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ABSTRACT

Motivation: Pre-mRNA cleavage and polyadenylation are essential

steps for 30-end maturation and subsequent stability and degradation

of mRNAs. This process is highly controlled by cis-regulatory elements

surrounding the cleavage/polyadenylation sites (polyA sites), which

are frequently constrained by sequence content and position. More

than 50% of human transcripts have multiple functional polyA sites,

and the specific use of alternative polyA sites (APA) results in isoforms

with variable 30-untranslated regions, thus potentially affecting gene

regulation. Elucidating the regulatory mechanisms underlying differen-

tial polyA preferences in multiple cell types has been hindered both by

the lack of suitable data on the precise location of cleavage sites, as

well as of appropriate tests for determining APAs with significant dif-

ferences across multiple libraries.

Results: We applied a tailored paired-end RNA-seq protocol to spe-

cifically probe the position of polyA sites in three human adult tissue

types. We specified a linear-effects regression model to identify

tissue-specific biases indicating regulated APA; the significance of

differences between tissue types was assessed by an appropriately

designed permutation test. This combination allowed to identify highly

specific subsets of APA events in the individual tissue types. Predictive

models successfully classified constitutive polyA sites from a biologic-

ally relevant background (auROC¼99.6%), as well as tissue-specific

regulated sets from each other. We found that the main cis-regulatory

elements described for polyadenylation are a strong, and highly in-

formative, hallmark for constitutive sites only. Tissue-specific regu-

lated sites were found to contain other regulatory motifs, with the

canonical polyadenylation signal being nearly absent at brain-specific

polyA sites. Together, our results contribute to the understanding of

the diversity of post-transcriptional gene regulation.

Availability: Raw data are deposited on SRA, accession numbers:

brain SRX208132, kidney SRX208087 and liver SRX208134. Pro-

cessed datasets as well as model code are published on our website:

http://www.genome.duke.edu/labs/ohler/research/UTR/

Contact: uwe.ohler@duke.edu

1 INTRODUCTION

Almost all eukaryotic mRNAs undergo a post-transcriptional

processing step called polyadenylation, in which they acquire a

polyA tail at their 30-end. After transcription, the 30-most seg-

ment of the newly made RNA is cleaved off at specific sites

(polyA sites) by a set of RNA regulatory proteins, which is fol-

lowed by the synthesis of the polyA tail by the addition of ad-

enine (A) residues in a non-templated fashion (Andreassi and

Riccio, 2009). Around 90 protein factors regulate this process,

with CPSF (cleavage and polyadenylation specificity factor),

CstF (cleavage simulator factor), CFI (cleavage factor I), CFII

(cleavage factor II), PAP (polyA polymerase) and PABII (polyA

binding protein) playing a crucial role (Beaudoing et al., 2000; Ji

and Tian, 2009; Shi et al., 2009; Tian et al., 2005).

PolyA sites are essential for 30-end maturation, stability and

degradation of mRNAs. Furthermore, polyadenylation defines

the extent of the 30-untranslated region (30-UTR) of mRNAs,

which spans from the stop codon up to the polyA tail and con-

tains many post-transcriptional regulatory sequence elements

such as microRNA (miRNA) target sites. In addition, alternative

polyadenylation (APA) events arise from the presence of more

than one particular functional cleavage/polyadenylation (polyA)

site. The specific use of different polyadenylation sites can play a

direct role in gene regulation. For instance, eliminating large

parts of a 30-UTR by using the more proximal polyA site enables

a transcript to escape from miRNA regulation of its longer iso-

form. In proliferating cells, proximal polyA sites are therefore

favored over distal ones, resulting in the production of mRNAs

with shorter 30-UTR and fewer miRNA-binding motifs (Ji and

Tian, 2009; Sandberg et al., 2008). APA can influence mRNA

nuclear export, cytoplasmic localization and non-miRNA–

mediated changes in mRNA stability and translational efficiency

(Majoros and Ohler, 2007; Mayr and Bartel, 2009; Moore, 2005).
As such, it is important to identify not just alternative but

specifically regulated alternative events, such as tissue-specific

APA. Based on earlier analysis of expressed sequence tags

(ESTs), over 50% of the human and more than 30% of mouse

genes were observed to have multiple polyadenylation sites,

which results in mRNA isoforms different in their 30-UTR

and/or coding sequences (Tian et al., 2005). Initial studies on

ESTs and tiling microarrays also indicated a bias in the regula-

tion of polyA sites in certain human tissues (David et al., 2006;

