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Abstract. We propose a mathematical model of the actin-based propulsion
of spatially extended obstacles. It starts from the properties of individual actin
filaments and includes transient attachment to the obstacle, polymerization as
well as cross-linking. Two particular geometries are discussed, which apply
to the motion of protein-coated beads in a cell-like medium and the leading
edge of a cell protrusion, respectively. The model gives rise to both steady
and saltatory movement of beads and can explain the experimentally observed
transitions of the dynamic regime with changing bead radius and protein surface
density. Several spatiotemporal patterns are obtained with a soft obstacle under
tension, including the experimentally observed spontaneous emergence of lateral
traveling waves in crawling cells. Thus, we suggest a unifying mechanism for
systems that are currently described by differential concepts.
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mmedia
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1. Introduction

Cell migration is required for wound healing, immune response or metastasis. A variety of
eukaryotic cells crawl by extending a thin plane cytoskeleton structure, the lamellipodium, in
the direction of motion. The growth of a cross-linked actin network through polymerization
behind its leading edge membrane generates the protrusion force that pushes the lamellipodium
forward.

The actin cytoskeleton also determines the dynamics of the lamellipodium shape.
Quantitative analysis has revealed that in a variety of crawling cells protrusion and retraction
events at the leading edge are organized in lateral waves along the cell membrane and that the
wave pattern can be changed by activating signaling molecules [1, 2]. Therefore, actin dynamics
generates spatial and temporal structures and cell morphology could be used to reveal the state
of the cytoskeleton without direct intervention if the emergence of different morphodynamic
patterns were well understood. However, current models show either steady motion only or
require myosin activity for these spatiotemporal dynamics, which is in contrast to experimental
observations. We present a model reproducing the observed wave patterns in compliance with
the experimental conditions. The local dynamics of the model is described below and was
developed in [3]. Here, we apply it to spatially extended systems.

Protein-coated beads are used to reconstitute actin-based motility [4, 5], since they can
hijack, like bacteria, the actin-based machinery of the cell for propulsion leaving behind a tail
of actin polymers. The regime of motion (steady or oscillatory) depends on the bead diameter
as well as on the surface density of the protein activating actin polymerization. Bead motion
has been described by gel continuum theory [4]. Velocity oscillations were explained by a
periodic relaxation of the stress in the gel-like actin tail resulting from polymerization [4].
The motility of beads has been also reconstituted in silico [6]. This approach uses a network
realization of the elastic gel model and can explain the symmetry breaking of the actin cloud
at the initiation of motion as well as the different regimes of motion. It predicts a transition
from smooth to pulsatile motion with increasing degree of network cross-linking or increasing
friction [6]. However, size dependence of the dynamic state is not discussed.

Hence, despite the similarity between the molecular constituents of lamellipodium and
bead motion, they are currently described by different modeling concepts (elastic gel versus
filament models) and their velocity oscillations are explained by different mechanisms. The
following approach captures both the shape dynamics of lamellipodia and bead propulsion. It
thus suggests a unifying mechanism for both systems, expands lamellipodium theory by shape
dynamics and provides a microscopic description of the bead motion.

2. Propulsion of a rigid sphere

When beads coated with proteins that activate actin polymerization are placed in a cell-like
medium, they start to assemble an actin gel, resulting in a symmetric actin cloud surrounding
the bead. After 3–25 min, the symmetry of this cloud is broken [7], and an actin comet tail
propelling the bead develops [4]. This comet tail consists of cross-linked actin filaments [8].
Some degree of cross-linking is always given due to branching. The motility assay used for
the bead experiments also contained cross-linker molecules (α-actinin) [4, 9]. In analogous
experiments with bacteria, it was found that their motion may (Escherichia coli IcsA) or may
not (Listeria) require cross-linkers [10]. However, bacteria without cross-linkers drifted in the
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medium [10], since the comet tail was not anchored. Hence, the function that we attribute to
cross-linking, which is to provide support and anchoring to the filaments, appears precisely
to be its function in bacteria propulsion. Interestingly, it has been shown that polymerization
and cross-linking (by fascin in this case) are sufficient for Listeria propulsion [11], which is in
agreement with our model.

