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Abstract

Human dynamin-1-like protein (DNM1L) is a GTP-driven molecular machine that segregates mitochondria and peroxisomes.
To obtain insights into its catalytic mechanism, we determined crystal structures of a construct comprising the GTPase
domain and the bundle signaling element (BSE) in the nucleotide-free and GTP-analogue-bound states. The GTPase domain
of DNM1L is structurally related to that of dynamin and binds the nucleotide 59-Guanylyl-imidodiphosphate (GMP-PNP) via
five highly conserved motifs, whereas the BSE folds into a pocket at the opposite side. Based on these structures, the
GTPase center was systematically mapped by alanine mutagenesis and kinetic measurements. Thus, residues essential for
the GTPase reaction were characterized, among them Lys38, Ser39 and Ser40 in the phosphate binding loop, Thr59 from
switch I, Asp146 and Gly149 from switch II, Lys216 and Asp218 in the G4 element, as well as Asn246 in the G5 element. Also,
mutated Glu81 and Glu82 in the unique 16-residue insertion of DNM1L influence the activity significantly. Mutations of
Gln34, Ser35, and Asp190 in the predicted assembly interface interfered with dimerization of the GTPase domain induced by
a transition state analogue and led to a loss of the lipid-stimulated GTPase activity. Our data point to related catalytic
mechanisms of DNM1L and dynamin involving dimerization of their GTPase domains.
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Introduction

Members of the dynamin superfamily comprise a family of

conserved GTPases, which are mostly found in the eukaryotic

kingdom and mediate functions typically related to membrane

remodeling [1,2]. A defining feature of dynamin superfamily

members is a large GTPase domain of roughly 300 amino acids,

which distinguishes it from other signaling GTPases. Despite

variations in size, the GTPase domains of most dynamin

superfamily members contain five conserved GTP-binding motifs

(G1-5), similar to small Ras-like GTPases [3]. The P-Loop (G1) or

GXXXXGKS/T motif is also present in ATPases (Walker A

motif) and functions as a coordinator of the phosphate groups of

the bound nucleotide [4]. A conserved threonine in switch-I (G2)

and the conserved residues DxxG of switch-II (G3) are involved in

Mg2+ binding and GTP (Guanosine-59-triphosphate) hydrolysis.

These regions are rather flexible in the GDP-bound form but are

stabilized in GTP-bound state [5]. The nucleotide binding affinity

of dynamins is typically low, with specificity for GTP provided by

the mostly conserved N/TKxD motif (G4) [2,3]. The G5-motif is

involved in binding the ribose moiety.

Although dynamins display a rather high basal GTP turnover

rate, additional stimulation (10–100-fold) has been observed for

some superfamily members due to self-assembly and lipid-binding

[2,6–8]. GTP hydrolysis results in conformational changes that

might be necessary for their function as mechanochemical

enzymes [8–12].

Besides the GTPase domain, dynamin superfamily members

share at least two more characteristic sequences: a middle domain

and a C-terminal GTPase effector domain (GED) [1,2]. These

sequences constitute two distinct domains, the stalk and the bundle

signaling element (BSE). The latter comprises three helices located

at the N- and C-terminus of the GTPase domain and at the C-

terminus of the GED, respectively [8,13]. The BSE was proposed

to mediate nucleotide-dependent conformational changes from the

GTPase domain to the stalk and to regulate dynamin activity in

membrane fission [12,14]. The middle domain and the amino-

terminal portion of the GED form an antiparallel four-helix

bundle, the stalk of dynamin superfamily proteins [15–17]. This

stalk mediates dimerization and tetramerization, and the forma-

tion of higher-ordered structures, such as rings or spirals [18–20].

Lipid binding motifs, such as the PH domain in dynamin or the

lipid-binding loop L4 in MxA, are situated at the tip of the stalk, at

the opposite end of the GTPase domain [20].

Despite their shared structural and biochemical properties,

dynamin superfamily members possess distinct differences in their
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domain architecture related to their diverse cellular functions [1].

For example, human dynamin-1-like protein (DNM1L, formerly

dynamin-related protein 1, Drp1) and optic atrophy 1 (OPA1)

have essential roles in controlling mitochondrial dynamics.

DNM1L is targeted from the cytoplasm to the outer mitochondrial

membrane (MOM) and is a key player in mitochondrial fission

[21]. Similarly, DNM1L has a major role in the segregation of

peroxisomes [22]. While DNM1L possesses the typical features of

the dynamin superfamily, its domain organization includes a

sequence insertion of 80 to 130 amino acids between the middle

domain and GED. This so-called insert B, or variable domain

(VD), displays low sequence conservation and its function has yet

to be elucidated in detail. Recently, it has been proposed that

alternative splicing and posttranslational modifications within the

VD indirectly regulate enzyme activity [23]. Such modifications

include phosphorylation, ubiquitination, SUMOylation and S-

nitrosylation. The exact mechanisms and effects of these

posttranslational modifications on DNM1L activity are contro-

versial. However, it is apparent that tight regulation of DNM1L is

necessary to ensure proper mitochondrial function, as abnormal

DNM1L activity is associated with excessive mitochondrial fission

in various neurodegenerative diseases. Therefore, DNM1L is

considered as a potential therapeutic target [24–26].

The proposed mechanism for DNM1L in mitochondrial fission

shows similarities to the role of dynamin-1 in endocytosis [1].

Similar to dynamin-1, DNM1L exists in a dimer-tetramer-

equilibrium in solution [27,28]. Intracellular cues direct DNM1L

to the mitochondrial outer membrane (MOM) where it forms

higher-ordered oligomers, which are visible as punctate structures

[29]. Interestingly, some DNM1L clusters are located at future

mitochondrial scission sites, which are hallmarked by endoplasmic

reticulum (ER) contacts [30]. Although a known lipid-binding

domain, like the dynamin-1 PH-domain, is missing, in vitro studies

showed that DNM1L and the yeast homologue DNM1 bind to

negatively charged lipids [1,31–33]. Membrane-anchored pro-

teins, such as the mitochondrial fission factor 1 (Fis1) and the

membrane fission factor (MFF), have been proposed to mediate

DNM1L-membrane binding [34,35]. Further studies, mainly with

yeast DNM1, revealed that the addition of a non-hydrolyzable

GTP analog triggers DNM1 self-assembly, while an excess of

hydrolyzable GTP causes dissociation of the complex [36]. These

findings suggest that GTP binding, but not GTP hydrolysis, is

necessary for lipid-free DNM1L assembly. Electron microscopy

studies demonstrated that nucleotide-free yeast DNM1 and

human DNM1L form large helical spirals with a diameter of

,120 nm around lipid tubes [32,33]. Constriction of these spirals

to smaller diameters and dissociation from the lipid layer was

observed in the presence of GTP. It was therefore suggested that

GTP hydrolysis is the driving force for intra-molecular rearrange-

ments, which are necessary for mitochondrial fission events [32].

Comparison of the cryo-EM structures of DNM1 in the

constricted and non-constricted forms revealed differences to

dynamin-1 assembly and constriction mechanisms [32,33].

In the current manuscript, we report the crystal structures of

human DNM1L GTPase-BSE fusion protein in the nucleotide-

free form and in the presence of a non-hydrolyzable GTP

analogue, 59-Guanylyl imidodiphosphate (GMP-PNP). The struc-

tural comparison of DNM1L with other dynamin superfamily

members led to the identification of highly conserved active site

residues, which in dynamin-1 and A. thaliana Drp1A are required

for the basal and liposome-stimulated GTPase reaction [8,37].