Tian et al., 2005; Zhang et al., 2005a).

The introduction of high-throughput sequencing technology

has vastly expanded the opportunities to explore APA. Recent

deep sequencing of mRNA populations from multiple tissue

types has shown that 86% of human genes exhibit variants due

to APA sites (Wang et al., 2008). In addition, several protocols

relevant for studying polyadenylation have been developed.*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial

re-use, please contact journals.permissions@oup.com

 at FA
K

/M
D

C
 on July 5, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://www.genome.duke.edu/labs/ohler/research/UTR/
mailto:uwe.ohler@duke.edu
http://bioinformatics.oxfordjournals.org/


These protocols are designed to capture the 30-end of mRNAs

using specific primers, then sequence these fragments using

second- and third-generation sequencing technologies (Jan

et al., 2010; Mangone et al., 2010; Ozsolak et al., 2010; Shepard

et al., 2011). However, with one exception (Derti et al., 2012),

these approaches have been applied on small samples or non-

mammalian genomes, leaving human normal tissues unexplored.
A thorough analysis of the polyadenylation process in adult

tissue types, showing differential gene expression, would help us

understand tissue-specific APA regulation. Although genome-

wide APA profiling enables us to discover genes with multiple

polyA isoforms at a genome-wide scale, it introduces major chal-

lenges. Without adequate methodology to specify the significance

of APA biases in different tissues, we may confuse the mere

presence of multiple APA with their specific up- or downregula-

tion across conditions. A clean definition of truly specific sets is

necessary to investigate which features allow for successful dis-

crimination via computational models, and to suggest candidate

regulatory features for future studies.
In this article, we address several of these challenges by using

data from a new RNA-seq protocol applied to sequence the

30-UTR end of mRNAs from different adult normal tissue

types. Using a linear model, we distinguish between constitutive,

alternative and alternatively regulated polyadenylation sites. Our

linear regression model takes into account different library

depth, expression of each gene in each tissue, as well as inter-

actions between tissues and genes. As is still the case with many

deep sequencing datasets, we do not have multiple replicates at

our disposition that can be used to identify significantly differing

APAs across tissues. Instead, significance of differences between

samples from different tissue types is assessed by an appropri-

ately designed permutation test. We then use the flanking se-

quence region around polyA sites to build predictive models

both for the discrimination of constitutive polyA sites from gen-

omic background, as well as to distinguish between regulated

APA sets from different tissues.

2 RESULTS

2.1 A paired-end sequencing strategy for identifying

polyadenylation sites

To precisely map polyA sites at genome-wide scale, we made use

of several new libraries generated by a tailored sequencing ap-

proach, PA-seq. This protocol yields paired-end tags, with one

tag located directly at the cleavage site, and its pair mapping to a

more upstream location, typically in the 30-UTR of the same

transcript, Figure 1 (see Section 5).
We used PA-seq to monitor the differential usage of polyade-