The comet tail interacts with the bead surface through the brush formed by the not yet
cross-linked ends of the polymers. We use, in our model of bead motion, a polymer brush with
filaments aligned parallel to the direction of motion (figure 1). This is of course a simplification
when compared with to the range of angles seen in experiments. It is justified by the finding
that an oscillatory regime exists for a large range of orientation angles [12], and the parallel
filaments appear to have a prominent role in propulsion [11, 13]. Additionally, a broad range of
angles between the obstacle surface and the filaments—which is the relevant angle—are anyway
included in our calculations owing to the spherical shape of the beads.

Based on the processes explained in figure 1, the dynamics of the bead+actin system can
be described by the set of equations [3]

∂tna = −kd(la, ζ )na + kand,

∂tld = vp(ld, ζ )− ṽg(ld) + kdna(nd)
−1(la − ld),

∂tla = −ṽg(la) + kand(na)
−1(ld − la),

∂t yg = n−1[vg(la)na + vg(ld)nd],

∂t y0 =
1

2πηR

∫ 2π

0
R2dϕ

∫ π/2

0
dθ sin θ cos2 θ f (la, ld, ζ, θ),

f = [na fa(la, ζ, θ) + nd fd(ld, ζ, θ)],

ζ = (y0 − R cos θ − yg) cos θ

ṽg(l) = max
(
1, (l cos θ)ζ−1

)
vg(l).

(1)

We assume rotational symmetry with respect to the y-axis. Here, na(θ, ϕ, t) and nd(θ, ϕ, t)
are the surface densities of attached and detached filaments, respectively. The total surface
density of filaments n = na + nd is assumed to be constant. ld(θ, ϕ, t) and la(θ, ϕ, t) denote the
average free lengths of detached and attached filaments, measured from the gel front to the tip.
y0 describes the position of the bead and yg(θ, ϕ, t) the boundary of the cross-linked gel.

It has been shown experimentally that some filaments are attached to the bead [14].
Filaments attach to the bead surface with a constant rate ka [15]. The detachment rate kd

increases exponentially with the pulling force exerted by attached filaments on the bead
[15, 16].

The boundary of the gel advances by cross-linking of filaments at velocity vg, which
depends on the free length of the filament like vmax

g tanh(l/l̄) [17]. The velocity ṽg describes
the shortening of the free filament length due to cross-linking. When filaments are longer
than the distance to the bead surface, they buckle, and the shortening velocity is greater
than the cross-linking velocity. Detached filaments polymerize with the polymerization speed
vp, which decreases exponentially with the force between the filament and the bead: vp =

vmax
p exp(− fdδ cos θ/kBT ). Here, δ denotes the size of an actin monomer. Thus, the free length

of the filaments can change due to processes at both ends: polymerization of the tip increases
the free length, whereas cross-linking at the advancing gel boundary decreases it.
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Figure 1. Side view of a bead propelled by an actin comet: actin filaments cross-
link and build a gel. yg denotes the boundary of the cross-linked gel. Polymer tips
stick out of this gel. The thermal fluctuation of the polymer tips is restricted by
the presence of the bead, resulting in an entropic force between the bead and the
actin network that leads to bead movement. The force depends on the distance
ζ between the fixed end of the filament and the local tangent to the bead at its
free end. The cross-linked actin gel provides support for the filaments. Actin
polymerizes at the bead surface at velocity vp and cross-links at velocity vg, so
that the actin comet follows the bead in its movement. Filaments attach to the
bead surface with rate ka, and attached filaments detach with rate kd.

The variable ζ denotes the minimal distance between the fixed end of a filament and
the local tangent to the bead at its free end (see figure 1), and is needed for the calculation
of the force exerted by filaments on the bead. For detached filaments, the free fluctuating
filament end can hit the membrane and transfer mechanical momentum. The average normal
force experienced by the membrane can be derived from the probability density distribution
P(ld, ζ, θ) of the end-to-end distance:

fd(ld, ζ, θ) = kBT
∂ lnP(ld, ζ, θ)

∂ζ
.

The scale of the resulting force is given by the Euler buckling force fc = kBT lp/ l2 (lp is the
persistence length). We use the results derived in [12] in the weakly bending rod approximation.
The derivation shows that for small compression ξ = lp(ld − z)/ l2

d 6 0.2 the scaled force reads

F̃d =
4 exp(− 1

4ξ
)

π 5/2ξ 3/2
[
1 − 2erfc

(
1

2
√

ξ

)]
and for strong compression

F̃d =
1 − 3 exp(−2π 2ξ)

1 −
1
3 exp(−2π 2ξ)

.
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Table 1. Parameter values. References are given for those deduced from the
literature. The other parameters are chosen to fit experimentally observed
motion.

