The crosslinking experiment was performed as in a. The signal 

intensity of CPY-HA in the input lanes was reduced compared to CPY*-HA due to vacuolar 

processing of the HA-epitope. e, Der1-Myc labelled with pBpa at positions in the first (R33), 

second (D62, F66, S70) or fourth (I146) transmembrane domain or in the first luminal loop 

(G38) (derived from pMM075) were expressed in Ubc7C/S cells that lacked endogenous 

Proteinase A (Δpep4) and contained a low-copy plasmid encoding PrA*-HA (pMM076). By 

using an unlabelled version of Der1-Myc (pMM075) the specificity of the crosslinking reaction 

was determined. The crosslinking experiment was performed as in a.  

 

Figure 6 

Dislocation deficient point mutants of Der1 affect the crosslinking to HRD-ligase components 

and CPY*-HA.  

a, Δder1 Ubc7C/S CPY*-HA cells were transformed with high-copy plasmids encoding either 

Der1-Myc (derived from pMM075) or Der1RN-Myc (derived from pMM074) which contain 

photoreactive probes in the first (S31) and fourth (I146) transmembrane domain or in the first 

luminal loop (G38). Upon UV irradiation and cell lysis, the Der1-Myc variants were subjected 

to immunoprecipitation with anti-Myc antibodies. The crosslinked interaction partners were 

analysed by SDS-PAGE and immunoblotting using specific antibodies. b, Positions which 

show significant crosslinks with Hrd1 (left panel) or Hrd3 (right panel) were modified with 

pBpa in Der1-Myc and Der1RN-Myc, respectively. The Der1 constructs were expressed in 

Δder1 Ubc7C/S CPY*-HA cells and pBpa was activated by UV light. c, As in a but the Der1-

Myc variants were expressed in Δder1 Ubc7C/S CPY*-HA cells that were deleted for usa1. 

 

Figure 7 

A model for the function of Der1 in the dislocation of ERAD substrates. 

Misfolded ER-luminal proteins (red) are bound by the receptors Hrd3 and Yos9 (blue) in the 

ER-lumen. Selected substrate molecules are then transferred to Der1 (green). Der1 weakly 
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binds aberrant polypeptides via its ER-luminal exposed parts that are shielded by Hrd3 in the 

assembled ligase complex. The association with Der1 initiates the insertion of the substrates 

into the ER-membrane. Notably, the transmembrane domains of Der1 appear to be important 

for this process. Subsequently the substrate molecules are routed to the ubiquitin ligase Hrd1 

(orange) for ubiquitylation. This modification stabilises the association of substrates with the 

HRD-ligase and triggers their dislocation from the ER. Complete movement of client proteins 

through the ER-membrane most likely occurs via a conduit containing the transmembrane 

segments of Der1 and Hrd1 and depends on the activity of the ubiquitin-specific AAA-

ATPase Cdc48 (not shown). 
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Methods 

Antibodies 

Monoclonal anti-HA (H9658, Sigma-Aldrich, St. Louis, USA; C29F4, NEB, UK) and anti-Myc 

(M5546, Sigma-Aldrich, St. Louis, USA) antibodies used for immunoprecipitation (dilution 
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1:2,000) and detection (dilution 1:2,500 – 1:5,000) were commercially available. Antibodies 

for immunodetection of Hrd1 (1:10,000), Hrd3 (1:3,000), Sec61 (1:10,000), Der1 (1:500) and 

Usa1 (1:3,000) were described previously 12, 14. Antibodies for immunodetection of Kar2 

(1:10,000) and Pep4 (1:3,000) were a generous gift from T.A. Rapoport and D.H. Wolf, 

respectively. The monoclonal antibody directed against CPY (A-6428; used 1:2,500 for 

immunoprecipitation and 1:5,000 for immunodetection) was purchased from Molecular 

Probes. Fluorescently labelled secondary antibodies (IRDye 800, anti-mouse IgG (goat) and 

IRDye 800, anti-rabbit (goat); each used 1:2,000 for immunotecetion by LiCor) were 

purchased from Rockland. The polyclonal anti-Yos9 antibody was generated by immunising 

rabbits with a fragment of Yos9 purified from E. coli and used at a dilution of 1:2,000 for 

immunodetection. The polyubiquitin-specific antibody (UG9510, Enzo Life Science) was 

diluted 1:2,000 in immunoblotting. Horseradish-peroxidase coupled secondary antibodies 

(A9044 and A0545; both diluted 1:10,000) used for immunodetection of proteins by 

Enhanced Chemiluminiscence were purchased from Sigma-Aldrich, St. Louis. 