nylation sites in three different human adult tissue types: brain,

liver and kidney. Each tissue was sequenced at varying depth. We

obtained 2.8 million raw paired reads from liver, 8 million from

kidney and 3.5 million from brain. Of those paired reads, �85%

mapped to the human genome (hg19). Non-redundant read

pairs, i.e. those that showed differences in at least one of the

paired end tags, were grouped for each unique 30 position, denot-

ing a polyA site. These sites were filtered to exclude 30 locations

that mapped to genomic regions with high A content, to exclude

possible contaminations by internal priming. PA-seq reads were

then clustered into clusters (PAS clusters) analogous to an algo-

rithm previously developed for the analysis of capped 50 mRNA

tags (Ni et al., 2010). We used the total sum of the non-redun-

dant read pairs of all of the 30 tags in each PAS cluster as a

measure of the PAS usage, and considered PAS clusters covering

narrow genomic regions and with five or more reads for all fur-

ther analyses (see Section 5). Table 1 summarizes the data for all

libraries.
To differentiate between PAS clusters that are constitutively

used versus those with more than one polyA site, we grouped all

overlapping PASs of the same transcript from the three tissue

types together. Each PAS cluster was referred to by the mode of

its median (see Section 5). If the gene has one PAS cluster, we

refer to it as a constitutive gene; if it has more than one PAS

cluster, we refer to it as an alternatively polyadenylated gene.

Overall, we identified PAS clusters for 11 454 genes: around

7278 are constitutive and 4176 are alternative polyadenylated.

From genes that are expressed in the three tissue types, 2171

are constitutive genes and 1965 are alternative polyadenylated

genes. Alternative-polyadenylated genes had 5357 different

PAS clusters; this is the set included in our analysis.

2.2 Characterization of tissue-specific regulated

polyadenylation sites

Previous research on APA has shown that most of human genes

have multiple polyadenylation sites, with many of them being

tissue-specific. Testing the statistical significance of differential

preferences for APA usage for a gene between tissues has been

previously investigated by applying Fisher’s exact tests, chi-

square tests or linear trend test (Beaudoing and Gautheret,

2001; Fu et al., 2011; Zhang et al., 2005a). Applied on a gene

with multiple PAS, measured across multiple conditions, Fisher’s

test will detect a significant difference of the pattern from the null

assumption, but further tests are needed to pinpoint exactly

which PAS, in which tissue, deviates from constitutive expres-

sion. A popular approach for identifying specific events across

multiple tissues/sites has therefore been introduced based on

Fig. 1. Summary of PA-Seq Protocol: Total mRNA is randomly frag-

mented and reversed transcribed with a modified oligo(dT) primer, which

synthesizes with the polyA tail. cDNA fragments are then captured and

sequenced using multiplexed paired-end sequencing on Illumina
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Shannon entropy (Schug et al., 2005). Entropy values close to

zero represent events specific to a single tissue; values increase as
the relative usage spreads more across tissue types, or when the

relative contribution of the tissue to the overall usage decreases.

However, entropy does not directly reflect significance, as sam-

ples with vastly different levels of evidence (e.g. read coverage)
may lead to similar entropy values.

To avoid these shortcomings, we specified a linear effects re-
gression model for the read counts of each PAS cluster in each

tissue type, motivated by previous applications to detect signifi-

cant changes in gene expression (Marioni et al., 2008) and alter-
native splicing patterns (Blekhman et al., 2010). We controlled

for fixed effects including different tissue depth, expression of

each gene in each tissue, as well as any interaction between tis-

sues and genes. The resulting residual for a given PAS cluster in a
given tissue reflects evidence that this PAS cluster is specific, and

highly used, in the tissue.
We then needed to quantify whether for a given PAS cluster,

an observed difference in read counts in a specific tissue is sig-

nificant, i.e. more pronounced than what would be expected
owing to random variation. Given that the libraries were

sequenced without experimental replicates, we applied permuta-

tion tests on the read counts of PASs for each gene in our
libraries, to determine a tissue-specificity threshold (see

Section 5). With three libraries at our disposal, we separated

tissue-specific PAS clusters into two groups: clusters that are

highly used in one individual tissue (individual), and clusters
that are highly used in two tissue types simultaneously (overlap-

ping). Figure 2a shows the test statistics for assessing the over-

lapping tissue-specificity applied to both original and permuted
data.