Parameter Figure 2 Figure 4
Actin monomer radius, δ 2.7 nm [29] 2.7 nm [29]
Persistence length, lp 15 µm [30] 15 µm [30]
Attachment rate, ka 3 × 10−4 s−1 2.16 s−1

Detachment constant, k0
d 7 × 10−3 s−1 2 s−1

Satur. cross-link. vel., vmax
g 0.6 µm min−1 4.5 µm min−1

Satur. cross-link. length, l̄ 100 nm 100 nm
Satur. polym. vel., vmax

p 1–2.5 µm min−1 [31] 6.6–9 µm min−1 [32, 33]
Total filament density, n 100–500 µm−2 100 µm [34]
Orientation angle, θ0 0◦ 35◦ [23, 24]
Linker spring constant, kl 1 pN nm−2 [15, 16] 0.7 pN nm−1 [15, 16]
Effective drag coefficient, η 2.25 nN·s µm−2 [28] 2 pN·s µm−2

Further, we assume that detached filaments can transiently attach to the membrane via linker
proteins that behave like elastic springs. We identify three regimes for the force fa exerted by
the serial arrangement of filaments and the linker. Depending on the relation among the distance
to the membrane ζ , the projection R|| of the equilibrium end-to-end distance onto the membrane
normal and the contour length, we have: compressed filaments pushing the membrane; filaments
and the linker pulling the membrane while being stretched together; or fully stretched filaments
with the linker pulling the membrane while being stretched further:

fa(la, ζ, θ) =


−k||(ζ − R||), ζ 6 R||,

−keff(ζ − R||), R|| < ζ < la cos θ,

−kl(ζ − la cos θ) − keff(la cos θ − R||), ζ > la cos θ.

Here k||, kl and keff = k||kl/(k|| + kl) are the linear elastic coefficients of the polymer, the linker
and the serial filament–linker arrangement, respectively. k|| itself is a function of polymer
stiffness and incidence angle [18]. For the range of polymer lengths obtained in the simulations
discussed below, k|| is about one order of magnitude smaller than the value estimated for kl (see
table 1). Therefore, keff ≈ k|| most of the time. The forces exerted by both the detached and the
attached filaments are highly sensitive to the free length of the filament: fd scales like 1/ l2 and
k|| scales like 1/ l4.

Finally, the active forces exerted by attached and detached filaments are balanced by the
friction force experienced by the bead. It is mainly the force required to push the bead through
the gel formed on the side of the bead facing in the direction of motion and around the equator.
That friction mainly occurs in a strip along the equator of the bead [4]. The total friction force
is therefore proportional to the bead radius. This linear dependence of the total friction force
on the radius implies that our results also apply if the resistance to motion arises from Stoke’s
law. This is suggested by studies considering cross-linked actin networks as viscous fluids on
the time scales relevant here [19, 20].
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Figure 2. (A) Bead velocity for two different values of the bead radius and with
nonlinear friction (n = 500 µm2, vmax

p = 1.8 µm min−1, see table 1 for parameter
values). (B) Maximal and minimal velocities of the beads depending on the bead
radius for n = 1000 µm2, vmax

p = 1.8 µm min−1 and linear/nonlinear friction.
(C, D) Bifurcation diagrams of bead motion. (C) Variable radius and filament
density and constant polymerization velocity vmax

p = 1.8 µm min−1. (D) Variable
radius and polymerization velocity and constant filament density n = 500 µm2.

Figure 2(A) shows the solutions of equations (1). Small beads move steadily, but the
velocity of larger ones oscillates. The oscillation mechanism is based on periodic and sudden
detachment of attached filaments from the bead surface. In the first phase of an oscillation
cycle, there is a large number of attached filaments, which pull back the bead. When the bead
velocity becomes lower than the growth velocity of the gel, the filaments get compressed, and
the polymerization velocity decreases due to its force dependence. When the polymerization
velocity of the tip becomes less than the velocity of the gel front, the free part of the filament
shrinks. As a result, the forces between the filaments and the bead increase further, which leads
to further shortening of the filaments. This ends in the explosive detachment of filaments, due to
the force dependence of the detachment rate kd. Detached filaments are still very short, exerting
a strong pushing force, which accelerates the bead movement. If the total pushing force exerted
at this time is strong enough, the bead escapes the gel and becomes, for a short time, faster
than the gel growth velocity. In a second phase, the filaments relax, grow at their maximum
polymerization speed, and initially do not stay attached to the bead, since the detachment rate
is still very high. As the filaments grow longer, the magnitude of the forces decreases, leading
to a reduced detachment rate. The filaments attach to the bead and slow it down, and the cycle
is repeated.

