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Abstract

Recent analysis of genetically modified mice deficient in different kainate receptor (KAR) subunits have strongly pointed to a
role of the GluK2 subunit, mediating the vulnerability of the brain towards seizures. Research concerning this issue has
focused mainly on the hippocampus. However, several studies point to a potential role of other parts of the hippocampal
formation, in particular the entorhinal cortex, in the development of epileptic seizures. There is extensive cell death after
such seizures in layer III of the medial entorhinal cortex (LIII mEC), making this region of special interest for investigation into
related pathological conditions. We therefore characterized KAR mediated currents in LIII mEC pyramidal neurons by several
different approaches. Using patch-clamp technique, in combination with glutamate uncaging in horizontal brain slices, we
show that LIII mEC neurons exhibit KAR currents. Use of genetically modified mice reveal that these currents are mediated
by GluK2 containing KARs. The IV curve indicates the predominant presence of a Ca2+ impermeable and edited form of the
KAR. Finally, we show that GluK2 containing kainate receptors are essential for kainate-induced gamma oscillations within
the entorhinal cortex.
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Introduction

Kainate receptors (KARs) have a wide functional spectrum,

ranging from the presynaptic regulation of transmitter release to

the postsynaptic generation of excitatory inward currents [1,2,3].

Furthermore, there is evidence indicating that they are also

involved in brain rhythmogenesis [4,5,6,7,8].

In contrast to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepro-

pionic acid receptors (AMPARs), which have been studied

extensively, the roles and physiological importance of KARs are

less well understood, although they were originally cloned and

described over a decade ago [9,10,11,12] and for reviews see

[2,3,13]. One reason for this lack in our understanding of KAR

function is the limited availability of pharmacological agents that

enable KARs and AMPARs to be functionally distinguished. The

generation of different KAR specific knock-out (KO) mice

partially helped to overcome this drawback [14,15] and their

characterization yielded insights into KAR physiology. The recent

development of the AMPAR selective antagonists GYKI 52466

and GYKI 53655 has also considerably advanced research in the

KAR field.

One particular interesting aspect of KAR mediated action is the

ability of the KAR agonist kainate, which exhibits binding

preference for KARs, to evoke epileptic seizures following in vivo

administration in mice [16]. The interpretation that KAR

activation, rather than unspecific side effects due to activation of

other glutamate receptors, is responsible for this phenomenon is

supported by the fact that GluK2 KO mice have a much higher

threshold for the induction of epileptic seizures [14] as compared

to wild-type mice.

Epileptic seizures can also be evoked by electrical kindling of the

entorhinal cortex or the perforant path (which leads to antidromic

excitation of the entorhinal cortex, EC). For this reason, the EC is

a prime candidate region for the development of temporal lobe

epilepsy (TLE). The extensive interlaminar and intralaminar

connectivity of the EC provide an ideal anatomical network for the

generation of seizures [17]. Additionally, in the later stages of the

development of epilepsy, the EC is one of the first brain regions to

suffer from severe cell death. This holds especially true for LIII

mEC, making this region of special interest for investigation into

the related pathological conditions. Despite this, there has been

relatively little research into the basic features of KAR mediated

transmission in this region.

In this study we demonstrate the occurrence of KAR mediated

currents in LIII mEC pyramidal neurons. These currents are

conducted by GluK2 containing, Ca2+ impermeable receptors.

Methods

Slice preparation
Animal husbandry and experimental intervention were per-

formed according to the german animal welfare act and the

European Council Directive 86/609/EEC regarding the protection

of animals used for experimental and other scientific purposes. All

animal maintenance were performed in accordance with the

guidelines of local authorities, Berlin [T 0100/03]). Wistar rats

and C57/BL6 mice (2–3 weeks) were used for this study. The

GluK1 and GluK2 mice used in this study were raised on a C57/

BL6 background and littermate wildtype mice were used as control

PLoS ONE | www.plosone.org 1 May 2009 | Volume 4 | Issue 5 | e5576



in such experiments. The animals were anaesthetized with

isoflurane, decapitated and brains were rapidly removed and placed

in ice-cold (4uC) oxygenated artificial cerebrospinal fluid (ACSF)

containing (in mM): NaCl (87), NaHCO3 (26), Sucrose (75),

Glucose (25), KCl (2.4), NaH2PO4 (1.25), MgCl2 (7), and CaCl2
(0.5), pH 7.4. Horizontal, combined entorhinal-hippocampal brain

slices (300 mm; 400 mm for oscillation experiments) were cut by

Leica VT 1200 Vibratome (Leica Microsystems, Wetzlar, Ger-

many). Slices were then incubated at 34–35uC for 30 minutes and

thereafter transferred to ACSF containing (in mM): NaCl (119),

NaHCO3 (26), Glucose (10), KCl (2.5), NaH2PO4 (1.25), MgCl2
(1.3), and CaCl2 (2.5), at room temperature or to an interface-type

recording chamber for oscillation experiments.. All ACSF solutions

were equilibrated with carbogen (95% O2 and 5% CO2).