These residues were systematically mutated to alanine in DNM1L

and the resulting mutants kinetically characterized. In addition,

residues involved in GTPase domain dimerization and in the

unique 80-loop were mutated and functionally analyzed. Based on

our detailed structure-function map of the DNM1L active site, we

postulate a common mechanism in the GTPase reaction of

DNM1L and dynamin-1.

Materials and Methods

Cloning and Protein Purification
Cloning, expression and purification of the human DNM1L

GTPase-GED (GG) fusion construct was performed as described

previously [38]. It starts with the N-terminal Met1 and terminates

with an artificial LEHHHHHH-tag at the C-terminal Trp736,

corresponding to the numbering of DNM1L isoform 1. Several

mutations were introduced into full-length DNM1L isoform 2 in

pET21 (GenBank Accession Number NM_012063.2) either by

overlap PCR (Q34A, S35A, K38A, S39A, S40A, E81A, E81A/

E82A, D146A, D190A, K216A, D218A, N246A) or round the

horn cloning (T59A, G149A). Expression and purification of

DNM1L full-length and mutants was performed as described

elsewhere [39].

Protein Crystallization, Data Collection and Processing
Nucleotide-free protein crystals were obtained after 3–5 days in

a buffer containing 0.1 M sodium citrate pH 5, 27.5% PEG 3000

as described [38]. 1 ml reservoir solution was mixed with 1 ml of

protein solution (1.2 mg ml21) and equilibrated against a reservoir

volume of 400 ml in a 24-well plate (Hampton Research). Co-

crystallization of DNM1L with a non-hydrolyzable GTP analog

was attempted with protein samples that were incubated with

1 mM GMP-PNP (59-Guanylyl imidodiphosphate hydrate) and

4 mM MgCl2, and then purified by gel filtration. However, this

procedure led to the dissociation of the nucleotide (see results

section on determinants of GTPase domain dimerization).

Correspondingly, protein crystals grew under the same conditions

as nucleotide-free protein crystals and were of similar shape and

size. In order to ensure nucleotide binding of the DNM1L GG

fusion protein, crystals were soaked supplementary for 2 min by

adding solid GMP-PNP powder to the crystallization drop. Both

nucleotide-free and nucleotide-bound protein crystals were flash-

cooled in liquid nitrogen without additional cryo-protectant.

Diffraction data were collected on beamline BL14.1 operated by

the Helmholtz-Zentrum Berlin (HZB) at the synchrotron BESSY

II (Berlin-Adlershof, Germany) [40]. Diffraction images were

recorded at a wavelength of 0.91814 Å using a Rayonics MX-225

363 CCD detector. Both data sets were integrated with iMosflm

1.0.7 and scaled with SCALA 3.3.20 for orthorhombic crystals of

space group P21212 with cell constants around 53 Å (a), 151 Å (b),

and 43 Å (c) for a maximum resolution of 2.3 Å [41,42]. See

Table 1 for detailed values.

Phasing and Refinement
Molecular replacement searches were performed with PHASER

(version 2.3.0) by using the coordinates of human dynamin-1 (PDB

code 3SNH), comprising only the GTPase and BSE domain [43].

A solution with one molecule in the asymmetric unit was obtained

for the GMP-PNP complex with a log-likelihood gain (LLG) of

+181 and Z values for the rotation function (RFZ) of 7.7 and of

16.0 for the translation function (TFZ). For the nucleotide-free

structure, a largely refined polypeptide taken from the GMP-PNP

complex was employed to yield LLG = +2789, RFZ = 25.8, and

TFZ = 41.5, with an initial R-factor of 43.1. Model building and

refinement were done alternately and iteratively with COOT 0.6.2

and PHENIX 1.8–1069, starting with simulated annealing and

inspection of composite omit maps calculated in CCP4i, in order
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to minimize bias from the search model, in particular for the

nucleotide-free data, which had a different test set for calculation

of Rfree [44]. This procedure was followed by coordinate and B-

factor refinement, water picking, as well as occupancy refinement

of disordered loops and side chains in early cycles [45,46]. In both

models, the defined 2Fo-Fc electron density starts with Met1, while

some flexible side chains at the surface and, in particular, several

loop stretches are not visible. The backbone of switch I starting

with Gly54 is largely traceable but the side chains are not well

defined until Thr59. Little density is observed from Thr79 to

Gly84 in the unique DNM1L 80-loop, as well as for the stretch

from Ile118 to Lys123. For Pro325 and the following four residues

of the artificial linker not much density is observed. Finally, the last

visible C-terminal residue was Thr733. Both ligands, citrate (FLC)

and GMP-PNP (GNP) are well resolved. Analyses of the models

were performed with programs from the CCP4 package, such as

BAVERAGE, MOLPROBITY, and SUPERPOSE (SSM)

[44,47–49]. Refinement statistics and quality parameters are

summarized in Table 2. Figures of structural models were created

with PyMOL, including the electrostatic potential calculation with

the APBS plugin using a dielectric constant of 80.0 for water as

solvent in the range 6120 kBT/e [50]. Coordinates and structure

factors of the nucleotide-free and the GMP-PNP bound form were

deposited in the RCSB Protein Data Bank under accession codes

4H1U and 4H1V, respectively.

Continuous-coupled GTPase Assay
Full-length DNM1L, active site mutants and predicted G-

interface dimerization mutants were assayed at a protein

concentration of 1.2 mM for their ability to hydrolyze GTP in

the range of 0 to 1000 mM based on NADH depletion and

absorbance measurement at 340 nm, as described elsewhere [38].

GTPase assays were performed in 25 mM HEPES/PIPES

pH 7.0, 150 mM NaCl at 37uC for 84 min and 42 s per cycle.

The kinetic parameters represent means of at least three

independent measurements. Calculations were performed using

GraphPad Prism version 5.0a for Mac OS X, GraphPad Software,

La Jolla California USA, (www.graphpad.com). The standard

deviation for the kcat/Km values was calculated according to

Fenner [51].

GTP Hydrolysis Assays for Lipid Stimulated Activity
Multiple turnover assays in the presence and absence of

0.5 mg/ml phosphatidylserine (PS) liposomes were carried out

using 10 mM DNM1L or the indicated mutants in the presence of

saturating GTP concentrations (final concentration 1–1.5 mM) in

phosphate buffered saline (PBS, pH 7.4), 2.5 mM DTT, 0.5 mM

MgCl2 at 37uC, as previously established [33]. The protocol for

the preparation of liposomes (http://www.endocytosis.org/

techniqs/Liposome.html) was adapted to 100% PS (Avanti Polar

Lipids). PS liposomes were chosen because DNM1L binds PS

Table 1. Data collection and processing statistics.