Figure 2(B) shows the dependence of bead velocity on radius. After the onset of oscillatory
movement, the amplitude of the oscillations increases up to a maximum and then decreases
again, and finally, a second transition back to steady movement is obtained.
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Figures 2(C) and (D) show state diagrams of the system, very similar to the state diagram
measured in [4]. The authors of [4] state that the surface concentration of the protein activating
actin polymerization is also able to induce transitions between steady and oscillatory bead
movements. Protein surface concentration is revealed by the total filament density in our model.
Increasing it induces a Hopf bifurcation, resulting in a transition from steady to saltatory motion
(see figure 2(C)). The transition can also be achieved by increasing the polymerization rate (see
figure 2(D)).

The oscillatory movement arises when two critical conditions are met: (i) short detached
filaments must be strong enough to accelerate the bead above the gel growth velocity, once
explosive detachment occurs at the end of the compression phase. (ii) The attachment of
filaments must be strong enough to decelerate the bead below the gel growth velocity at the
end of the relaxation phase. Therefore, the total force per filament has to exceed the critical
value 6πηRvg/π R2n ∼ 1/n R to initiate the relaxation phase and has to decrease below this
value again to initiate the compression phase. The force exerted by a single filament depends
critically on its length and is influenced mainly by the internal model parameters such as the
polymerization speed and the detachment rate. The geometric parameter R has only a weak
influence on this force. It follows intuitively that if all other parameters are fixed, the two
transitions between oscillatory and steady regimes occur along n ∼ 1/R. The state diagram
in [4] shows only the first changes in the dynamic regime from steady to oscillatory with
increasing bead radius. However, the experimentally available range for the protein surface
concentration is limited by a saturation value. The second transition line predicted by our model
lies, for the examined bead sizes, above the domain shown in figure 2(C). We believe therefore
that this second transition corresponds to experimentally inaccessible concentrations above the
saturation value in [4]. Still, a second transition might be observable for other motility assays.

The average velocity and the period (∼10 min) agree excellently with experiments,
while the oscillation amplitude (∼0.5 µm min−1) is about one-half the reported experimental
value [4]. The correct amplitude can be attained if nonlinear friction (n.f.) Ff is included.
Bernheim-Groswasser et al [4] showed that this nonlinear friction may apply to bead motion.
This type of friction is characteristic of the relative movement of sticky objects such as e.g. a
violin string and the bow [21]. Nonlinear friction can be induced also when treating the gel as
a viscous fluid. In this case, the coefficient η is an effective friction coefficient given by the
viscosity of the gel, the viscosity of the surrounding fluid and the geometry of the actin cloud.
During the oscillation cycle, the bead experiences a drop in the effective friction coefficient
after it partially escapes the highly viscous actin cloud following the breaking of filament
attachments. The nonlinear friction increases the amplitude of the velocity spikes, but does
not change their frequency or width.

In the examples of figure 2, the friction force was assumed to be piecewise linear, with
the friction coefficient η changing to η/2 when ẏ0 increases above a threshold v1, and changing
back to η when ẏ0 decreases below a second threshold v2. v1 and v2 were chosen to fit the
experimentally measured oscillation amplitude4.

The velocity in the steady regime is independent of the bead radius, in agreement with
measurements [22].

4 F f = η ẏ0, ẏ0 6 v1; 0.5η ẏ0, ẏ0 > v2; η((0.5v2 − v1)ẏ0 + 0.5v2v1)/(v2 − v1), otherwise; v1 = 0.78 µm min−1,
v2 = 0.96 µm min−1.
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Figure 3. Top view of the lamellipodium: the actin network behind the membrane
y(x) has two structurally different parts: the cross-linked gel, toward the cell
center, and the brush of free polymer ends sticking out of the gel, toward the
cell membrane. The boundary between the brush and the gel is described by
yg(x). Filaments attach to the membrane at the rate ka, and attached filaments
detach again at the rate kd. Detached filaments elongate by polymerization with
velocity vp. Cross-linker continuously binds to the free polymer ends, so that the
gel boundary advances at velocity vg.