Electrophysiological recordings
Prior to recording, slices were transferred to a submerged

recording chamber (Luigs and Neumann, Ratingen, Germany)

and perfused with oxygenated ACSF at room temperature, with a

perfusion rate of of 2.5–3.0 ml/min. Recording electrodes of 2–

3 MV resistance were pulled from borosilicate glass capillaries

(Harvard Apparatus, Kent, UK; 1.5 mm OD) using a micropi-

pette electrode puller (DMG Universal Puller). Biocytin (0.2%) was

included (for a subset of recorded cells) in the patch pipette to

assess the morphology and correct location of the recorded

neurons following the experiments. The internal solution for all

recordings included (in mM): K-gluconate (135), Hepes (10.0),

EGTA (0.5), KCl (20), MgATP (2.0) and Phosphocreatine (5.0),

with the exception of IV characterization, which included Cs-

gluconate (140), Hepes (10.0), EGTA (1.0), CaCl2 (0.5), and

Glucose (10.0).The osmolarities for the internal solutions were

300–305 mOsm, and the pH was adjusted to 7.2–7.3 with KOH

or CsOH. Whole-cell voltage and current-clamp recording of LIII

mEC pyramidal neurons were performed with an Axopatch 700A

Amplifier (Axon Instruments, Union City, CA, USA). Data were

acquired using a BNC-2090 adapter chassis, digitized (PCI 6035E

A/D Board, National Instruments, Austin, Texas) at 5–10 kHz

and recorded in IGOR Pro (WaveMetrics Inc., OR, USA).

Layer III mEC pyramidal neurons were initially recorded in the

current-clamp mode to identify them according to their charac-

teristic electroresponsive properties [18,19]. Identified neurons

were then held at 260 mV in voltage-clamp mode, and only

recordings from neurons whose series resistances ,30 MV were

used for data analysis.

The whole-cell holding current experiments were done in the

absence of any receptor-blockers unless mentioned otherwise on

the figures.

Excitatory postsynaptic currents (EPSCs) were evoked by

stimulating the layer I of the mEC (LI mEC). Synaptic KARs:

Evoked EPSCs were recorded until the amplitudes of the

responses were stable for a minimum of ten minutes before

control and experimental drug application responses were

obtained for analysis. EPSCKA were pharmacologically isolated

by adding 50 mM D(2)-2-amino-5-phosphonopentanoic acid

(APV), 2 mM Gabazine (SR 95531), 20 mM SCH 50911, (Tocris,

Ellisville, MO, USA), and 20 mM 1-(4-aminophenyl)-4-methyl-

7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI

53655) to inhibit NMDA, GABA-A, GABA-B, and AMPA

receptors respectively. GYKI resistant EPSCs were blocked by

adding 25 mM 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)qui-

noxaline-7-sulfonamide (NBQX). A minimum of ten responses

were recorded under each condition and averaged for analysis.

Evoked EPSC amplitudes were calculated as the difference

between the averaged peak response and the average of the

baseline region (20 ms preceding the stimulus).

Glutamate uncaging: 20 ml of 200 mM MNI-caged-L-gluta-

mate (Tocris, Bristol, UK) were reperfused at 2.5–3.0 ml/min.

Uncaging was done using a UV pulsed laser (Rapp Optoelek-

tronik, Wedel, Germany) attached with a 200 mm optical fiber

coupled into the epifluorescence port of the microscope with an

OSI-BX adapter (Rapp Optoelektronik, Wedel, Germany) and

focused on the specimen by the objective lens. This yielded a

illuminated circle (20–50 mm) covering the whole somatodendritic

region of layer III cell bodies. The duration of the laser flash was

5 ms. The laser power under the objective corresponding to the

stimulus intensity levels used was monitored using a photo diode

array based photodetector (PDA-K-60, Rapp Optoelectronics,

Wedel, Germany) and did not change over time. Glutamate was

uncaged over the cell soma in the presence of all other channel

blockers as mentioned above. In combined experiments where

both the somatic and synaptic currents were recorded, first LI

mEC was stimulated with a stimulation electrode thus evoking a

synaptic response and after 200–300 ms, a laser pulse was flashed

to uncage MNI-glutamate evoking somatic current.

For studying gamma oscillations, slices were stored and recorded

from in the interface-type recording chamber. Extracellular

recording electrode was placed in the superficial layers of mEC

and baseline activity was recorded. Gamma oscillations were

induced by bath applying 300 nM Kainic acid for upto 40 minutes.