 

Yeast strains and plasmids 

For yeast sporulation, tetrad dissection and the preparation of yeast media standard 

protocols were used 48. The genotypes of yeast strains are listed in the Supplementary Table 

2. These strains are derived from the diploid wild-type strain DF5. Described methods were 

followed for the deletion and chromosomal epitope tagging of genes in yeast 49, 50. DNA-

plasmids used in this study are summarised in the Supplementary Table 3. Overall, a DNA 

fragment was PCR-amplified with oligonucleotides that are flanked by suitable restriction 

sites and inserted into appropriate vectors. The modification of plasmid-encoded genes with 

epitopes (pMM074, pMM075 and pMM076) was done by expressing these constructs in the 

respective deletion strains and homologues recombination of an appropriate DNA-cassette 

as described 50. Der1 constructs containing point mutations were generated by QuikChange 

site-directed mutagenesis using Pfu High Fidelity DNA-polymerase according to the 

manufacturer’s instructions (Agilent Technologies, USA). For the generation of constructs 

that express p-Benzoylphenylalanine- (pBpa-) labelled Der1 variants pMM074, pMM075 and 

pMM063 were used as parental plasmids. The stop codon TAG was introduced at individual 

positions by site-directed mutagenesis as described above. pMM001, pMM040 and pMM041 

were used for the insertion of point mutations into the chromosomal locus of Der1 leading to 

YMM156, YMM111 and YMM112. 6xMyc-Hmg2 was expressed from plasmid pRH244 as 

described elsewhere 33. pJU293 and pJU294 are 2µm-based multicopy plasmids that contain 

combinations of the genes HRD1, HRD3 and DER1 under the control of their respective 

promoters (around 400 bp of the 5’ non-coding sequence).  
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Native immunoprecipitation 

50 OD600 yeast cells in early logarithmic phase were harvested and lysed by vigorous 

shaking with glass beads in ice-cold lysis buffer (50 mM Tris-HCl (pH 7.5), 400 mM KOAc, 

0,5 mM EDTA, 10 % (v/v) Glycerol, 1 mM phenymethyl sulphonyl fluoride (PMSF)). The cell 

debris was removed by low-speed centrifugation (2,000 x g, 3 min). The supernatant was 

supplemented with 1 % (w/v) Digitonin (Calbiochem, USA) and incubated for 1 hour under 

rotation at 4 °C. The lysate was cleared by high-speed centrifugation at 20,800 x g for 20 min 

and diluted with lysis buffer to a final concentration of 0.5 % (w/v) Digitonin. For 

immunoprecipitation specific antibodies and Protein A-conjugated Sepharose were added. 

Bound proteins were eluted with dithiothreitol (DTT) containing sample buffer and analysed 

by Sodiumdodecyl-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. For 

the immunoprecipitation of CPY* the protocol was modified. 150 OD600 yeast cells were 

harvested and lysed in IP32-buffer (50 mM HEPES (pH 7.5), 50 mM NaCl, 125 mM KOAc, 2 

mM MgOAc2, 1 mM EDTA, 10 µM CaCl2, 3 % (v/v) Glycerol). Next, microsomes were 

collected by high-speed centrifugation (20,800 x g, 20 min) and solubilised with 0.5 % (v/v) 

Nonidet P40. The following steps were performed as described above. 