Data collection DNM1L nucleotide-free DNM1L-GMP-PNP

Space group P21212 P21212

Unit cell parameters (Å) a = 53.50 b = 151.43 c = 42.76 a = 53.42 b = 151.31 c = 43.06

a=b= c= 90.0u a= b= c= 90.0u

Wavelength (Å) 0.91841 0.91841

Resolution (Å) (highest shell) 75.72–2.30 (2.42–2.30) 37.83–2.30 (2.42–2.30)

Reflections observed* 54279 (7783) 65938 (6133)

Unique reflections* 15371 (2204) 15894 (2027)

Multiplicity* 3.5 (3.5) 4.1 (3.0)

Completeness of data (%)* 96.6 (96.8) 98.1 (88.8)

aRmerge (%)* 11.8 (44.9) 12.8 (53.7)

bR.meas (%)* 13.9 (53.2) 14.7 (64.9)

cRpi.m (%)* 7.2 (27.8) 7.0 (35.5)

dI/s (I)* 7.9 (2.6) 8.4 (2.1)

Protein molecules per asymmetric unit 1 1

Solvent content (%) 41.8 42.1

Both crystals belong to the orthorhombic space group P21212 with two 2-fold screw axes (a, b) and a 2-fold axis (c), all angles being 90u. X-ray diffraction reflections
were observed with a redundancy (multiplicity) in the range of 3.5 to 4.1, which improved the data quality by averaging observations. In both cases, the overall signal-
to-noise ratio I/s was around 8, reaching its limit of around 2 at the maximum resolution of 2.3 Ångström. The redundancy-dependent factor Rmerge, the redundancy-
independent factor Rmeas (Rrim), and the precision indicating Rpim were calculated as deviations from averaged reflection intensities (I) according to the given formulas
and indicate the data quality. Solvent content refers to the volume of disordered aqueous buffer within the protein crystal lattice.
*alues in parentheses refer to the highest resolution shell.

aThe redundancy dependent merging R-factor: Rmerge~

P
hkl

P
i DIi(hkl){vI(hkl)wDP

hkl

P
i Ii(hkl)

.

bThe redundancy independent R-factor: Rmeas~

P
hkl

ffiffiffiffiffiffiffiffi
N

N{1

q P
i DIi(hkl){vI(hkl)wDP

hkl

P
i Ii(hkl)

.

cThe precision indicating merging R-factor: Rpim~

P
hkl

ffiffiffiffiffiffiffiffi
1

N{1

q P
i DIi(hkl){vI(hkl)wDP

hkl

P
i Ii(hkl)

.

dMean (I/sd(I)) from SCALA.
doi:10.1371/journal.pone.0071835.t001
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liposomes with similar efficiency to liposomes composed of a

mitochondrial outer membrane lipid mixture [33,39,52].

GTPase reactions were started by addition of the protein. Within

12 minutes, 5 aliquots were taken (after 1, 2, 4, 5, and 10 min),

diluted 1:20 in PBS and snap-frozen in liquid nitrogen. After

thawing, aliquots were immediately applied on an Agilent 1260

Infinity LC (Agilent Technologies), equipped with a reversed-

phase ODS-2 Hypersil column (Thermo Scientific). The running

buffer contained 10 mM Tetra-N-butylammonium bromide,

100 mM potassium phosphate (pH 6.5) and 7.5% acetonitrile.

Denatured proteins were adsorbed on a Nucleosil 100 C18 guard

column (Knauer); separated GDP and GTP were detected by

measuring the absorption at 254 nm and quantified by

integration. Initial turnover rates were derived from a linear fit

to the data with less than 40% hydrolyzed GTP. For an

assessment of the DNM1L nucleotide specificity, the assay was

performed with 1 mM ATP, which showed no significant

turnover, i.e., less than 3% compared to GTP in the presence

of PS liposomes.

G-interface Dimerization Studies by Analytical Size-
exclusion Chromatography

DNM1L GG fusion protein and mutants at a concentration of

60 mM were incubated with or without 2 mM of the indicated

guanine nucleotide analogs for 30 minutes at 37uC in a buffer

containing 20 mM Tris/HCl pH 8.0, 150 mM NaCl, 2 mM

EGTA, 4 mM MgCl2 and 1 mM DTT. In order to mimic the

transition state, proteins were incubated in the presence of 2 mM

GDP or GTP, 20 mM NaF and 2 mM AlCl3. Incubated samples

were subjected to size- exclusion chromatography (SEC) on a

Superdex S 75 HR 10/300 column and compared with molecular

weight markers conalbumin and carbonic anhydrase (GE

Healthcare).

Results and Discussion

Overall Structure of the Human GTPase-GED Fusion
Protein

Similar to previous studies for human dynamin and Arabidopsis

thaliana A (AtDrp1A) [8,37], we designed a fusion protein

comprising the GTPase domain (G) and the bundle signaling

Table 2. Refinement and model quality statistics.

Refinement DNM1L nucleotide-free DNM1L-GMP-PNP

Resolution (Å) (highest shell) 20.0–2.30 (2.38–2.30) 20.0–2.30 (2.38–2.30)

Reflections* 15331 (1517) 15820 (1322)

Completeness (%)* 95.2 (96.0) 97.8 (84.6)

Working set* 14559 (1451) 15034 (1256)

Test set (5%)* 772 (66) 786 (66)

aRcryst (%)* 23.0 (30.9) 22.7 (26.7)

bRfree (%)* 26.9 (34.2) 27.8 (31.7)

cRMSD bond lengths (Å) 0.005 0.010

cRMSD bond angles (u) 0.976 1.097

Number of non-hydrogen protein atoms 2766 2766

Number of ligand atoms 13 (citrate = FLC) 32 (GMP-PNP = GNP)

Number of solvent molecules 129 122

Overall B value (Å2) 24.4 43.9

Overall B-factor for protein atoms (Å2) 24.7 44.1

Overall B for ligand (Å2) 33.6 49.7

Overall B for solvent atoms (Å2) 17.8 39.1

Ramachandran plot

Favored regions 340 (95.5%) 338 (94.9%)

Additionally allowed regions 15 (4.2%) 18 (5.1%)

Disallowed regions 1 (0.3%) 0 (0.0%)

PDB accession codes 4H1U 4H1V

The quality indicating factor Rcryst was calculated for observed structure factor amplitudes Fobs (square root of I) and their model counterparts Fcalc. As independent
criterion for the agreement of model atomic coordinates with X-ray data, 5% of reflections were not used for refinement, but for calculation of Rfree. B-factor values that
reflect thermal atom motions are in the normal range in both structures. In particular, the nucleotide GMP-PNP with a relatively lower average B-factor appears to be
more tightly bound than the unspecific ligand citrate. Deviations from standard bond lengths and angles are low, as indicated by the respective RMSD values. Also the
dihedral angles of the polypeptide backbone corroborate the good geometry of both models, with only one outlier in the Ramachandran plots.
*alues in parentheses refer to the highest resolution shell.

aRcryst~

P
hkl DDFobs(hkl)D{DFcalc(hkl)DDP

hkl DFobs(hkl)D
Rcryst is calculated with 95% of reflections (working set).

bRfree is calculated with the same formula, using 5% of reflections (test set).

cRMSD~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 (xideal,i{xobs,i)

2

n

s
with x either being bond lengths or angles, for the calculation with ideal and observed parameters. In case of two atomic coordinate

sets the average distance of the Ca coordinates from two structures is calculated accordingly.
doi:10.1371/journal.pone.0071835.t002
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element (BSE, B) of human DNM1L (the so-called GTPase

domain - GED (GG) construct [13]). The stalk (S), which

participates in higher-order oligomerization, and the B-insert

were replaced by a GSGSGSGS linker, which continued with the

C-terminal helix of the BSE (Fig. 1A) [38]. This construct was

expressed in E. coli and purified and crystallized in the absence of

nucleotides. To obtain structural insights into nucleotide binding,

nucleotide-free crystals were soaked with the non-hydrolyzable

GTP analogue GMP-PNP [38]. Both crystals diffracted to 2.3 Å

resolution, and the structures were solved by molecular replace-

ment using the GG construct of human dynamin-1 as a search

model (Tables 1, 2). Both structures exhibited a monomeric GG

construct in the asymmetric unit. All molecular contacts generated

by symmetry operations of the space group P21212 appear to be

typical crystal contacts, as indicated by the PISA server (http://

www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver). However, a

polar interface, generated by the 2-fold axis, might form a

functional DNM1L assembly, which is discussed in detail further

below.