Morphology
A subset of electrophysiologically characterized LIII mEC

pyramidal neurons were loaded with 0.2% biocytin and

reconstructed for visualization. Slices were fixed overnight in 4%

paraformaldehyde dissolved in 0.1 M sodium phosphate buffer

(PB, pH 7.4) and incubated for 24 hours in PB supplemented with

Avidin-coupled Alexa 488 (Invitrogen, Karlsruhe, Germany).

After washing with PB the slices were dehydrated with ethanol,

mounted on slides, and covered with DePeX (Serva, Heidelberg,

Germany). Confocal laser scanning images were taken using a

Leica TCS system (Bensheim, Germany).

Statistical treatments
All values in all graphs are presented as mean+/2SEM.

Analyses were performed using IGOR Pro (WaveMetrics Inc.,

OR, USA), SigmaPlot (SYSTAT, Hounslow, UK) and MATLAB

v7.0 (The Mathworks Inc., MA, USA). Statistical comparisons

between groups were performed with Student’s t-test. Results were

considered significant at p,0.05 or p,0.01 (*).

Drugs
Kainic acid, (Kainate, KA); 1-(4-aminophenyl)-4-methyl-7,8-

methylenedioxy-5H-2,3-benzodiazepine hydrochloride (GYKI

53655, henceforth in the manuscript GYKI would refer to GYKI

53655 unless mentioned otherwise); D(2)-2-amino-5-phosphono-

pentanoic acid (APV); 6-Imino-3-(4-methoxyphenyl)-1(6H)-pyri-

dazinebutanoic acid hydrobromide (Gabazine); (2S)-(+)-5,5-Di-

methyl-2-morpholineacetic acid (SCH 50911); 2,3-dioxo-6-nitro-

1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfonamide (NBQX) and

6-Chloro-3,4-dihydro-3-(5-norbornen-2-yl)-2H-1,2,4-benzothiazi-

diazine-7-sulfonamide-1,1-dioxide (Cyclothiazide, CTZ) were all

purchased from Tocris Bioscience (Ellisville, MO, USA).

Results

The entorhinal cortex is a six-layered cortical structure (Layers

(L) I–V/VI; figure 1A) and the LIII mEC pyramidal neurons are

KAR Currents in mEC
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Figure 1. Layer III medial entorhinal cortex (LIII mEC) pyramidal neurons. (A) Schematic representation of the entorhinal-hippocampal
combined slice used in this study with the recording electrode (Recording) in LIII mEC while stimulating (Stimulation in LI mEC) the input from the
lateral entorhinal cortex. (B) Electrophysiological and morphological properties of a typical LIII mEC pyramidal neuron. (C) In situ hybridization of
GluK2 subunit of kainate receptor in the mEC. Data adapted from the Allen Atlas, Allen Institute of Brain Science.
doi:10.1371/journal.pone.0005576.g001

KAR Currents in mEC
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easily distinguishable from all other entorhinal neurons based on

anatomical location, morphology and characteristic electrophysi-

ological properties ([18,19], figure 1B). For this study we

performed whole cell recordings from these neurons (figure 1A –

experimental design). Furthermore, there is a mosaic like

distribution of kainate receptors in the mEC both in terms of

the subunit composition and layer-wise localization (figure 1C -

GluK2 subunit; Adapted from the Allen Atlas, Allen Institute of

Brain Science.), thereby offering an interesting prospect to study

KAR mediated currents in the LIII mEC pyramidal neurons.

Kainate concentration dependent changes in whole-cell
holding current of LIII mEC pyramidal neurons

KA activates non-NMDARs (AMPARs and KARs) with

different affinities. Low concentrations of KA (300 nM) activate

only KARs while at higher concentrations (1 mM) it acts as an

agonist for both AMPARs and KARs [14].

Concentration dependent successive activation of non-NMDARs

leads to conductance changes of the cell, reflected in corresponding

changes in its holding current. After attaining whole-cell configu-

ration (at 260 mV) a baseline of holding current was obtained,

following which increasing concentrations (100 nM, 300 nM, 1 mM

and 3 mM) of KA were bath applied for five minutes each. Further

increase of KA leads to severely depolarized cells and unstable

recordings and was therefore omitted. The changes in holding

current (figure 2A - single cell with voltage-clamp transients

corresponding to baseline, 300 nM, 3 mM and NBQX; 2B - group

data, n = 6) at the end of the five minute KA bath application were

53.54613.95 pA at 100 nM, 131.79618.98 pA at 300 nM,

201.64620.55 pA at 1 mM and 303.58633.25 pA at 3 mM. The

KA-induced holding current change was reduced after washing in

25 mM NBQX, indicating that non-NMDARs were involved.