3. Propulsion of a soft membrane under tension

In contrast to the rigid bead surface, the leading edge membrane of a lamellipodium is a soft
obstacle. The model can be adapted to the lamellipodium by the inclusion of two populations of
filaments n±

a (x, t) and n±

d (x, t) oriented with an angle +θ0 or −θ0 with respect to the direction
of protrusion (see [23, 24]), and a flexible membrane with tension at the leading edge. These
lead to the following equations, which we have previously introduced in [25]:

∂tn±

a = −kd(la, z±)n±

a + kan
±

d ,

∂tl
±

d = vp(l
±

d , y, yg, yx) − ṽg(l
±

d , y, yg) + kdn±

a (n±

d )−1(l±

a − l±

d ),

∂tl±

a = −ṽg(l±

a , y, yg) + kan
±

d (n±

a )−1(l±

d − l±

a ),

∂t yg = [vg(l+
a )n+

a + vg(l+
d )n+

d + vg(l−

a )n−

a + vg(l
−

d )n−

d ]/n,

∂t y =
1

η

∑
i=a,d

∑
j=±

n j
i fi(l

j
i , z j , θ j) + S

yxx

1 + y2
x

 ,

(2)

θ±
= ±θ0 + arctan yx , z±

= (y − yg) cos θ±(cos θ0)
−1,

ṽg(l) = max((cos θ0)
−1, l(y − yg)

−1)vg(l).

The direction of protrusion is defined by the direction y of the cross-linking velocity (see
figure 3). The sum n = n+

a + n−

a + n+
d + n−

d is assumed to be constant. l±

d (x, t) and l±

a (x, t) are
the average free lengths of right/left-oriented detached and attached filaments. y(x, t) describes
the position of the membrane and yg(x, t) the boundary of the cross-linked gel (see figure 3).
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Attachment, detachment, polymerization and cross-linking are as before. θ± denote now the
angles between the filament and the local membrane normal for right/left oriented filaments
and z± denote the distances from the fixed ends to the local tangent. A constant membrane
tension S leads to a force resisting the bending of the membrane that is proportional to the local
curvature.

In [25], we have considered the case of a symmetric network and shown that the model
can reproduce the change in the morphodynamic state found experimentally between epithelial
cells in control conditions and cells expressing constitutively active Rac, a signaling molecule
involved in the regulation of lamellipodium network assembly. Here we outline the complete
spectrum of regimes of motion and transitions shown by the model, including the interesting
case of asymmetric networks.

The lamellipodium model contains two additional parameters compared to the case of a
rigid obstacle: the membrane tension S and the ratio between the total densities of filaments
oriented to the right and left sides. The coefficient a = |n+

a + n+
d − n–

a − n−

d |/(n+
a + n+

d + n−

a + n−

d )

characterizes the asymmetry of the actin network. It has the value 0 when the network is
completely symmetric and 1 when all filaments have only one orientation +θ0 or −θ0.

As shown in [3], the local dynamics (equations (2) with yx = 0) gives rise to oscillations
in the obstacle velocity for a large range of parameter values. The spatially extended
model has a rich dynamics in this oscillatory regime. By varying vmax

p , a and S, we found
one regime where the membrane exhibits synchronous oscillations with periods between
several seconds and 2 min (figure 4(A); see also supplementary material (available from
stacks.iop.org/NJP/13/053040/mmedia) for movies of the corresponding membrane evolution.),
and a second regime with a phase shift between different points of the oscillating membrane,
resulting in laterally traveling waves (figures 4(B) and (C)), which are very similar to those
measured by Döbereiner et al [1]. Both the experimental and the simulated waves show
strong spatial and temporal modulation. The transitions between the three different protrusion
regimes of the membrane—uniform protrusion, synchronous oscillations and traveling waves—
are shown in figure 5. The solid lines mark a type I0 linear instability [26]. Remarkably,
traveling waves are found only for asymmetric networks, and the width of the parameter
domain corresponding to traveling waves increases with increasing asymmetry and decreasing
membrane tension. It can be shown that S and a scale the eigenspectrum of the linear problem
like λ(k; S, a) = λ

(
ak;

S
a2 , 1

)
, where λ(k; S, a) is the complex eigenvalue corresponding to the

wave number k. Hence, a parameter change along a/
√

S = const cannot stabilize or destabilize
the system, but influences only the spatial scale of the pattern.