By applying our linear model on alternative-polyadenylated
genes, our strict selection led to 234 tissue-specific individual

PAS clusters, and 214 tissue-specific clusters overlapping in

two tissue types [at P50.01; false-discovery rate (FDR)50.25]

(Fig. 2b). To study the biased usage of APA in different tissues,
we calculated a variability index (VI) between each pair of tis-

sues. A low VI between two tissues indicates strong concordance

in their usage of PAS clusters (see Section 5). Confirming expect-
ations, liver and kidney showed the highest correlation, while

brain and kidney were the lowest.
To illustrate the difference of our model compared with pre-

vious approaches, we calculated the Shannon entropy for the

subset of PAS clusters that showed significant tissue specificity

for both the individual and overlap PAS, Figure 3a. While the

Shannon entropy is less than one for about 480 PAS clusters, our

model identified only half of these as significantly tissue specific,

with few additional PASs that had higher entropy. This is mainly

because Shannon entropy does not take the abundance of evi-

dence into account. For example, in Figure 3b, while the residual

for the most proximal PAS site of the gene HDLBP (on negative

strand) in brain indicates its outlier character, it is based on 17

tags (510% of the total) and thus not large enough to be sig-

nificantly brain specific. Additional data would be needed to

confirm the specific trend. In turn, our model characterized spe-

cific PAS clusters that would have been characterized as non-

specific due to higher entropy values. As an example, Figure 3c

shows two PAS clusters for the gene BDH1 (on negative strand).

The distal cluster is used in the three tissue types, while the prox-

imal is used in kidney and brain only. Using the linear model, the

distal cluster was detected as significant in liver, given that the

other cluster, the proximal one, shows higher usage in the other

two tissues (more than 2-folds).

2.3 Modeling constitutive polyadenylation sites

Because the PAPs responsible for synthesizing the polyA tail lack

substrate specificity, it necessitates the presence of specific signals

in the sequences around polyA sites that control mRNA poly-

adenylation (reviewed by Tian and Graber, 2012). One of the

known main cis-regulatory elements is a conserved hexamer with

consensus AWUAAA, located 10–35nt upstream of the polyA

Table 1. Summary of PA-seq generated data, filtering steps and clustering in each tissue library

PA-seq reads and clustering Liver Kidney Brain

Raw read pairs with identifiable linker sequences 2 851 978 8044 879 3 533 285

Read pairs mapped 2 449 567 7198 135 2 711 473

Non-redundant read pairs no priming 649 410 1353 072 1 320 265

Non-redundant read pairs � 2 distinct 50 tags 545 708 1190 344 1 001 479

Different polyA sites 57 396 99 482 132 616

PAS clusters 8537 12 477 15 727

PAS clusters with NPa 7439 10 291 13 205

aNP¼Narrow Peak.

(a) (b)

Fig. 2. (a) Test statistic for the residual of the original (red) and permuted

data (blue) for calculating overlap-significant PAS sites. (b) Number of

tissue-specific PAS clusters found in each tissue: total individual sites: 234

(90þ 68þ 76), total overlap sites: 214 (31þ 100þ 83)
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site, referred to as polyadenylation signal (Beaudoing et al.,

2000). The sequence composition at the cleavage site itself is

not well characterized, but a dinucleotide preference CA was

found in vitro (Chen et al., 1995). The sequence around polyA

sites are usually G/U-rich with a remarkable downstream elem-

ent (DSE), located within 30 nt downstream of the cleavage site.

Upstream of polyA sites are upstream elements (USE) that are

usually also U-rich, while some G-rich sequences have been re-

ported as well. These elements are largely located in the region

(þ100,�100) nt around polyA sites (Tian and Graber, 2012).
Most early attempts for the computational prediction of

polyA sites considered only samples containing the canonical

PAS signal. Position weight matrices (PWM) for DSE and

USE along with the PAS signal were used as input features for

hidden Markov model (HMM) or support vector machines

(SVM) (Hajarnavis et al., 2004; Legendre and Gautheret, 2003;