KAR mediated currents in LIII mEC pyramidal neurons
To study KAR mediated currents in LIII mEC pyramidal

neurons it is necessary to isolate this current from the combined

current mediated by AMPARs and KARs. Since KA activates

both AMPARs and KARs at different concentrations, it was

necessary for us to determine the particular KA concentration at

which only KARs are activated. Inititially, two different KA

concentrations (300 nM and 1 mM) were applied subsequently

followed by GYKI (20 mM) while monitoring holding current

changes (figure 2C). Since GYKI showed an effect on the holding

current following the 1 mM KA wash-in, it suggested that at this

concentration AMPARs are activated along with KARs. This is

summarized below and in figure 2F. Therefore, to isolate a pure

KAR-mediated change in holding current, only the lower

concentration of 300 nM KA was bath applied in separate

experiments. The holding current changed by 181.58623.83 pA,

following washout of KA, 20 mM GYKI was applied for 5 minutes

and then 300 nM KA was reapplied (figure 2D–E, n = 4). On

applying 300 nM KA for the second time, the holding current

changed by 174620.7 pA. Since the changes in holding current in

the absence and presence of AMPA receptor blocker, GYKI was

not significiantly different, these changes are therefore mediated

predominantly by KARs (figure 2F, n = 4). At 1 mM KA,

substantial amount of AMPARs were activated as there was a

significant difference in holding current before (229.3634.5 pA)

and after (130.9638.8 pA) washing in GYKI (figure 2F, n = 4).

Since at 1 mM KA, AMPA receptors were also activated along

with KARs, 300 nM KA was chosen as the working concentration

which activated only KARs and no AMPA receptors for LIII mEC

pyramidal neurons.

KAR-mediated currents were also analysed in LII mEC stellate

neurons. We found smaller holding current changes following

application of 300 nM KA, in the presence of GYKI, in stellate

cells (108.8615.4, n = 7) in comparison to pyramidal neurons

(1746.20.7, n = 4) in layer III (figure S1B). However, this could be

due to differences in membrane capacitance. Indeed, stellate cells

have a smaller capacitance in comparison to layer III pyramidal

neurons [20]. In a small number of neurons we analysed the

current densities between the two neuronal populations, but could

not detect any siginificant difference (LII stellate: 0.6360.17 pA/

pF; LIII pyramidal neurons: 0.7560.08 pA/pF; p = 0.57; n = 3 for

each cell type).

GluK2 is the major subunit mediating the KAR current in
LIII mEC pyramidal neurons

KARs have different expression patterns at different synapses

and also the composition of subunits vary. In order to determine

the role of GluK1 and GluK2 subunit in the KAR mediated

current in the LIII mEC neurons, GluK1 and GluK2 KO mice

were used. By bath applying 300 nM KA, the holding current in

the GluK1 KO changed by 118.13619.73 pA which was not

significantly altered (p = 0.181) when compared to the changes

observed in wild-type mice (86.8267.4 pA, n = 4 each for GluK1

KO and WT). However, in the GluK2 KO there was no change in

holding current over the whole duration of bath application of

300 nM KA (figure 3A – single cell data; 3B – group data, n = 9

for GluK2 KO). This suggests that GluK2 is the major subunit

mediating the KAR currents in the LIII mEC pyramidal neurons.

Characterization of the KARs
RNA editing (Q/R editing) of KARs influences channel

properties. The unedited form of the receptor with glutamine

(Q) at the Q/R site renders the channel permeable to Ca2+

whereas the edited form of the receptor with the positively charged

arginine (R) makes it Ca2+ impermeable [21,22,23]. To determine

whether the KARs present on the LIII mEC pyramidal neurons

were of the edited or non-edited form, an IV curve was computed

by uncaging 200 mM MNI-Glutamate over the cell soma in the

presence of 100 mM APV, 2 mM Gabazine and 20 mM GYKI

(figure 4C–D). Initially the cell was held at 260 mV and a baseline

of stable responses (20 to 25 sweeps, pulse of 5 ms duration at an

inter-stimulus interval of 30 seconds) was obtained in the presence

of ACSF containing APV and Gabazine only. After washing in

GYKI, the isolated KAR current was 34.32% (62.05%) of the

baseline value (figure 4A, n = 5). This remaining current in GYKI

were mediated by KARs because they were blocked completely by

NBQX (25 mM; data not shown).