The GTPase domain of human DNM1L consists of a central

eight-stranded b-sheet surrounded by seven a-helices and two one-

turn helices resembling the GTPase core of mammalian dynamin-

1 [53]. The b-sheet is composed of six parallel and two anti-

parallel (ap) strands in the spatial order b6G, b5G, b4G, b1G, b3G,

b2G (ap), b2AG (ap), and b2BG. The latter two b-strands represent

an insertion including the helix aE1G with respect to the

prototypic, canonical GTPase domain of h-Ras (Fig. 1B) [54].

Helices a1G to a5G are present in h-Ras and dynamin-1, while

DNM1L shares helices aE2G to aE4G that are inserted between

b6G and a5G only with dynamin-1, comprising residues 248 to 281

(Fig. 1B). Although the GTPase domain of DNM1L is similar to

that of dynamin-1 at the sequence and structural level, it possesses

a unique 16-residue insertion between Ser71 and Glu88, which

shall be designated as ‘‘80-loop’’, according to its central residue

(Fig. 1).

The BSE is formed by the N-terminal helices a1B (residues 4–

16) and a1AB (20–24), helix a2B (303–323) and the C-terminal

helix a3B (708–729, with residues S708GS710 from the artificial

linker), arranged in a three-helix bundle with an additional one-

turn helix (Fig. 1B). Both our structures represent the closed

conformation of the BSE in relation to the GTPase domain, which

has been called the ‘‘post-fission state’’ [37]. Similar closed

conformations were found in nucleotide-free and transition state

complexes of mammalian dynamin-1 or the GDP bound form of

A. thaliana Drp1A [3,8,16,17,37].

Conformational Changes upon GTP-binding in the Active
Site

DNM1L contains the five canonical guanine nucleotide binding

motifs: G1 or P-loop (phosphate binding loop) with the highly

conserved sequence G32SQSSGKSS, switch I with the central

T59 as G2 element, G3 around switch II (D146LPG) and G4

(T215KLD), which are conserved among all GTPases, such as h-

Ras. In addition, DNM1L also possesses the dynamin-specific G5

or G-cap motif consisting of G243VVNRSQ (Figs. 1C, D) [3].

These motifs surround the active site cleft and exhibit a distinct

charge distribution: The positively charged P-loop attracts the

anionic triphosphate of GTP, while a less-charged area is

complementary to the ribose moiety. The polar part of the

guanine base is directed towards the negatively charged G4/G5

region (Fig. 1C). Eventually, the G4 and G5 elements bind

guanine, while the P-loop, G4 and G5 bind the ribose moiety and

the a to c-phosphates, and the switch I and II regions mediate c-

phosphate stabilization and hydrolysis. In the nucleotide-free form,

a citrate from the crystallization buffer is bound to the P-loop,

mimicking the phosphate moiety of GTP (Fig. 2A). Apparently,

the citrate compensates charges in the active site of DNM1L, while

the GMP-PNP occupied active site exhibits a distinct conforma-

tion in the P-loop and switch I (Fig. 2B).

The overall root mean square deviation (RMSD) between the

nucleotide-free and –bound DNM1L GG construct is only 0.69 Å

for the Ca atoms, indicating almost identical structures (Fig. 3A).

The nucleotide-bound form and the corresponding dynamin

GDP-AlF4
2 complex (2X2F) exhibit an RMSD value of 2.10 Å

(Fig. 3B). However, both DNM1L forms differ significantly in their

active site (Figs. 2A, B, and 3A), which shall be discussed in the

following.

The Phosphate Binding Loop (G1)
The P-loop fixes the triphosphate analogue moiety of GMP-

PNP with an intricate hydrogen bonded network (Figs. 4A–C).

The a-phosphate is bound by Ser40 via main and side chain

interactions, and by backbone interactions of Ser39 and Lys38.

Additionally, a single water molecule is coordinated by the a-

phosphate (Fig. 4A). The b-phosphate is coordinated by several

main chain interactions of Ser35, Ser36, Gly37 and Lys38, which

form a tight loop around the b-phosphate. The hydroxyl group of

Ser39 rotates about 180u with respect to the nucleotide-free active

site. In human dynamin-1 with 59-Guanylylmethylenedipho-

sphonate (GMP-PCP) (3ZYC) and GDP-AlF4
2 (2X2E), or plant

Drp1A with GDP-AlF4
2 (3T34), the side chains of Lys44/47

(corresponding to Lys38 in DNM1L) and Ser45/48 (Ser39 in

DNM1L) are involved in b and c-phosphate binding. In contrast,

the side chain of Lys38 of DNM1L is in a similar position in the

nucleotide-free and GMP-PNP bound forms and does not bind to

the b-phosphates (Fig. 4B). Also, Ser39 in the DNM1L structure

does not make significant interactions with the b-phosphate.

Compared to the GMP-PCP-bound crystal structure of

dynamin-1 (3ZYC), the c-phosphate of GMP-PNP in DNM1L is

shifted by about 2.5 Å towards the Gln34 side chain. This shift is

supported by hydrogen bonds of the Gln34 side chain and the

Ser35 main chain with the c-phosphate. Remarkably, the peptide

bond between Gln34-Ser35 flips by 180u from its apo-conforma-

tion upon GMP-PNP binding, accompanied by a Ser35 side chain

rotation of nearly 180u (Fig. 4C). The same peptide bond flip is

observed when the apo and GDP-bound structures of D. discoideum

dynamin-A are compared (1JX2 and 1JWY), as well as the Ser35

and Ser39 side chain rotations, strongly supporting the idea that

DNM1L and dynamin use a similar mechanism for nucleotide

binding [3].

Ser41 in dynamin, corresponding to Ser35 in DNM1L, is

required for binding a catalytic cation, such as Na+, in the

presence of a transition state analogue of the GTPase reaction

(2X2E) [8]. In our DNM1L structure, we did not find a cation at

this position. Also, in the GMP-PCP bound structure of a

dynamin-1 GG construct (3ZYC), no cation has been found at this

position, since it might only be recruited during GTP hydrolysis. It

is possible that the bridging nitrogen atom in GMP-PNP favors an

unusual conformation of the c-phosphate, which shifts about 2.5 Å

away from the catalytic water with respect to the transition state

analogue GDP-AlF4
2 in dynamin-1. This shift might interfere

with cation binding of Ser35 in our structure.

The Catalytic Switches I and II
Interestingly, no Mg2+ ion is present between the b- and c-

phosphates in the GMP-PNP-bound DNM1L crystals, as would be

expected for a GTP analogue complex. Based on the dynamin-1

GMP-PCP complex (3ZYC), this cation would be coordinated by
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Figure 1. Overall structure of the DNM1L GTPase-GED fusion protein. (A) Schematic representation of the construct expressed in E. coli and
used for crystallization. The GTP binding stretches P-loop, switches I and II (S1 and S2), as well as G4 and G5 are depicted in red. The unique DNM1L
insertion, denoted 80-loop, is shown in orange, the artificial (GS)4 shortcut in yellow and the bundle signaling element (BSE) in salmon. Also, the
GTPase effector domain (GED) is indicated. Residue numbering follows the original human sequence of isoform 1 starting with Met1. The C-terminal
linker with His6 tag is not included. (B) Tertiary structure of the nucleotide-free DNM1L GTPase-GED with secondary structural elements labels. The
GTPase core homologous to human Ras is displayed in grey with dynamin-1-typical insertions in green and the BSE in salmon, the shortcut linker in
yellow, and the 80-loop in orange. The conformation of the BSE represents the more compact closed or post-fission state of dynamin-like proteins.
(C) Surface potential representation of the DNM1L GG structure with GMP-PNP shown as stick model bound in the active site cleft, turned around the
y-axis by 180u with respect to Fig. 1B. The electrostatic potential at the molecular surface ranges from 2120 to +120 kBT/e, with negatively charged
regions depicted in red and positively charged ones in blue. (D) Stereo view of nucleotide-bound DNM1L GTPase-GED. GMP-PNP is depicted as
atomic sphere model bound in the active site cleft with the nucleotide binding stretches colored in red. Otherwise, the color scheme is according to
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the side chains of Ser45, Asp146, Thr59, and two water molecules.