 

Determination of protein degradation 

The turnover of proteins were either analysed by pulse chase experiments or cycloheximide 

decay assays as described elsewhere 51-53. Briefly, for pulse chase analysis yeast cells were 

pulsed with radiolabelled 35S methionine followed by a chase with an excess of unlabelled 

amino acids. During the chase samples were taken at indicated time points and mixed with 

NaN3. The cells were lysed under denaturing conditions and the protein of interest was 

immunoprecipitated with specific antibodies. For the analysis of CPY* or PrA* the bound 

proteins were treated with Endoglycosidase F. The samples were then separated by SDS-

PAGE followed by autoradiography using a PhosphoImager (Typhoon FLA9500, GE 

Healthcare).  

For a cycloheximide decay assay yeast cells were incubated with 0.3 mg/ml cycloheximid in 

order to stop protein synthesis. Samples were collected at indicated time points and the cells 

were lysed with glass beads in buffer containing 50 mM Tris-HCl [pH 7.5], 10 mM EDTA, 1 

mM PMSF. Microsomes were recovered by high-speed centrifugation (20,800 x g, 20 min) 

and suspended in sample buffer. The analysis of the samples was carried out by SDS-PAGE 

and immunoblotting. 

 

Detection of ubiquitylated CPY* 

150 OD600 yeast cells were harvested and washed with 20 mM N-ethylmaleimide (NEM), 10 

mM NaN3 and 1 mM PMSF. After lysis of the cells with glass beads in Ub-buffer (0.7 M 
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sorbitol, 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 1 % (v/v) Triton-X 100, 0,1 % 

(w/v) SDS) supplemented with 20 mM NEM and 1 mM PMSF the cell extract was incubated 

for 1 hour for efficient solubilisation of membranes. Insoluble material was then cleared from 

the lysate (20,800 x g, 20 min). Subsequently, CPY*-Myc was precipitated with anti-Myc 

antibodies. Bound proteins were eluted by DTT containing sample buffer and analysed by 

SDS-PAGE and immunoblotting. Ubiquitylated CPY*-Myc was detected by specific anti-

ubiquitin antibodies. 

 

Site-specific in vivo photocrosslinking 

Yeast cells were transformed with pGK1-pBpa (a generous gift from P.G. Schultz) and Der1-

Myc constructs derived from pMM074 or pMM075 containing an amber stop codon at 

specific positions 34, 35. Transformed yeast cells were grown in synthetic minimal medium 

supplemented with 400 µM pBpa (Bachem, CH) over night at 30 °C. The expression of Der1-

Myc was induced by addition of 0.1 mM CuSO4 for 2 hours. 150 OD600 yeast cells were 

harvested and washed twice with ice-cold H2O. Next, the cells were suspended in 2 ml H2O, 

transferred to a 6-well plate and irradiated with UV light (B-100AP, UVP, CA) at λ = 365 nm 

for 45 min on ice. The cells were lysed with glass beads in 50 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 5 mM EDTA, 1 % (v/v) Triton X-100, 0.1 % (w/v) SDS, 1 mM PMSF. The lysate was 

cleared from cell debris and the microsomes were solubilised as described above. Insoluble 

material was removed by high-speed centrifugation (20,800 x g, 20 min) and Der1-Myc was 

immunoprecipitated with anti-Myc antibodies. Bound proteins were eluted with DTT-

containing sample-buffer and analysed by SDS-PAGE and immunoblotting. For quantification 

of the crosslinking efficiency immunoblots were incubated with fluorescently labelled 

secondary antibodies and analysed by the Odyssey near-infrared Imaging System (Li-Cor). 

 

Protease protection assay 

To monitor the dislocation of a CPY fraction from the ER over a time period of 1 hour the 

protein synthesis in yeast cells was inhibited by addition of cycloheximide as described 

before. Samples were collected at the indicated time points and washed with 10 mM NaN3. 

To keep the membranes intact the cells were lysed in sorbitol-buffer (0.7 M sorbitol, 50 mM 

Tris-HCl (pH 7.5)). Afterwards, the lysate was cleared from cell debris and treated with 0.1 

mg/ml proteinase K, or proteinase K in presence of 0.5 % (v/v) Triton-X 100 for 20 min on 

ice. The reaction was stopped by the addition of 1 mM PMSF and 15 % (w/v) trichloro-acetic 

acid. The proteins were then recovered by high-speed centrifugation (20,800 x g, 20 min) 

and dissolved in sample buffer (pH 8) before analysis by SDS-PAGE and immunoblotting. 