For the IV curve of the KARs, the holding membrane potential

was changed in steps of 20 mV from 260 mV to 40 mV and at

each step, five responses were recorded. Posthoc analysis was

performed by averaging these five responses. Calculated junction

potential of 10 mV was subtracted from the holding membrane

potential. A linear relationship between voltage and current, both

at negative and positive potentials (figure 4C–D, n = 7) suggested

the KARs on LIII mEC pyramidal neurons to consist mostly of the

Ca2+ impermeable edited form. To prove that the IV curve was

for purely KAR mediated responses, at the end of each

experiment, cells were brought back to a holding membrane

potential of 260 mV and either 10 or 100 mM Cyclothiazide

(CTZ) was added. There was no potentiation of the response on

washing in 10 mM CTZ proving that there was no contribution of

AMPARs. However, at a higher CTZ concentration (100 mM),

the drug antagonizes GYKI [24] and therefore a large

potentiation of AMPARs was seen in this case (figure 4B, n = 4

KAR Currents in mEC

PLoS ONE | www.plosone.org 4 May 2009 | Volume 4 | Issue 5 | e5576



Figure 2. Kainate (KA) induced changes in whole-cell holding current and activation threshold of kainate receptors (KARs) on LIII
mEC pyramidal neurons. (A, B) Time course data for KA (100 nM, 300 nM, 1 mM and 3 mM) induced concentration dependent changes in the
whole-cell holding current which is antagonized by NBQX (25 mM). (A) Single experiment with voltage-clamp transients corresponding to baseline,
300 nM, 3 mM and NBQX. (B) Group data (n = 6). (C) Time course data from a single experiment for two different KA concentrations (300 nM and
1 mM) with subsequent application of GYKI (20 mM) and NBQX (25 mM). (D, E) Time course data for determining the activation threshold of kainate
receptors on LIII mEC pyramidal neurons. The change in the whole-cell holding current by bath application of 300 nM of KA was reversible and
following treatment with GYKI (20 mM), 300 nM KA was applied for a second time. Holding current decreased to the same amplitude indicating that
at a concentration of 300 nM KA, no AMPA receptors are activated. (D) Single experiment. (E) Group data (n = 4). (F) While there is no effect of GYKI
(20 mM) on holding current at 300 nM KA (p = 0.344; n = 4) there is a significant effect at 1 mM KA (p,0.05; n = 4).
doi:10.1371/journal.pone.0005576.g002

KAR Currents in mEC
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and 6 for 10 mM and 100 mM CTZ respectively). In separate

experiments, 10 mM CTZ was added to mixed AMPAR and KAR

responses and this concentration was sufficient to potentiate any

existing AMPAR component in the response (data not shown).

Synaptic activation of KARs
To investigate the contribution of synaptic KARs to the

observed currents, recorded LIII mEC pyramidal neurons in the

whole-cell mode were stimulated by placing a stimulation

electrode in LI mEC. In this region, the distal apical dendrites

of the LIII mEC pyramidal neurons synapse onto the input

pathways from the lateral EC. Baseline EPSCAMPA+KA was

recorded in the presence of ACSF containing 50 mM APV,

2 mM Gabazine and 20 mM SCH 50911. After a stable baseline

response, 20 mM GYKI was washed in to isolate EPSCKA

(figure 5A, n = 8). The EPSC was blocked in GYKI. Since there

was no EPSCKA in the recorded neurons, the apparent conclusion

was that there were no synaptic KARs activated upon stimulation

of this pathway. To verify this finding high frequency stimulations

(5 pulses at 200 Hz, 10 pulses at 200 Hz, 5 pulses at 25 Hz and 10

pulses at 25 Hz; [25] were performed in the presence of GYKI.

There was no detectable EPSCKA under these stimulation

conditions indicating the absence of synaptic KARs in the distal

dendritic region (figure 5B).

In a further experiment, synaptic stimulation in LI mEC was

combined with glutamate uncaging, thereby recording first a

synaptic current and thereafter a somatic current from the same

cell while all other conditions remained constant. After washing in

GYKI, the somatic current was reduced to 30.96%64.45% of the

baseline value while the synaptic current was blocked (data not

shown).

Our data suggests that there is negligible contribution of

synaptic KARs upon stimulating LI mEC. However, a KAR

current was evoked by uncaging glutamate over the cell soma

indicating that the functional KARs could be limited to the

somatodendritic region of LIII mEC pyramidal neurons. It has

been shown that the distribution of KARs can be pathway specific

[25,26]. To determine, whether any other input pathway would

yield a significantly higher proportion of synaptic KAR mediated

current, we stimulated at the border of LII–III mEC. When

kainate currents were isolated in the presence of GYKI, a GYKI

resistant component was seen (10.24%61.1% of baseline), which

was blocked by NBQX (figure 5C, n = 5). Thus by stimulating a

different pathway, a EPSCKA could be evoked in LIII mEC

pyramidal neurons. In an additional experiment, the stimulation

electrode was first placed in LI mEC, thereby evoking no

EPSCKA. However, relocating the electrode within the same

experiment to a second position at the border of LII–III mEC

without increasing the stimulation intensity, EPSCKA was evoked

in the same cell (14.31%64.7% of baseline; data not shown).