Liu et al., 2003; Salamov and Solovyev, 1997; Tabaska and

Zhang, 1999). After the characterization of 15 putative regula-

tory elements surrounding PAS signals (Hu et al., 2005), pos-

ition-specific scoring matrices for the identified motifs and

structural patterns of mRNA, have been later used as input fea-

tures (Ahmed et al., 2009; Akhtar et al., 2010; Chang et al., 2011;

Cheng et al., 2006; Shao et al., 2009). Most recently, the appli-

cation of artificial neural network and random forests techniques

have been proposed (Kalkatawi et al., 2012). These models were

largely trained on low-abundance pooled EST data from varying

human tissues; none of them examined tissues independently.

While the use of curated quality controlled data from collections

such as PolyA_DB (Zhang et al., 2005b) made it possible to

design models with high accuracy, studies typically restricted

their dataset to only include transcripts with PAS signals and

results were sometimes hard to interpret owing to negative

data not matched to the problem faced by the RNA processing

machinery (such as using random genomic locations).

Modeling constitutive and/or APA sites specifically has so far

rarely been investigated. The exact motifs responsible for APA

are frequently still unknown, especially when it comes to tissue-

regulated APA. Calculating PWM scores as features of classi-

fiers, as in the case of constitutive sites with known motifs, will

likely not reflect all of the regulatory elements. It is thus more

applicable to use a sparse sequence-based classifier that uses a

broad definition of the feature space. String kernels transform

the input sequences into a higher-dimensional feature space, ef-

fectively looking for similarities among substrings, and have been

proven to be successful in the prediction of alternative splicing

and transcription start sites (Sonnenburg et al., 2006, 2007).

Here, we build an SVM, using all of the information available

in the sequences flanking the polyA sites, by applying two string

kernels, the spectrum kernel (Leslie et al., 2002) and the weighted

degree kernel with shifts (WD) (shogun toolbox; version 2.0.0)

(Rätsch et al., 2005). While the spectrum kernel highlights the

global similarities between sequences as it counts the number of

occurrences of similar motifs, the WD kernel counts the number

of matching substrings of similar lengths at the same position but

allowed to be shifted within a specified window size around that

position.
To investigate whether local sequence features around polyA

sites are sufficient to explain polyadenylation, we first examined

whether PAS clusters for constitutive genes could be classified

from non-polyA sites. We focused on (�100,þ100) nt around

polyA sites, given that the known constitutive elements are

located in this region, and that it has additionally been shown

to exhibit a biased nucleotide composition (Legendre and

Gautheret, 2003; Tian et al., 2005). As the polyadenylation ma-

chinery scans transcribed sequences for cleavage locations, it is

not appropriate to use random genomic locations as negative set.

Within transcripts, the highly distinct higher order nucleotide

composition in coding sequences renders them inappropriate.

Fig. 3. (a) Histogram of Shannon entropy Q-values for all PAS clusters (range from 0 to 9). Red bars represent entropy values for individual-significant

PAS detected by our model, blue bars represent overlap-significant PAS. Individual sites cluster at 0–2 entropy, and overlap sites cluster at the upper end

of the range. (b) Example showing that Shannon entropy does not take the abundance of the evidence into account for calling sites significant. The usage

(count) of each PAS cluster is marked in each tissue, followed by the entropy values then the test statistics resulted from our linear model. Tissue

specificity is determined by low entropy values but high test statistics above a certain threshold. The proximal site in brain (17 tags; 510% of total) is

classified as specific (entropy¼ 0.46). However, this relatively low tag number compared with the overall expression of the gene and the total library

depth is not enough to call this site brain-specific. Entropy values for this proximal site in liver and kidney represent pseudo-counts (not shown in figure).