 

ß-galactosidase activity assay 
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For the measurement of UPR induction yeast cells were transformed with a UPR-induced 

reporter construct (pUPRE-lacZ). The ß-galactosidase activity was determined as previously 

described 29. 

 

Reproducability of experiments 

All data are representative of at least three independent experiments with the exception of 

Figures 1c (two independent experiments), Supplementary Figures 1c, 1e, 2b right panel, 2c, 

3a, 3c, 4c and 5a (two independent experiments each) and Supplementary Fig. 3b (one 

experiment). Uncropped images of key experiments can be seen in Supplementary Fig. 6.  
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Supplementary material 

Supplementary Figure 1 

The carboxyterminus integrates Der1 into the HRD-ligase  

a, Sequence alignment of yeast Der1 with homologues in other organisms, generated by 

ClustalW and Jalview. Derlin-1 from Homo sapiens (hs, UniProtKB accession number 

Q9BUN8), Caenorhabditis elegans (ce, Q93561), Derlin-2 from Homo sapiens (hs, 

Q9GZP9), Caenorhabditis elegans (ce, Q21997), Derlin-3 from Homo sapiens (hs, Q96Q80), 

Mus Musculus (mm, Q9D8K3), Der1 from Saccharomyces cerevisiae (sc, P38307). The 

position of the Der1 transmembrane segments as predicted by hydrophobicity calculations 

and biochemical analysis by Hitt et al. 16 is given by green bars. Of note, in an alternative 

model for Derlin-1 topology proposed by Greenblatt et al. 32, the position of transmembrane 

segments one and two is almost identical. Black diamonds label amino acids in Der1, which 

were subjected to site-directed mutagenesis (Supplementary Table S1). b, Cycloheximide 

decay assay to monitor the degradation of Der1 in strains of the indicated genotypes. c, As in 

b but Δder1 cells were transformed with low-copy number plasmids encoding mutants of 

Der1. d, Cycloheximide decay decay assay to determine turnover of Der1-Myc and Der1 in 

Δusa1 cells. The integral ER-membrane protein Sec61 served as loading control. e, Plasmid-

encoded HA-tagged Der1 was expressed with endogenous Der1 in cells containing or 

lacking Usa1. Membranes of the total extract were solubilised with Digitonin and Der1-HA 

was precipitated with anti-HA antibodies followed by SDS-PAGE and immunoblotting. 

 

Supplementary Figure 2 

Characterisation of the dislocation deficient Der1 transmembrane mutants.  

a, Wt and Δder1 cells were transformed with high-copy plasmids encoding HRD1 and HRD3 

(pJU293) or HRD1, HRD3 and DER1 (pJU294). The turnover of CPY* was determined by 

radioactive pulse chase analysis and the results quantified using a PhosphoImager.b, Pulse 

chase experiment to analyse the effect of the Der1 transmembrane mutants on the 

degradation of PrA* (left panel) and 6xMyc-Hmg2 (right panel). Error bars represent the 

standard deviation of three independent experiments. c, Cycloheximide decay assay to 

monitor the stability of the Der1 transmembrane mutants. The asterisk denotes a loss of cell 

material during the sample preparation.d, Digitonin-solubilised lysates from cells expressing 

Usa1-Myc and the indicated Der1 variants were subjected to immunoprecipitation with anti-

Myc antibodies (left panel). Vice versa cells expressing the indicated variants of Der1-Myc 

were lysed and tested for interaction to different components of the HRD-ligase by 

immunoprecipitation with anti-Myc antibodies (right panel). The bound proteins were 

analysed by SDS-PAGE and immunoblotting using specific antibodies.e, Cells expressing 

Der1-Myc were transformed with low-copy number plasmids encoding either Der1 or Der1 
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transmembrane mutants were lysed in Digitonin buffer and subjected to precipitation with 

anti-Myc antibodies. 