Taken together, the data suggests the presence of KARs limited

to the somatodendritic region of LIII mEC pyramidal neurons

(somatic uncaging and LII–III stimulation) and a clear lack of

KARs in the distal dendrites.

Role of GluK2 in network synchrony
Oscillations in the gamma frequency are recordable from the

entorhinal cortex in humans and rodents. It was recently shown

that the medial entorhinal cortex (mEC) in isolation in vitro

generates gamma frequency oscillations in response to kainate

receptor agonists [4]. Importantly, these kainate-induced oscilla-

tions in vitro had the same horizontal and laminar spatiotemporal

distribution as seen in vivo.

We observed during whole-cell patch-clamp recordings from

LIII mEC pyramidal neurons, rhythmic postsynaptic currents

following the application of low doses of kainate. Figure 6A1 shows

an example in which under baseline conditions little spontaneous

activity was recorded. However, following the application of

300 nM KA a massive increase in spontaneous postsynaptic

currents was observed, which had a frequency content of about

10–12 Hz (Figure 6A1, n = 7). In comparison such a synchronised

increase in spontaneous postsynaptic currents was absent in the

GluK2 KO mice upon bath applying KA (fig 6A2, n = 7).

Next, we made local field potential recordings within the

superficial layers of the entorhinal cortex. These recordings were

done in an interface chamber, a condition which improves the

reliability and enhances the power of network oscillations. Low

concentrations of kainate (300 nM), indeed, induced robust

oscillations. Power spectra analysis revealed a major peak

frequency of 40 Hz (fig 6B1, n = 8 slices). The kainate-induced

oscillations in the entorhinal cortex were blocked by the KAR/

Figure 3. Genetic deletion studies to determine the role of
GluK1 and GluK2 subunits in the KAR mediated current on the
LIII mEC pyramidal neurons. (A, B) By bath applying 300 nM KA,
the holding current in the GluK1 KO did not change significantly when
compared to the wild-type mice (p = 0.181; n = 4). However, no change
in holding current was observed for GluK2 KO (n = 9) upon bath
applying 300 nM KA indicating that the GluK2 is the predominant KAR
subunit responsible for mediating the observed KAR current in these
neurons. (A) Single experiment. (B) Group data.
doi:10.1371/journal.pone.0005576.g003

KAR Currents in mEC
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AMPAR-antagonist NBQX. Further, we again made use of the

GluK2 KO mice. Figure 6B2 (n = 7 slices) shows that the kainate-

induced oscillations were completely abolished in the genetic

deletion model.

Discussion

This study focuses on the layer III of the medial entorhinal

cortex, which provides input to the hippocampal CA1 region and

subiculum via the perforant path. Since this particular layer suffers

from extensive neuronal cell death after epileptic seizures

[27,28,29,30], characterization of its synaptic connectivity and

modes of synaptic transmission are of critical interest. We show

that KAR mediated currents could be evoked in LIII mEC

pyramidal neurons. These currents possess properties of Ca2+

impermeable KARs and were mediated by GluK2 containing

receptors.

KARs can be localized both post- and pre-synaptically.

Postsynaptically they facilitate synaptic currents and influence

signal integration [31]. Presynaptically they regulate transmission,

e.g. by decreasing the probability of transmitter release. Bath

application of KA evoked a reversible increase in the holding

Figure 4. IV curve and characterization of kainate receptors on LIII mEC pyramidal neurons using photolytic uncaging of
glutamate. (A) Photolytic uncaging of glutamate at the cell soma elicited inward currents, which were reduced to 34.32% (62.05%; p,0.01; n = 5)
of the baseline value in the presence of GYKI (20 mM). (B) At 20 mM of GYKI no residual AMPA current is seen as there is no potentiation of the
resultant EPSC upon application of AMPAR desensitization blocker CTZ (10 mM; p = 0.956; n = 4). However, at a higher concentration of CTZ (100 mM),
the effect of GYKI is antagonized (p,0.01; n = 6). In the presence of GYKI, APV and Gabazine, the holding membrane potential was changed in steps
of 20 mV from 260 mV to 40 mV and at each step, 5 responses (5 laser flashes with a inter-stimulus interval of 30 seconds) were recorded by
uncaging glutamate over the cell soma. (C) The peak current for each individual cell (n = 7) is plotted against the membrane potential along with the
corresponding superimposed current traces (inset). (D) Group data (n = 7). A linear relationship between voltage and current, both at negative and
positive potentials suggested the KARs on LIII mEC pyramidal neurons to be mostly of the Ca2+ impermeable edited form.
doi:10.1371/journal.pone.0005576.g004
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current, which could also be observed in the presence of the

specific AMPAR blocker GYKI 53655, indicating a KAR

mediated effect. We determined that at a concentration of

300 nM KA, KARs are selectively activated. Although the subunit

composition of individual KARs is not completely clear, ionotropic

KARs often include either GluK1 or GluK2 subunits [2,3,13,32].