However, in DNM1L, the Ca atom of the central residue from

switch I, Thr59, is shifted 2–3 Å away from the canonical Mg2+

binding site with respect to corresponding dynamin-GTP analogue

complexes (Fig. 5A).

Although the switch I region is not very well defined in the

electron density, a large movement of Arg53 is observed (Fig. 5A).

In GMP-PNP-DNM1L, the side chain of Arg53 extends to the

bulk solvent above the GTP-binding groove, whereas in the

nucleotide-free form, this side chain is hydrogen-bonded to Ser40

and Glu43, in a position similar to that of the nucleotide-loaded

dynamin complex. This translocation in the nucleotide-free state

may be an artificial charge compensation for the negative charge

of the P-loop bound citrate.

Based on the crystal structure of the AlF4
–bound GTPase

domain dimer of dynamin-1, two water molecules were suggested

to directly contribute to catalysis: A catalytic (C) water molecule,

positioned near Thr65 in switch I and Gln139 in switch II, is

thought to mediate the nucleophile attack on the GTP. A second

water molecule orients the catalytic water and additionally bridges

Fig. 1B, except for the whole GTPase domain shown in green. Atom colors are carbon in grey, oxygen in red, nitrogen in blue and phosphorus in
orange. This nucleotide-free structure corresponds to the closed or post-fission state.
doi:10.1371/journal.pone.0071835.g001

Figure 2. Close-up views of the active site cleft in the nucleotide-free and bound structures of the DNM1L GG construct in stereo.
(A) The nucleotide-free form with the most relevant residue side chains of the five GTP binding stretches and citrate (FLC, yellow) displayed as stick
models. Electron density of a 2Fo-Fc map is shown in grey and contoured at 1s. The red sphere designates the catalytic water (C). (B) GMP-PNP
complex of the DNM1L GG construct. The nucleotide is shown as stick model, while the red spheres represent water molecules, such as the bridging
water (B) and one, which binds to the a-phosphate. The electron density of a 2Fo-Fc map is shown in grey and contoured at 1s, surrounding the
nucleotide and relevant parts of the structure with significant conformational changes with respect to the nucleotide-free form.
doi:10.1371/journal.pone.0071835.g002
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Gln40 in the P-loop with Gly139 in switch II (the bridging or B

water) [8].

Interestingly, the water molecule in our nucleotide-free DNM1L

GG construct is in the same position as the catalytic water in

dynamin-1. This catalytic water connects switch I with switch II

via hydrogen bonds to the Thr59 carbonyl oxygen and the Gly149

NH, respectively (Figs. 2A and 5A). In contrast, in the nucleotide-

loaded DNM1L complex, the carbonyl oxygen of Gly149 binds to

Figure 3. Superposition of the two DNM1L GG structures and dynamin-1 GG. (A) Overlay of the nucleotide-free DNM1L GG structure in
white with the GMP-PNP-bound structure in green (shown without ligands). Side chains that were mutated in our study are shown as stick models
with sequence number labels. (B) Overlay of dynamin-1 (PDB code 2X2F) in yellow with the structure of GMP-PNP-bound DNM1L in green. Mutated
residues of DNM1L that are equivalent to those of dynamin (see Fig. 3A) are displayed as side chain stick models with dynamin sequence numbers
(depicted without ligands).
doi:10.1371/journal.pone.0071835.g003

Figure 4. Detailed views of GTP-binding in the P-loop of DNM1L. (A) Four hydrogen bonds fix the a-phosphate to the P-loop: O1a to Ser40
Oc (distance 2.48 Å) and NH (3.45 Å), O3a to NHs of Ser39 (3.34 Å) and Lys38 (3.30 Å). Additionally, the O2a binds an H2O (3.39 Å). Lys38 is stabilized
by a hydrogen bond to Asp146 from switch II. The overlaid apo-structure in grey shows that the Ser39 side chain rotates about 180u upon GTP
binding, to a conformation (in green) that is suitable to stabilize a GTP transition state as seen in other structures of dynamins, e.g. in complex with
GDP-AlF4

2. (B) Interactions that fix the b-phosphate: O1b forms hydrogen bonds to the NHs of Ser36 (3.31 Å) and of Ser35 (2.94 Å), while the O2b
only binds the Lys38 NH (3.49 Å). The Nf of Lys38 is more than 4 Å away from the O2b, but has the capacity to stabilize together with the Ser39 side
chain the phosphate portion of the GTP, as seen in other dynamin-1 nucleotide analogue complexes. (C) The c-phosphate forms hydrogen bonds via
its O2c to the Ser35 NH (3.48 Å) and to the Ne2 of Gln34 (3.14 Å), which also binds the O1c (2.72 Å). The Gln34 side chain rotates significantly from
the apo-conformation (light grey) to the nucleotide-conformation (green). The 180u peptide flip between Gln34-Ser35 brings Ser35 NH in a position
suitable for O1b and O2c binding, accompanied by a 180u side chain rotation of Ser35. Similar peptide flips occur in apo-nucleotide pairs of
mammalian and D. discoideum dynamins.
doi:10.1371/journal.pone.0071835.g004
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a single water molecule, which corresponds to the bridging water

molecule in dynamin-1 (Figs. 2B and 5A). Asp146 in switch II is

crucial for Mg2+ binding in dynamin-1 and AtDrp1A [8,37]. It has

a similar position in the apo- and GMP-PNP structures but

interacts only with the Lys38 side chain (Figs. 2B and 4A).

Guanosyl Moiety Binding Elements (G4 and G5)
Overall, the rather rigid guanosyl binding pocket of DNM1L

with the G4 and G5 elements exhibits more characteristics of a

lock-and-key enzyme whereas structural changes in the more

flexible P-loop, and the catalytic residues in switch I and II

resemble the induced-fit principle. Thus, the P-loop, switch I and

switch II in DNM1L undergo major conformational changes upon

nucleotide binding, while no conformational changes were

observed in G4 and G5. This phenomenon is found in all related

dynamin structures, in which G4 and G5 exhibit strikingly similar

conformations independent of the nature of the bound nucleotide.

The ribose O4 atom is bound by Lys216 in G4, while the 29 OH

group of the ribose is stabilized by water-mediated contacts with

the Arg247 main chain in G5 and the Ser40 side chain of the P-

loop (Fig. 5B). The guanine moiety of GMP-PNP is located

between the G4 and G5 stretches, whereby the Lys216 side chain

covers one flat side of the aromatic ring system. Nucleotide

specificity is mediated by Asp218, which coordinates the guanine

base via two hydrogen bonds (Fig. 5C). Another interaction with

the G5 stretch completes the substrate binding elements of

DNM1L: Asn246 in G5 forms part of the guanine-binding pocket,

and its side chain could interact with N7 of the aromatic ring

system via a water molecule, as in dynamin-1 (Fig. 5C).

The BSE Conformation
Our nucleotide-free and GMP-PNP DNM1L structures exhibit

virtually the same closed or post-fission conformation of the BSE

relative to the GTPase domain, with the little defined linker

replacing the stalk and B-insert domains (Fig. 1A, B). The interface

between the BSE and the GTPase domain is formed by charged,

polar, and hydrophobic residues (Fig. 6A). As in the GDP?AlF4
2

dynamin-1 and the AtDrp1A-GDP complex, the connected helices

a5G and a2B are kinked at the Leu301-Pro302 bond by about 60u.
In dynamin-1, these helices stretch into a single straight helix upon

GTP binding, accompanied by a rotation of the complete BSE

around the Leu293-Pro294 kink, corresponding to Leu301-Pro302

in DNM1L.