(c) Example of a specific PAS cluster detected by our linear model and not by Shannon entropy (BDH1 gene on negative strand). The distal site (65 tags)

is the only PAS site for this gene used in liver. Given the relatively low expression level of the gene and the liver-low library depth compared with brain

and kidney, this site is classified as significant (test statistic of our model is marked by red circle). Shannon entropy values do not reflect this relative usage
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Instead, we built a biologically motivated and challenging nega-
tive dataset: for each PAS, we randomly selected 10 positions in

the 30-UTR sequence between the transcript stop codon and the
PAS, but not including the last 100 nucleotides. We retrieved the

flanking (�100,þ100) regions around these positions to create
our negative dataset. In total, we extracted 2171 positive ex-

amples, and 21 710 negative examples.
Because we needed to set multiple hyper-parameters for the

SVM and kernels, like order, shift and the classification penalty,

we randomly split our dataset into 20% for model selection and
80% for (independent) training and testing (see Section 5). We

applied 5-fold cross validation. The classifier performance using
the two string kernels is shown in Figure 4a and b. Calculation of

the area under the receiver operating characteristic curve
(auROC) showed that the WD kernel substantially outper-

formed the baseline spectrum kernel (auROC¼ 99.6, 93.5%).
We applied WD on varying window sizes around PAS clusters

and found that the high performance largely resulted from fea-

tures in the flanking region of (�40,þ40). Our model parameters
indicate that most of these motifs are less than 8-mers long, and

shifted within 12nt, which coincides with the findings of (Zhang
et al., 2005a). This suggests that motifs around constitutive

polyA sites are highly conserved in both sequence and location,
and that the WD kernel is powerful enough to capture this phe-

nomenon with near perfect accuracy. To illustrate the PAS se-

quence landscape, we created sequence logos for the flanking
regions, which visually showed that the conserved motifs were

found in the region (�30,þ30) nt, WebLogo (Crooks et al.,
2004), Figure 4c. The polyadenylation signal and DSE were

clearly observed, and the cleavage site itself exhibited a strong

BA dinucleotide bias (B¼C, G or T), in agreement with the
previously reported CA dinucleotide.

2.4 Prediction of tissue-specific polyadenylation sites

The presence of conserved motifs for constitutive polyA sites

suggests the presence of other motifs that instruct the cell to
start the polyadenylation process around APA sites in a

condition-specific manner. To investigate this, we first merged
all individual-tissue–regulated and the two-tissue–overlap PAS
clusters and classified them against the positive constitutive data-

set (Fig. 5a). The moderate but highly encouraging performance
of the classifier on the individual-regulated and the overlap-regu-
lated datasets (auROC¼ 74.5 and 66.5%, respectively) support

this hypothesis. We then classified each of the individual tissue-
specific PAS clusters against constitutive PASs (Fig. 5b). Brain-
individual PAS clusters were highly distinguishable from consti-

tutive PASs (auROC¼ 81.5%), while kidney-individual and
liver-individual regulated PASs were classified at lower but rea-
sonable levels (auROC¼ 72, 63.5%, respectively). An inspection

of the sequence logos of each group explained this performance
(Fig. 6). We found an A-rich sequence just downstream of brain-

individual regulated PAS clusters that is not present in the con-
stitutive subset and other tissue-specific sets. Moreover, while the
canonical PAS signal is still found in liver-individual clusters,

making them harder to be classified from constitutive clusters,
it is completely absent in brain-individual regulated clusters.
Finally, we trained models to compare each of the individual-

regulated clusters in one tissue against all regulated clusters in the
other two tissue types (both individual and overlap, Fig. 5c). In
agreement with the motifs found at brain-specific individual PAS

clusters, classification of brain-specific individual regulated PASs
showed the best performance (auROC¼ 71%).