The local dynamics exhibit regimes with an excitable steady state [27]. This gives rise
to trigger waves (figures 4(C) and (D)) where a local protrusion of the flat, steadily moving
membrane spreads to both sides along the membrane. We identify two cases: in figure 4(C),
the protrusion splits into two waves traveling in opposite directions without changing shape; in
figure 4(D) the perturbation remains localized around the initial site and increases in size, while
small retractions arise periodically at its boundaries and travel to the center.

4. Conclusions

In summarize, we suggest that oscillations in bead and lamellipodium motion arise from the
same mechanism, i.e. the interaction of forces, filament binding to the obstacle surface and
free length dynamics in the polymer brush. The oscillation mechanism can be described as
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Figure 4. Normal velocity maps: (A) vmax
p = 7.5 µm min−1, a = 0.5, S = 5 pN;

(B) vmax
p = 8.4 µm min−1, a = 0.5, S = 5 pN; (C) vmax

p = 8.4 µm min−1, a = 0.8,
S = 5 pN; (D) vmax

p = 9 µm min−1, a = 0, S = 10 pN; (E) vmax
p = 6.6 µm min−1,

a = 0, S = 1 pN. Other parameters have the values given in table 1.
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oscillations like those in figure 4(A) are obtained. Between solid and dashed
lines, traveling waves like those in figure 4(B) are obtained.

arising from instability against perturbations of the number of attached filaments. Decreasing
the number of attached filaments increases the load on the remaining ones, accelerating their
detachment. The pulling force na Fa drops to very small values and the membrane or the bead

New Journal of Physics 13 (2011) 053040 (http://www.njp.org/)

http://www.njp.org/


11

jerks forward. That relaxes all forces and re-attachment starts, thus closing the cycle (see [3, 27]
for details). The essential difference between beads and lamellipodium is that beads experience
much larger viscous forces due to actin gel almost enclosing them. We take this into account by
a large effective drag coefficient η (see table 1).

Our mechanism for velocity oscillations of protein-coated beads shows very good
agreement with experiments on oscillation periods and amplitudes, dependence of bifurcations
on the protein surface density and bead diameter and the independence of bead velocity from
diameter. An explanation of bead velocity oscillations based on an analysis of the elastic
properties of the actin gel shows oscillations to arise from the escape of the bead from
periodically formed stress on the bead surface [4]. Stress builds up because the gel is grown
from a curved surface. The mechanism was compared to the escape of a piece of wet soap from
a fist squeezing it [28]. The soap mechanism works for curved surfaces only. By contrast, our
model predicts that oscillatory behavior is possible also in the case of flat obstacles [3, 27].
The oscillatory mechanism is therefore independent of the obstacle curvature. The particular
geometry considered influences only the parameter values for the transition between steady and
saltatory movements. We hope that our prediction will kindle future experiments for the study
of the regime of motion for flat obstacles.

The soap mechanism relies on nonlinear friction for the generation of oscillations and
predicts that the velocity in the steady regime decreases with increasing bead radius. Our
mechanism, similarly to the soap mechanism, generates oscillations using linear friction, and
predicts that the velocity does not depend on radius. The soap mechanism predicts that the
maximum velocity of oscillations decreases in proportion to the diameter of beads. However,
our mechanism predicts a decrease in amplitude with increasing diameter, reproducing the
experimental data very well.

The ability of our mechanism to explain lamellipodial shape dynamics and its bifurcations
beyond the examples given here has been shown recently [25] in a publication focusing on a
comparison to the experiments reported in [2]. That includes also the waves corresponding to
an excitable regime of the brush dynamics [27]. Simulations reproducing velocity oscillations
observed with Listeria bacteria and oil droplets (including the onset of oscillations due to
changes in the VASP concentration) have been presented in [3, 27]. The basic oscillation
mechanism suggested by our model is the same for all these systems, but the parameter values
are of course system specific. Coupling the model with the actomyosin gel in the bulk allows
us to calculate the force velocity relation and stall forces, which are also in good agreement
with experiments [17]. Hence, our model offers a unifying theory across several systems and
experimental observations.
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