A comparison of the mammalian dynamin-1 apo (pdb code:

3SNH), GDP?AlF4
_ (2X2E) and GMP-PCP (3ZYC) forms and the

corresponding AtDrp1 structures (3T34, 3T35) suggests that the

mechanochemical energy conversion is accompanied by a twist of

the central b-sheet in the GTPase domain, involving a shift of

strands b2G and b3G by about 5 Å [8,12,16,17,37]. The GTP

analogue complex does not exhibit the twist of the central b-sheet

which might be initiated by GTP-Mg2+ binding to the switch I

Thr59 and switch II Asp146 together with Gly149. Since our GG

construct is tightly packed in the crystals, the GTP hydrolysis

transition state and the pre-fission conformation of the BSE are

most likely not accessible. Furthermore, conformational changes

induced by GTPase domain dimerization might also contribute to

the open conformation of the BSE.

The Unique DNM1L 80-loop
Between the two strands b2G and b2AG of the GTPase domain,

DNM1L possesses a unique insertion (residues 72–87), which has

only a counterpart in S. cerevisiae DNM1 (see section Conclusion).

This insertion forms a flexible loop, which is clamped by a short

antiparallel b-sheet between Arg76 to Thr78 and Val85 to Ala87

exhibiting an excess of negatively charged side chains (Fig. 6B).

Given its location at the rim of the central b-sheet of the GTPase

Figure 5. Detailed views of the GTP-binding elements switch I, switch II, G4 and G5 of DNM1L. (A) The canonical Mg2+ site between O1b
and the O2c is not occupied in the GMP-PNP-DNM1L structure (green). Also, no significant positional shift of Thr59 from the switch I loop takes place
between apo- (grey) and nucleotide form (green). The unnatural N3b atom may favour the c-phosphate conformation rotated by about 60u with
respect to the transition state of GTP, shifting it about 2.5 Å away from the catalytic water. Only the nucleotide-free form exhibits the catalytic water
molecule (C, grey) bound at the Thr59 carbonyl O (3.15 Å) and connected to switch II via the NH of Gly149 (2.87 Å). The bridging H2O (B, red) is only
present in the nucleotide complex, bound to the Gly149 carbonyl O (3.21 Å). Upon GMP-PNP binding, the Arg53 side chain moves out of the active
site, making room for an H2O, which binds O2 of the a-phosphate. (B) The ribose of GMP-PNP forms bonds with the ether oxygen O4 to the Nf of
Lys216 (3.16 Å), and with the hydroxyl group of O2 to an H2O (3.25 Å), which is bonded to the carbonyl O of Arg247 (2.45 Å) and the Ser40 Oc
(3.01 Å). Another bond is formed by the ribose O2 to Gln249 NH (2.79 Å). (C) The Lys216 side chain, depicted as thin stick model for clarity, covers the
aromatic rings of the guanine part, while the Asp218 carboxylate binds the amino N2 (2.86 Å) and the N1 (3.12 Å). A further interaction from the
Asn246 Od1 to the N7 (3.54 Å) might be mediated by an unresolved H2O, which could be bound to the carbonyl O of Gly37, as seen in other
dynamin-nucleotide complexes.
doi:10.1371/journal.pone.0071835.g005
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Figure 6. BSE-GTPase domain interface, 80-loop, and their interface at the 2-fold axis. (A) The BSE-GTPase interface in the GMP-PNP
complex. Both the nucleotide-free and –bound structures represent the closed or post-fission state of dynamin superfamily proteins and exhibit
virtually no conformational differences. The interface of GTPase and BSE domain is characterized by mixed charged, polar, and hydrophobic
interactions. (B) 80-loop insertion in the GTPase domain of DNM1L from Gln72 to Glu87. The insertion exhibits a short antiparallel b-sheet between
Arg76 and Ala87. From Thr79 up to Gly84 the electron density of the 2Fo-Fc map, shown in grey and contoured at 1s, is not well defined. (C) Polar
interface between two symmetry-related DNM1L monomers A and A*. The 2-fold crystallographic axis (black oval) generates an interface that
involves 14 hydrogen bonds and salt bridges of polar and charged side chains from the BSE and the 80-loop, together with roughly 20 water
molecules (shown as sticks and red spheres, respectively). Both the GTPase domain and the stalks could form higher oligomers, while this dimer
remains intact.
doi:10.1371/journal.pone.0071835.g006
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domain, the 80-loop might have a role in the BSE domain

movement upon GTP hydrolysis or in oligomerization. Due to its

distant location from the active site, the 80-loop is unlikely to

participate in the GTPase domain dimer interface. In our crystal

structures, the 2-fold axis of space group P21212 relates two

DNM1L molecules via a polar interface of about 839 Å2, which

resembles a typical crystal contact (Fig. 6C). Various residues of

the BSE (amino acids 2, 9, 10) and the 80-loop (amino acids 72,

73, 75, 76, 86) form altogether 14 hydrogen bonds and salt

bridges, involving up to 20 water molecules. Nevertheless, we

cannot exclude that this novel interface in the dynamin

superfamily serves as additional element for the assembly of

higher DNM1L oligomers, since its architecture would allow

further GTPase-GTPase domain interaction, while the two BSEs

could be connected to opposing stalk filaments. Furthermore,

small interfaces mediating low affinity interactions are often found

in membrane-bound oligomeric complexes [55].

While the overall negatively charged 80-loop may interact with

positively charged regions of other protein molecules, some of the

seven glutamates and aspartates could serve as cation binding

ligands for Mg2+ or even Ca2+, which sometimes reaches

micromolar levels at mitochondrial membranes [56,57]. Intrigu-

ingly, the 80-loop sequence resembles those of Ca2+-binding

proteins, such as serine proteases and phospholipid binding

proteins [58,59].

GTPase Activity Determinants
Based on the DNM1L GG fusion structure, a systematic

analysis of critical residues for GTP binding and turnover was

undertaken using full-length DNM1L mutants. The enzyme-

coupled assay with increasing GTP concentration resulted in

characteristic saturation curves for the GTPase reaction of 1.2 mM

DNM1L, resembling Michaelis-Menten kinetics (Fig. 7A, Table 3).

The apparent maximal GTPase rate was about 6 min-1, with a

GTP concentration for half-activation of about 460 mM. However,

Michaelis-Menten kinetics assumes a simple enzyme-substrate

reaction and does not take into account the underlying multi-step

GTPase reaction mechanism of dynamin superfamily proteins [8].

Thus, increasing nucleotide or protein concentrations might

induce GTP-dependent interactions of the GTPase domains

resulting in higher apparent reaction rates.

To determine whether DNM1L shows liposome-stimulated

GTPase activity, GTPase reactions were measured at saturating

GTP concentrations (1.5 mM) and higher protein concentrations

(10 mM) allowing cooperative membrane binding. DNM1L binds

equally well to liposomes constituted of a typical mitochondrial

membrane composition or phosphatidylserine (PS) [33,39,52].