3 DISCUSSION

APA is a regulatory process with major impact on the down-

stream post-transcriptional fate of affected transcripts, yet it has
been fairly sparsely investigated. Recently, several studies have
analyzed data resulting from new high-throughput sequencing

protocols, and some studies reported on differential preferences
for APA usage in some genes from one tissue to another
(Shepard et al., 2011). However, without a suitable methodology

to specify the significance of these events, we may confuse alter-
native with specifically regulated polyadenylation.
Using a high-throughput sequencing method particularly de-

signed to probe the mRNA 30-end, PA-Seq, we were able to
accurately identify polyA sites with high resolution. PA-Seq
data from brain, liver and kidney were collected and constitutive

genes were separated from those having more than one APA
isoform. Given the large variability of tag counts across genes
and coverage across libraries, simple tag number thresholds or

ratios, or information theoretic metrics such as Shannon en-
tropy, are not a well-suited methodology for deep sequencing

data. They drastically inflate the number of putative alternative
sites, and cannot separate spurious events with little sequence
evidence from truly significant ones.

We therefore designed a suitable statistical framework to iden-
tify tissue-specific events such as APA sites across multiple deep
sequencing libraries. Using a fixed-effects linear model and per-

mutation tests, we were able to assign significance levels to APA
usage and identify tissue-specific regulated events. Our stringent
test left us with a highly specific and suitable dataset to investi-

gate the regulation of alternative APA, but led to limited sample
sizes. For example, the GFER mRNA showed two polyA sites
with the distal site being used in brain only, similar to the find-

ings in (Shepard et al., 2011). However, given its relatively low

(a)

(c)

(b)

Fig. 4. (a) ROC curve for the classification of WD kernel and Spectrum

kernel on constitutive PAS clusters versus background. WD outper-

formed the Spectrum kernel (auROC¼ 99.6, 93.5%). (b) PRC curve.

(c) Sequence Logo for (�30,þ30) region around PAS clusters for consti-

tutive genes; PAS site at position 0
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read coverage, it did not meet our stringent specificity threshold.

Replicate datasets will enable the use of other statistical tests,

which will likely detect a larger subset as significantly different,

and may thus help to identify additional regulatory elements that

are not covered in our examples.
This study is the first of its kind to analyze multiple APA sites

for a transcript and across more than two conditions. We sepa-

rated constitutive genes from genes with multiple APA sites, and

examined each group separately. Our analysis demonstrated that

the main cis-regulatory elements described to be responsible for

polyadenylation, are a strong—and in fact a highly inform-

ative—hallmark for constitutive sites only. Studies have shown

that 20–30% of human genes do not have the canonical PAS

signal and suggested that polyadenylation regulation is directed

by non-canonical sequences (Tian et al., 2005; Zarudnaya et al.,

2003). Moreover, regulation by non-canonical sequences is more

frequent in genes with APA (Nunes et al., 2010; Tian et al.,

2005).

In specifically regulated subsets, in particular brain APA sites,

we were able to define a highly enriched motif

(AAAAAAAAAA) starting just downstream of the PAS cluster

(Fig. 6a; application of MEME to the brain-specific subset con-

firmed its significance, resulting in an E-value of 1.8e-057). The

canonical polyA signal was not observed in brain-specific clus-

ters, and was found at lower conservation in liver and kidney.

This agrees with an observation reported in (Nunes et al., 2010),

where a polyA site did not possess the canonical polyA signal

instead contained an A-rich element in its vicinity. An analysis of

a different recent polyA deep sequencing dataset also showed a

roughly 2-fold enrichment of the A-rich motif at brain sites,

compared with liver and kidney, despite being generated by a

different protocol and processed by a different pipeline (Derti

et al., 2012). Given that the motif is specifically observed in

only one tissue within multiple datasets, it is unlikely to be an

experimental artifact resulting from internal priming, but we cau-

tiously point out that it may reflect a property of brain mRNAs

unrelated to polyadenylation.

Our methodology can be applied to data from additional

libraries, such as the data generated from applying a high-

throughput sequencing protocol on five mammals (Derti et al.,

2012). This will allow for the definition of specific subsets and aid

in the identification of further candidates of regulatory sequence

features. Combined with knowledge of regulatory factors

affecting polyadenylation and their expression patterns, this

will enable the design of models that can build on the encoura-

ging tissue-specific results we have reported here.