 

Supplementary Figure 3 

The pBpa-labelled Der1 variants are properly integrated into the HRD-ligase.  

a, Der1-Myc labelled at positions in the first (W19) and second (S70) transmembrane domain 

as well as in the first luminal loop (G38, Y42, L46, K50) (derived from pMM075) were 

expressed in Δder1 Ubc7 C/S CPY*-HA cells to investigate crosslinking to Yos9.b, Efficiency 

of the CPY*-HA crosslinking to different positions in Der1-Myc. Photoreactive probes were 

introduced at the indicated positions of Der1-Myc (derived from pMM075) and the 

crosslinking experiment was performed as described (see Methods). Crosslinked CPY*-HA 

and precipitated pBpa-labelled Der1-Myc were detected by fluorescently labelled secondary 

antibodies using the Odyssey near-infrared scanner (Li-Cor) and quantified by Odyssey 

Imaging System Version 3.0. The amount of the CPY*-HA crosslinking at position G38 was 

set to 100 %. The efficiency of the CPY*-HA crosslinking at other positions was calculated in 

relation to position G38 and normalised by the corresponding precipitated pBpa-labelled 

Der1-Myc variant. The asterisk denotes a cross-reactivity of the anti-Myc antibody.c, Pulse 

chase assay to analyse the activity of pBpa-modified Der1 variants in the degradation of 

CPY*. The selected Der1 constructs (derived from pMM063) form prominent crosslinks with 

different components of the HRD ligase as well as CPY*-HA and were expressed on high-

copy plasmids in Δder1 cells. As a control unlabelled Der1 was expressed on a low-copy (wt) 

and high-copy plasmid (Der1 OE), respectively.d, Δder1 Ubc7C/S CPY*-HA cells expressing 

either various pBpa-labelled Der1-Myc constructs or unlabelled Der1-Myc were lysed in 

Digitonin containing buffer and subjected to immunoprecipitation with anti-Myc antibodies. 

Interaction partners of Der1-Myc were analysed by SDS-PAGE and immunoblotting. The 

asterisk denotes a cross-reactivity of the anti-Hrd1 antibody in the total lysate. 

 

Supplementary Figure 4 

Der1 is in close proximity to dislocated CPY*.  

a, Photoreactive probes were placed at the indicated positions in Der1-Myc. The constructs 

were expressed in Δder1 Ubc7C/S CPY*-HA cells either containing or lacking Usa1 and 

exposed to UV light. The samples were then lysed and subjected to immunoprecipitation as 

described in Figure 3. b, Der1-HA expressed from high-copy plasmid pMM079 was 

transformed into Δder1 Ubc7C/S cells either containing or lacking Usa1. Der1-Myc labelled 

with pBpa at position G38 (derived from pMM075) was co-expressed where indicated. Cells 

were lysed in Digitonin containing buffer and Der1-Myc was immunoprecipitated with anti-

Myc antibodies. Interacting Der1-HA was detected by immunoblotting. c, Δder1 Ubc7C/S 
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cells were transformed with a low-copy plasmid encoding Der1-HA. Microsomes of these 

cells were solubilised with NP40 and Der1-HA was precipitated with anti-HA antibodies. The 

catalytically inactive Ubc7 mutant (Ubc7C/S) was used to adjust the substrate levels in the 

individual strains. d, Der1-Myc constructs with photoreactive probes placed at positions 

which reveal prominent crosslinks with Hrd1 were expressed either in Δder1 CPY*-HA cells 

(wt) or in Δder1 CPY*-HA Ubc7C/S cells. The photocrosslinking was performed as described. 

e, As in d but the Der1-Myc constructs contained photoreactive probes at positions, which 

formed crosslinks with Usa1. f, Determination of the unfolded protein response (UPR) in 

strains used for the crosslinking experiments by ß-galactosidase activity assay. The indicated 

yeast strains were transformed with the pUPRE-lacZ plasmid and the activity of ß-

galactosidase was measured as described (see Methods). Where indicated cells were 

treated with 4 mM Dithiotriol (DTT) for 1 hour before ß-galactosidase measurement to fully 

induce the UPR. Error bars and mean values of three independent experiments are shown. 

g, Der1-Myc variants labelled at the indicated positions were expressed in Δpep4 Ubc7C/S 

cells containing plasmid-encoded PrA*-HA. The crosslinking experiment was performed as in 

a. 