Since the liposomes employed in these assays interfered with the

continuous coupled reaction, an HPLC-based GTPase assay was

used. Furthermore, since divalent cations induce clustering of

negatively-charged liposomes, lower concentrations of Mg2+

(0.5 mM) were employed compared to the continuous coupled

assay. Previous experiments indicated that this Mg2+ concentra-

tion is optimal to observe the DNM1L stimulated GTPase activity

with PS liposomes [33]. Under these conditions, DNM1L showed

a similar maximal GTPase rate of 7 min21 that could be 2.5-fold

stimulated by liposomes (Fig. 7B). This extent of GTPase

stimulation is, however, much lower than the 200-fold stimulation

observed in dynamin-1 under similar conditions [14].

At a concentration of 1.2 mM, the DNM1L GG fusion protein

showed a reduced maximal GTPase activity of 12%, most likely

due to its inability to oligomerize via the stalks [38]. At higher

protein concentrations of 10 mM, the GG construct exhibited 70%

of the GTPase activity of DNM1L pointing to a protein-

concentration dependent increase of the GTPase (Figs. 7A, B).

Addition of liposomes did not stimulate the GTPase rates, which

can be attributed to the missing stalks and/or B-inserts mediating

lipid binding.

Mutagenesis of single active site residues within the GTPase

binding motifs G1–G5 of full-length DNM1L (Figs. 2, 4, and 5)

Table 3. Kinetic parameters of DNM1L basal GTPase activities.

DNM1L kobs (min21)a K (mM)a kcat/Km (M21 min21) relative kobs
b Motif Function

WT 5.8460.18 462630 126306420 100

GG fusion 0.6960.05 120626 57406160 12

Q34A 0.0 – – 0 G1 (P-loop) c-phosphate binding, G-dimerization

S35A 10.8960.64 298644 3654061730 187 G1 (P-loop) b, c-phosphate binding, G-dimerization

S35A cooperative model 7.7760.14 13865 Hill coefficient 2.260.1 133

K38A 0.0 – – 0 G1 (P-loop) a, b-phosphate binding

S39A 0.0 – – 0 G1 (P-loop) a-phosphate binding

S40Ac .1.0 .1000 16706640 .20 G1 (P-loop) a-phosphate binding, ribose via H20

T59A 0.0 – – 0 G2 (switch I) coordination of catalytic H2O and Mg2+

E81A 3.5060.06 10265 343106180 60 80-loop unknown

E81A/E82A 3.7960.06 6964 549706210 65 80-loop unknown

D146A 0.0 – – 0 G3 (switch II) coordination of K38

G149A 0.0 – – 0 G3 (switch II) coordination of catalytic and bridging H2O

D190A 1.6460.05 1662 1021906210 28 trans-stabilizing loop G-dimerization

K216A 0.0 – – 0 G4 ribose binding and guanine orientation

D218A 0.0 – – 0 G4 guanine binding

N246Ac .1.0 .1000 18006790 .20 G5 guanine binding

aIn all cases except for the cooperative model with the mutant S35A, kobs and K correspond to kcat and Km of the applied Michaelis-Menten model;
bWT = 100; c kobs and K could not be determined in a reliable manner, since the substrate did not reach the range of saturating levels.
doi:10.1371/journal.pone.0071835.t003
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resulted in most cases in a complete loss of GTPase activities

(Fig. 7A, B, and Table 3). Thus, the P-loop mutants K38A and

S39A, which are involved in phosphate binding, exhibited

essentially no GTP turnover independent of the protein concen-

tration or the presence of liposomes. A similar lack of activity has

been reported before for mutant K38A [60]. Switch I residue

Thr59 is involved in the positioning of the catalytic water molecule

and Mg2+ coordination in dynamin-1 [8]. The corresponding

T59A mutant in DNM1L as well as the switch II mutants D146A

and G149A were also inactive (Fig. 7A, B). The D146A mutation

is expected to destabilize the conformation of P-loop residue

Lys38, whereas G149A might prevent binding of the catalytic

water molecules. Moreover, the G4 motif mutant K216A was

inactive, most likely due to a reduced coordination of the GTP

ribonucleotide moiety. The P-loop mutation S40A and the G5

motif mutation N246A showed some residual GTPase activity,

which could be stimulated by liposomes (Fig. 7B). However, these

mutants could not be saturated with GTP pointing to a reduced

affinity for this nucleotide (Fig. 7A).

To explore the function of the 80-loop, we mutated some of the

negatively-charged residues and characterized its effect. The two

loop mutants E81A and E81A/E82A exhibited slightly different

GTP saturation curves compared to wild-type (WT) DNM1L in

the continuous-coupled activity assay, such as lower Vmax (kcat)

and increased affinity for GTP at half-maximal turnover (Km)

(Fig. 7C, Table 3). Also, at higher protein concentrations kobs

Figure 7. GTPase activity of DNM1L and the mutants. (A) Basal GTPase activities of wild-type DNM1L, DNM1L GG fusion protein and full-length
mutants. Steady-state GTPase activities of full-length wild-type DNM1L, GG fusion protein, active site mutants and predicted GTPase domain
dimerization mutants (Q34A, S35A, D190A) were measured as described in the Methods section. Amino acid substitutions Q34A, K38A, S39A, T59A,
D146A, G149A, K216A and D218A completely abolished GTP hydrolysis. The Q34A mutant is shown as one representative example for the inactive
mutants. Among all these mutants, only S35A, S40A, D190A and N246A exhibited significant GTPase turnover. For S35A, both the simple Michaelis-
Menten equation fit (label MM, orange dots) and the curve using a cooperative model (continuous orange line) with a Hill coefficient of 2.2 are
depicted. Data are means of at least three independent experiments 6 standard deviation (displayed as error bars) evaluated by nonlinear regression
analysis. (B) Liposome-stimulated GTP hydrolysis of DNM1L and its mutants determined by multiple-turnover assays. Reactions were performed for
12 min at 37uC in the absence (grey bars) or presence (black bars) of PS liposomes. Initial hydrolysis rates kobs were determined by applying a linear fit
to the data, with bars representing mean value 6 standard deviation of three independent experiments. For mutants Q34A, S39A, T59A, D146A,
G149A, and K216A less then 4% of the GTP was hydrolyzed within 12 minutes. (C) Basal GTP activity of full length DNM1L and the two loop mutants
E81A and E81A/E82A. Although the three variants exhibit similar Michaelis-Menten curves, both mutants displayed lower Vmax (kobs) and faster
saturation with GTP compared to WT.
doi:10.1371/journal.pone.0071835.g007
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Figure 8. GTPase domain interface model of the DNM1L GG fusion protein and nucleotide-dependent dimerization. (A) Two chains of
DNM1L molecules were superimposed on the GTPase domain dimer of AtDrp1A (PDB code 3T34) as molecules A (green) and B (orange). The interface
connecting residues Gln34, Ser35, Asp190, and GTP are depicted as stick models. In addition, the movement of the BSE domains between the pre-
and postfission states is represented by the extended AtDrp1A dimer (white) and the compact DNM1L dimer. The tetramer model (bottom, left) is
based on full-length dynamin-1, which may further oligomerize via the stalks and other GTPase domains (green, orange). (B) Close-up view of the
interface at Asp190 from molecule B and Gln34, Ser35 and GTP from molecule A. The conformations of the nucleotide-free and GMP-PNP bound
structures are displayed. (C) Dimerization ability of the DNM1L GG fusion protein in the presence of different nucleotides. The GG fusion protein
(60 mM) was subjected to gel filtration after incubation with different guanine nucleotide analogs (2 mM). Protein standards at 29 and 75 kDa are
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values of both mutants were significantly reduced, reaching about

62% (E81A) and 52% (E81A/E82A) of the WT DNM1L turnover

(Fig. 7C). Interestingly, the GTPase activity of these mutants was

enhanced by PS liposomes to only 46% of the WT activity in case

of the E81A mutant and only 40% for E81A/E82A (Fig. 7B).