Using genetically modified mice lacking either GluK1 or GluK2,

we have shown unambiguously that GluK2 and not GluK1

subunit contribute to the recorded KAR currents. Since there is

considerable presence of transcripts of other kainate receptor

subunits (GluK3, GluK4 and GluK5; [12,33]), one cannot exclude

the contribution of heteromeric GluK2 KARs towards the

observed kainate current.

Laser mediated glutamate uncaging in the somatic region of

LIII mEC pyramidal neurons reliably produced KAR mediated

currents in the presence of GYKI and were blocked by the

application of NBQX. Additional evidence that these current was

mediated exclusively by KAR was provided by the fact that the

remaining current was unaltered during application of the

AMPAR desensitization blocker CTZ.

The AMPAR subunit GluA2 as well as the KAR subunits

GluK1 and GluK2 can undergo Q/R editing, a process

determining the calcium permeability, rectification and conduc-

tance of the ion channels [21,22,23]. Whereas GluA2 editing

seems to be almost complete in the adult animal, and disruption of

the editing process is lethal [34,35], KAR editing increases only to

a degree of 60–80% during development [21,22,23] and

interfering with GluK1 editing showed only a mild phenotype

[36]. On the other hand, analysis of mutant mice which do not

undergo GluK2 editing show NMDAR independent LTP at the

EC-DG synapse as well as an increased vulnerability to seizures

[37], arguing for a developmental need to down regulate the

unedited Ca2+ permeable GluK2 receptors and replace them by

edited ones.

These considerations, together with the potential role of the EC

in epilepsy led us to investigate whether the dominating

Figure 5. Pathway specific activation of synaptic KARs in LIII mEC pyramidal neurons. (A, B) Recorded LIII mEC pyramidal neurons were
held in the whole-cell mode while stimulating the afferent pathway LI mEC. (A, lower panel) In the presence of GYKI (20 mM), no synaptically
evoked EPSCKA is detected (n = 8) as seen in an example trace from a single experiment. (B) High frequency stimulations (5 pulses at 25 Hz, 10 pulses
at 25 Hz, 5 pulses at 200 Hz and 10 pulses at 200 Hz) were performed in the presence of GYKI. There was no detectable EPSCKA under these
stimulation conditions as well indicating the absence of synaptic KARs upon stimulation of this pathway. (C) To determine, whether any other input
pathway would yield a significantly higher proportion of synaptic KAR mediated current, we stimulated at the border of LII–III mEC. In the presence of
GYKI, an EPSCKA was observed (10.24%61.1% of baseline; n = 5) as seen in an example trace from a single experiment (C, lower panel). Thus by
stimulating a different pathway, a EPSCKA could be evoked on LIII mEC pyramidal neurons, suggesting the existence of synaptic KARs in a pathway
specific manner.
doi:10.1371/journal.pone.0005576.g005
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electrophysiological phenotype of LIII mEC pyramidal neurons is

of the unedited, rectifying and Ca2+ permeable form or not.

It turned out that the majority of these channels consist of non-

rectifying channels, suggesting that the critical receptor subunit is

of the edited form. As a functional consequence, a large proportion

of these receptors are Ca2+ impermeable. Although not very much

is known about the physiological role especially of KAR Q/R

editing [23], they might play a role in certain pathologic

conditions. For example, abnormalities in the ratio of the

unedited/edited forms have been reported as a consequence of

ischemia [38]. Furthermore, analysis of AMPAR and KAR editing

ratio in epileptic patients revealed differences in various brain

regions, suggesting a possible involvement of the editing process in

this disease [39,40,41,42]. It would be of interest to investigate a

potential role of GluK2 editing in the developmental course of

epilepsy in the EC.