 

Supplementary Figure 5 

The pBpa-labelled Der1RN-Myc transmembrane mutant is properly assembled with the 

HRD-ligase but displays alterations in the crosslinking to its interaction partners.  

a, Δder1 Ubc7C/S CPY*-HA cells were transformed with high-copy plasmids encoding either 

pBpa-modified Der1-Myc (derived from pMM075), Der1RN-Myc (derived from pMM074) or 

unlabelled Der1-Myc (pMM075). Digitonin-solubilised membranes of the total extract were 

subjected to immunoprecipitation with anti-Myc antibodies (left and right panel). b, As in a but 

the microsomes were solubilised with NP40 before precipitation of the Der1-Myc constructs. 

 

Supplementary Figure 6 

Full gel scans of key blots shown in the main figures of this manuscript. Antibodies used for 

protein detection are indicated. 

 

Supplementary Table 1 

Characterisation of Der1 mutants generated by site-directed mutagenesis.  

The indicated amino acids in Der1 were changed to alanine (A), leucine (L) or tryptophan (W) 

and analysed for their stability and their ability to promote CPY* degradation by 

cycloheximide decay assay. The interaction to Usa1 and the ability to form oligomers were 

determined by immunoprecipitation. Der1 transmembrane mutants deficient for CPY* 

degradation and used for following experiments are highlighted in red. 
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Supplementary Table 2 

Yeast strains used in this study 

 

Supplementary Table 3 

Plasmid constructs used in this study 
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Derlin-1_hs      --MSDIGDWFRSIPAITRYWFAATVAVPLVGKLGLISPAYLFLWPEAFLYRFQIWRPITA 58
Derlin-1_ce      ---MDLENFLLGIPIVTRYWFLASTIIPLLGRFGFINVQWMFLQWDLVVNKFQFWRPLTA 57
Derlin-3_hs      MAWQGLAAEFLQVPAVTRAYTAACVLTTAAVQLELLSPFQLYFNPHLVFRKFQVWRLVTN 60
Derlin-3_mm      MAGQRLAAGFLQVPAVTRAYTAACVLTTAAVQLELLSPFQLYFNPHLVFRKFQVWRLITT 60
Derlin-2_hs      MAYQSLRLEYLQIPPVSRAYTTACVLTTAAVQLELITPFQLYFNPELIFKHFQIWRLITN 60
Derlin-2_ce      --MNGVVAALEEMPPVTRFYTGACVLLTTAVHLEFVTPFHLYFNWELIIRKYQFWRLITS 58
Der1_sc          -MDAVILNLLGDIPLVTRLWTIGCLVLSGLTSLRIVDPGKVVYSYDLVFKKGQYGRLLYS 59
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Derlin-3_hs      FLFFGP---LGFSFFFNMLFVFRYCRMLEEGSFRGRTADFVFMFLFGGVLMTLLGLLGSL 117
Derlin-3_mm      FLFFGP---LGFGFFFNMLFVFRYCRMLEEGSFRGRKADFVFMFLFGGVLMTLLGFLGSL 117
Derlin-2_hs      FLFFGP---VGFNFLFNMIFLYRYCRMLEEGSFRGRTADFVFMFLFGGFLMTLFGLFVSL 117
Derlin-2_ce      FCFFGS---FGFSFLFNMIFTYRYCMMLEEGSFRGRRADFVYMFLFGAVLMILSGIFVQI 115
Der1_sc          IFDYGA---FNWISMINIFVSANHLSTLEN-SFNLRRKFCWIIFLLLVILVKMTSIEQPA 115
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Derlin-2_hs      VFLGQAFTIMLVYVWSRRN-PYVRMNFFGLLNFQAPFLPWVLMGFSLLLGNSIIVDLLG- 175
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Supplementary Table 1 (Jarosch) 

Amino acid Der1 
stability 

CPY* 
degradation 

Usa1 
interaction 

Der1 
oligomerisation 

T16A + + n.d. n.d. 

R17L + - + + 

C23L + - + + 

P37A + + n.d. n.d. 