These data might indicate a function of the 80-loop in higher-

order oligomerization, or in the efficient mechanochemical energy

conversion of DNM1L, perhaps mediated by the 2-fold BSE/80-

loop interface.

Determinants of GTPase Domain Dimerization Linked to
Activity

GTPase domain dimerization of human dynamin-1 and

Arabidopsis thaliana dynamin-related protein A (AtDrp1A) was

shown to be mediated via a conserved interface across the

nucleotide-binding site. A prominent feature of this G-dimer is a

hydrogen bond network formed between an aspartic acid side

chain of the trans-stabilizing loop (2X2E: Asp180, 3T35: Asp186)

with a glutamine and a serine of the P-loop in the opposing

molecule (2X2E: Gln40, Ser41, 3T35: Gln43, Ser44). Addition-

ally, a serine and a glycine from switch I (2X2E: Ser61 and Gly62,

3T35: Thr64 and Gly65) form hydrogen bonds with Asp180.

Overall, these interactions occur twice per G-dimer in a

symmetrical manner, involving a rotational 2-fold axis [8]. All of

these residues are conserved in DNM1L. Thus, we postulated that

DNM1L employs a similar dimerization-dependent GTPase

mechanism. Using the GDP-AlF4
–bound AtDrp1A dimer as a

template, we created a model for the DNM1L dimeric GTPase

domain (Fig. 8A). In this model, Asp190 in DNM1L, which

corresponds to Asp180 in dynamin-1, mediates GTPase domain

dimerization by binding to Gln34 and Ser35 in the P loop of the

opposing catalytic site. Concomitantly, Asp190 binds to Thr55

and Gly56 from switch I (Fig. 8B).

To confirm this model, size-exclusion chromatography (SEC)

experiments in the absence and presence of guanine nucleotides

were performed. These measurements revealed that the DNM1L

GG fusion protein is predominantly monomeric in the absence of

nucleotides and upon incubation with GDP, GTP or GMP-PNP

(Fig. 8C, D). In fact, GMP-PNP was efficiently separated from

DNM1L over the gel filtration run pointing to a low affinity

interaction of nucleotides with DNM1L (Fig. 8E). However, in the

presence of GDP/AlF4
2, a transition state analogue of the

GTPase reaction, a significant shift to a dimeric species was

observed (Fig. 8C).

In order to investigate if Gln34, Ser35 and Asp190 are involved

in GTPase domain dimerization, as predicted by the dimer model,

these residues were replaced by alanine residues in the DNM1L

GG fusion protein. Indeed, all three mutants dimerized with

reduced efficiency in comparison to the wild-type DNM1L GG

fusion protein in the presence of the transition state mimic (Fig. 8F).

In both GTPase assays, the Q34A mutant did not show any

GTPase activity. Since Gln34 is not only involved in dimerization,

but also in nucleotide binding, this mutation might interfere with

GTP binding. However, both D190A and the Ser35A mutant

showed efficient GTP hydrolysis. The D190A mutant displayed

even higher GTPase rates at lower nucleotide concentrations,

which leveled off at high GTP concentrations. The S35A

substitution led to a roughly 2-fold higher basal turnover rate at

low and at high GTP concentrations. Remarkably, this mutant

exhibited a distinct sigmoidal curve for the turnover of GTP,

which agrees best with a cooperative model, resulting in a Hill

coefficient of 2.2 (Table 3, Fig. 7A). In contrast, no significant

positive cooperativity was observed for the other investigated

DNM1L variants with respect to increasing substrate concentra-

tions. Both S35A and D190A completely lost their liposome-

stimulated GTPase activity (Fig. 7B). These data suggest that

Ser35 and Asp190 in DNM1L are indeed involved in GTPase

domain dimerization and the subsequent stimulation of the

GTPase reaction.

Conclusions

Our study provides a mutational and kinetic analysis of GTP

recognizing and hydrolyzing residues in DNM1L, which were

identified in the nucleotide-free and GMP-PNP crystal structures.

These findings are summarized in a structure-function map of the

DNM1L active site (Fig. 9). A sequence comparison of DNM1L

with dynamin-1-like proteins from S. cerevisiae and A. thaliana,

dynamins-1 of human, rat, and D. discoideum, as well as human

Myxovirus resistance protein A (MxA, Mx1), highlights the

significance of our investigation for understanding the common

mechanisms of these mechanochemical GTPases (Fig. 10). The

importance of a functional GTPase in DNM1L is emphasized by

studies on cultured mammalian cells, which formed unnaturally

large mitochondrial clusters or networks upon transfection with P-

loop and switch I mutants of DNM1L, such as K38A and T59A

indicated. The dimeric protein eluted at a retention volume of 9.5 ml and monomeric protein at 11 ml. (D) SDS PAGE analysis of the SEC runs. Lane 1
shows purified GG fusion protein (41 kDa) followed by a molecular weight protein ladder (from top to bottom: 55 kDa, 43 kDa, 34 kDa). Elution
volumes are indicated above. (E) Analysis of the DNM1L GMP-PNP complex stability under SEC conditions as in Fig. 8C. SEC elution (red) and further
analysis of the peaks by HPLC (blue), with the indicated controls. (F) SEC of GG fusion protein mutants Q34A, S35A and D190A under conditions as in
Fig. 8C in the presence of GDP?AlF4

2. Retention volumes of molecular weight standards are shown above.
doi:10.1371/journal.pone.0071835.g008

Figure 9. Structure-function map of the modelled DNM1L
active site dimer. All active site and dimerization residues that have
been mutated to alanine are represented as stick models, as well as the
GTP. The turnover numbers of the respective mutants as determined by
the GTPase assay for basal activity are shown, whereby the WT was
defined as 100%. Molecule A of the dimer is depicted in green, while
the second molecule B is shown in orange, with the corresponding
D190A*.
doi:10.1371/journal.pone.0071835.g009
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[29]. An analysis of rat DNM1L mutants corresponding to K38A

and D218N showed similar effects, leading to cellular lethality

[61]. Similarly, the K38A DNM1L mutation affects the segrega-

tion of peroxisomes [62]. Thus, it can be expected that other

GTPase defective DNM1L mutations will result in failure of

mitochondria and peroxisome division. Moreover, mutations at

the DNM1L G-dimer interface, such as Q34A, S35A, and D190A,

might have similar effects on mitochondrial remodeling. Certainly,

the formation of higher-ordered oligomers of DNM1L is crucial

for its physiological function, as corroborated by the oligmeriza-

tion-deficient point mutation in the stalk of human DNM1L,

A395D, which is lethal for infants [63].

Future studies have to explore the fine details of mechano-

chemical energy conversion by full-length DNM1L with structural

methods, and link the underlying mechanisms to the dynamic

reality of mitochondrial and peroxisomal segregation. In partic-

ular, the roughly 100-fold lower stimulatory effect of lipids on the

GTPase activity of DNM1L compared to dynamin-1 has to be

elucidated. The large difference of these GTPases in the extent of

their stimulated activity is not evident on the basis of the basic

architecture of their GTPase domains. However, DNM1L

oligomerization at the mitochondrial surface and stronger GTPase

stimulation might depend on specific membrane receptors such as

MFF, which was not present in our assays [34]. Moreover, the

lower GTPase activation of DNM1L might be based on the

different oligomerization modes via the stalks, which have been

proposed for dynamin and DNM1L [32,33]. DNM1L is

implicated in several neuronal diseases, such as Alzheimer’s,

Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis [64].

Eventually, the structure-based knowledge of regulating the

function of DNM1L by pharmacological means may help to

target these neurodegenerative diseases successfully.
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