We tried to evoke synaptic KAR mediated responses by

stimulating the inputs from the lateral EC by placing a stimulation

Figure 6. Role of GluK2 in network synchrony. (A1) Rhythmic postsynaptic currents were recorded from WT mice (n = 7) following the
application of 300 nM KA which had a frequency content of about 10–12 Hz. (A2) In comparison such a synchronised increase in spontaneous
postsynaptic currents was absent in the GluK2 KO mice (n = 7). (B1, B2) Local field potential recordings within the superficial layers of the entorhinal
cortex were done in an interphase chamber to record KA-induced gamma oscillations. (B1) Low concentrations of KA (300 nM) induced robust
oscillations (n = 8 slices). Power spectra analysis revealed a major peak frequency of 40 Hz. The KA-induced gamma oscillations were blocked by the
KAR/AMPAR-antagonist NBQX. (B2) Gamma oscillations were completely abolished in the GluK2 KO mice (n = 7 slices).
doi:10.1371/journal.pone.0005576.g006
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electrode in LI mEC. Although we could reliably evoke AMPAR

mediated synaptic transmission, which confirmed intact connectiv-

ity in our working stimulation conditions, no detectable synaptic

current was found after blocking AMPAR mediated currents with

GYKI. This argues against synaptically localized KARs, at least in

the distal apical dendrite of layer III cells. A similar phenomenon

was observed by [25], showing little synaptic transmission after

blockade of AMPAR mediated transmission at mossy fibre synapses

in the CA3 region of the hippocampus. However, short high

frequency stimulation during AMPAR blockade (in the presence of

GYKI) in this study lead to a potentiation of the KAR mediated

currents. One possible interpretation of these results would be the

existence of extrasynaptic KARs that could only be activated by

glutamate spillover resulting from synchronous activation of

excitatory fibres. To test whether this scenario also holds true for

the layer I input to the layer III mEC cells, several similar high

frequency protocols were applied. There was no detectable KAR

mediated current observed in any case. The most straightforward

interpretation of these results is that the distal apical dendrite of

layer III cells is devoid of KARs. Also recently, astrocytic glutamate

release has been implicated in extrasynaptic activation of neuronal

KAR [43], offering a potential explanation and functional role for

these receptors, in addition to activation via spillover of synaptically

released glutamate after intense stimulation.

However, moving the stimulation electrode to the LII–III

border reliably yielded synaptic responses in the presence of

GYKI. Based on these results, we conclude that LIII mEC has

functional KARs that contain GluK2 and are restricted to the

somatodendritic region of the pyramidal neurons in this layer.

Recent studies [44,45] show that LIII mEC neurons show small

but significant residual synaptic currents after blocking AMPAR

mediated currents via the application of 100 mM GYKI 52466 by

stimulating at the border of LII–III. These responses could be

potentiated by brief high frequency stimulation. The present study

confirms one of the results obtained there, namely the existence of

KAR mediated synaptic currents evoked by LII–III stimulation.

Furthermore we extend their findings by identifying the

responsible KAR subunit involved, no synaptic KAR current

upon LI stimulation and that a KAR current is evoked upon

stimulating at the border of LII–III mEC.

We have shown that GluK2 containing KAR-mediated synaptic

currents are exclusively restricted to the somatodendritic region of

LIII mEC pyramidal neurons, where they are most likely boosting

excitatory synaptic transmission, as reported for other synapses

[31]. Furthermore, there is connectivity between superficial and

deeper layers and within layer III itself [17]. Also LIII mEC

neurons project via the perforant path to the CA1 and Subiculum

region. Boosting and prolonging the influx of positive charges

during stimulation might be an important mechanism influencing

the time window required to form long term association between

different inputs arriving in this region. The observed localization

of KAR mediated currents might also be an explanation for the

almost complete loss of LIII mEC pyramidal neurons, often

observed in experimental models of epilepsy.

Changes in the power of gamma oscillations have been reported

to occur in animal models of psychiatric diseases [5]. Although this

is a purely correlative observation, it is interesting to note that

these alterations occurred exclusively in the entorhinal cortex and

not in the hippocampus. In addition oscillatory behaviour in

neuronal circuits might be related to cognitive performance and

pathological mental states [46], as suggested by the action of

several clinically used drugs. The idea of involvement of KAR in

cognitive processes is furthermore supported by genetic studies

which have identified mutations in GluK2 as a potential cause for

mental retardation [47].

Analysing the cellular and subcellular distribution and proper-

ties of these receptors and investigating their functional role in

network behaviour such as oscillations will therefore most

probably provide insights into underlying physiological mecha-

nisms of cortical and cognitive function and their pathophysiolgo-

gical alterations.

Supporting Information

Figure S1 Kainate (KA) induced changes in whole-cell holding

current of KARs on LII mEC stellate neurons. (A) Electrophys-

iological and morphological properties of a typical LII mEC

stellate neuron. (B) Upon application of 300 nM KA, LII stellate

neurons (n = 7) depolarised to a significantly lesser degree as

compared to LIII pyramidal neurons (p,0.01; n = 4). (C) Time

course data from a single experiment of the whole-cell holding

current of a LII stellate neuron upon bath application of 300 nM

of KA in the presence of GYKI (20 mM).

Found at: doi:10.1371/journal.pone.0005576.s001 (0.63 MB TIF)
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