G38W + + n.d. n.d. 

D45A + + n.d. n.d. 

L46A + + n.d. n.d. 

K49A + + n.d. n.d. 

K50A + + n.d. n.d. 

Q52A + + n.d. n.d. 

R55A + + n.d. n.d. 

Y58L + + n.d. n.d. 

S59L - - - - n.d. n.d. 

S70A + + n.d. n.d. 

N73L + - + + 

S77L + + n.d. n.d. 

LEN84-
86AAA - - - - + + 

R91A + + n.d. n.d. 

Y128A + + n.d. n.d. 

P154A + + n.d. n.d. 

GH179/180LA - - - - - - - - 

YY183/184AA - - - - 

DD186/187AA + + + + 

P201A + + + + 
	
  



Supplementary Table 2 (Jarosch) 

Yeast strain Genotype Reference 

DF5 trp1-1 (am)/ trp1-1 (am), his3-Δ200/ his3-Δ200, ura3-52/ ura3-52, lys2-801/ lys2-801, leu2-3, -112/ leu2-3, -
112, MATα/a 

1 

YBM70 Δhrd3::LEU2, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATα 2 

YJU32 Δder1::HIS3, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 3 

YJU37 Δhrd1::TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 3 

YMM010 Δhrd1::LEU2, Δdoa10::HIS3, Δusa1::KanMX6, prc1-1, MAT n.d. this study 

YMM012 Δdoa10::HIS3, Δusa1::KanMX6, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MAT n.d. this study 

YMM060 usa1-3xMyc:KanMX6, Δder1::HIS3, Δubc7::LEU2, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-
3, -112, MAT n.d. 

this study 

YMM111 der1 R17L N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM112 der1 R17L C23L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM118 der1 R17L C23L-13xMyc:HIS3, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM119 der1 R17L N73L-13xMyc:HIS3, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM132 usa1-3xMyc:KanMX6, der1 N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM133 usa1-3xMyc:KanMX6, der1 R17L C23L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

this study 

YMM134 usa1-3xMyc:KanMX6, der1 R17L N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

this study 

YMM138 prc1-1-13xMyc:TRP1, der1 R17L C23L, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM139 prc1-1-13xMyc:TRP1, der1 R17L N73L, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM140 6xMyc-hmg2:URA3, der1 N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM141 6xmyc-hmg2:URA3, der1 R17L C23L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

this study 

YMM142 6xMyc-hmg2:URA3, der1 R17L N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

this study 

YMM143 Δpep4::URA3, der1 N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM144 Δpep4::URA3, der1 R17L C23L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM145 Δpep4::URA3, der1 R17L N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM156 der1 N73L, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM157 ubc7 C89S, Δder1::HIS3, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM158 ubc7 C89S, Δder1::HIS3, prc1-1-3xHA:KanMX6, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

this study 

YMM179 der1-13xMyc:TRP1, Δusa1::HIS3, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MAT n.d. this study 

YMM187 Δder1::HIS3, Δhrd3::LEU2, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM190 ubc7 C89S, Δder1::HIS3, Δhrd3::TRP1, prc1-1-3xHA:KanMX6, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, 
leu2-3, -112, MATa 

this study 

YMM191 Δder1::HIS3, ubc7 C89S, Δusa1::TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MAT n.d. 

this study 

YMM199 Δder1::HIS3, ubc7 C89S, prc1-1-3xHA:KanMX6, Δusa1::TRP1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, 
leu2-3, -112, MATa 

this study 

YMM200 hrd1-3xHA:HIS3, ubc7 C89S, Δder1::TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -
112, MAT n.d. 

this study 

YMM201 hrd1-3xHA:HIS3, ubc7 C89S, Δhrd3::LEU2, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -
112, MAT n.d. 

this study 

YMM202 hrd1-3xHA:HIS3, ubc7 C89S, Δder1::TRP1, Δhrd3::LEU2, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-
801, leu2-3, -112, MAT n.d. 

this study 

YMM203 der1 N73L-13xMyc:TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YMM204 ubc7 C89S, Δpep4::KanMX6, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 

YRG184 Δder1::HIS3, hrd3 (1-769):KanMX6, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 4 



YSH029 Δusa1::TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 5 

YSH061 der1-13xMyc:TRP1, Δusa1::KanMX6, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

5 

YTX140 prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 1 

YTX372 der1-13xMyc:KanMX6, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 4 

YTX378 der1-13xMyc:KanMX6, Δhrd1::TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

4 

YTX380 hrd1-3xHA:KanMX6, ubc7 C89S, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 4 

YTX404 Δder1::HIS3, prc1-1-3xHA, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MAT n.d. this study 

YTX481 der1-13xMyc:KanMX6, Δhrd3::LEU2, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATα 

this study 

YTX539 der1-13xMyc:KanMX6, Δubx2::TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, 
MATa 

this study 

YTX625 usa1-3xMyc:KanMX6, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATα 5 

YTX645 Δusa1::TRP1, Δhrd1::LEU2, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATα this study 

YTX740 6xMyc-hmg2:URA3, Δhrd1::TRP1, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 5 

YTX742 6xMyc-hmg2:URA3, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 5 

YTX817 prc1-1-13xMyc:TRP1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 5 

YTX822 prc1-1-13xMyc:TRP1, Δder1::HIS3, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 5 

YTX836 Δpep4::URA3, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 5 

YTX837 Δpep4::URA3, Δder1::HIS3, prc1-1, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa 5 

YTX865 prc1-1-13xMyc:TRP1, rpt4R, trp1-1 (am), his3-Δ200, ura3-52, lys2-801, leu2-3, -112, MATa this study 
 

MAT n.d. Mating type not determined 
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Supplementary Table 3 (Jarosch) 

Plasmid Plasmid backbone Description Reference 

pTX339 pRS415 PrA* 1 

pGK1-pBpa  3SUP4-tRNACUA for pBpa incorporation 2 

pRH244  6xMyc-Hmg2 for genomic integration 3 

pTX227 pRS416 Der1 -499/+728 this study 

pTX228 pTX227 Der1 (R17L) this study 

pTX230 pTX227 Der1 (C23L) this study 

pTX231 pTX227 Der1 (N73L) this study 

pMM001 pRS406 Der1 -499/+728 (N73L) this study 

pMM012 pTX227 Der1 (T16A) this study 

pMM013 pTX227 Der1 (S70A) this study 

pMM014 pTX227 Der1 (LEN84-86AAA) this study 

pMM015 pTX227 Der1 (R91A) this study 

pMM016 pTX227 Der1 (Y128A) this study 

pMM017 pTX227 Der1 (P154A) this study 

pMM020 pTX227 Der1 (GH179LA) this study 

pMM021 pTX227 Der1 (YY183AA) this study 

pMM022 pTX227 Der1 (DD186AA) this study 

pMM023 pTX227 Der1 (P201A) this study 

pMM040 pRS406 Der1 -499/+728 (R17LC23LN73L) this study 

pMM041 pTX406 Der1 -499/+728 (R17LN73L) this study 

pMM043 pTX227 Der1 (R17LC23L) this study 

pMM044 pTX227 Der1 (R17LN73L) this study 

pMM046 pTX227 Der1 (K50A) this study 

pMM047 pTX227 Der1 (R55A) this study 

pMM048 pTX227 Der1 (Y58L) this study 

pMM049 pTX227 Der1 (Q52A) this study 

pMM052 pTX227 Der1 (S77L) this study 

pMM053 pTX227 Der1 (S59L) this study 

pMM054 pTX227 Der1 (P37A) this study 

pMM055 pTX227 Der1 (G38W) this study 

pMM056 pTX227 Der1 (D45A) this study 

pMM057 pTX227 Der1 (L46A) this study 

pMM058 pTX227 Der1 (K49A) this study 

pMM063 pRS425-CUP Der1 this study 

pMM064 pRS416 Der1 -500/+636-1xHA this study 

pMM074 pRS425-CUP Der1 -500/+706 (R17LN73L)-13xMyc this study 

pMM075 pRS425-CUP Der1 -499/+706-13xMyc this study 

pMM076 pRS413 PrA*-3xHA this study 
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