4 CONCLUSION

In summary, we have combined high-quality genome-wide data

with appropriate downstream analyses and computational mod-

eling. We have described a successful strategy to identify subsets

of significant condition-specific polyA events, built sequence-

based models to discriminate between them, and identified new

candidates for post-transcriptional regulatory features.

5 METHODS

5.1 Paired-end sequencing and read mapping

A new deep sequencing protocol, PA-seq, was used to identify polyade-

nylation sites at genome-wide scale. Briefly, total mRNA is randomly

fragmented and reversed transcribed with a modified oligo(dT) primer

(a) (b) (c)

Fig. 5. Classification of (a) tissue-specific PAS individual and overlap against constitutive. (b) individual tissue-specific regulated PAS clusters against

constitutive. (c) Each individual regulated PAS cluster in one tissue against all regulated in other tissue types

Fig. 6. Sequence logo for tissue-specific individual PAS clusters in each

tissue (a) brain-specific, (b) kidney-specific and (c) liver-specific. PAS site

at position 0
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that base pairs with the polyadenylation tail. The modified oilgo(dT)

primer has a dU in the fourth location in the 30-end to be later digested

by USER digestive enzyme. After that, the double-stranded cDNA frag-

ments are captured by streptavidin-coupled magnetic beads, and

sequenced using multiplexed paired end sequencing on Illumina

(Fig. 1). Adult human normal kidney and liver samples were obtained

from BioChain (Cat. # R1234142-50 and R1234149-50), and brain sam-

ples were obtained from Clontech (Cat. # 636102). Detailed description

of the PA-seq protocol is available on the website.

Before mapping, we filtered out low-quality reads and tags that did not

contain the adapter sequence ‘TTT’. The Burrows-Wheeler Alignment

Tool (Li and Durbin, 2009) was used to align the paired end reads inde-

pendently to the human genome (hg19), allowing two mismatches and no

gaps. After that, we only considered 50 and 30 read pairs that mapped in

the same orientation within 250 000nt on the same chromosome.

To investigate the genomic regions that our reads came from, we

annotated the 50 aligned reads to their genomic regions using an in-

house script (Ni et al., 2010). We did not use 30 reads for annotation

because they might fall beyond the end of annotated transcripts, indicat-

ing novel polyA sites. Locations were classified into six possible cate-

gories: annotated 30-UTR, 5 ¼ 1000nt downstream of 30-UTR, coding

region, 50-UTR, intron and intergenic region. Non-coding genes were

ignored, as well as 50 reads that mapped to 50-UTR, intergenic regions,

introns or upstream of 30-UTR, as the average insert distance between 50

and 30 paired end reads amounted to 180–380bp.

After alignment, non-redundant mapped read pairs that had the same

paired end tags were grouped for each unique 30 position, denoting a

polyA site. For each polyA site, the count of the non-redundant 50

pairs were used to indicate the relative usage of this site. We then filtered

out 30 tags that had exactly one 50 paired read (count¼ 1). Finally, 30

locations that mapped genomic regions with high A-content were filtered

out (13 consecutive As in the 25nt downstream of the mapped 30 pos-

ition), to exclude possible contamination by internal priming.

5.2 PolyA sites cluster identification

To cluster our reads, we used an algorithm previously developed for the

analysis of capped 50 mRNA tags (Ni et al., 2010). Only clusters with tag

numbers greater than or equal five were considered. We then selected

Narrow Peak clusters (NP), which span 525nt, with more than half of

the reads falling within�2nt of the mode. A minority of �15% showed a

broader distribution of tags and was not considered further. The relative

usage (count of the non-redundant 50 pairs) of all of the 30 tags in each

PAS cluster was summed up and further used as a measure of the PAS

usage, PAScount.

5.3 Identifying constitutive and alternative PAS sets

To determine constitutive set, we first grouped all PAS clusters of the

same gene from the three tissue types together if their regions overlapped

and their modes were within �10nt from the median. To get the median,

we ordered clusters according to their start position, and referred to the

PAS by the mode of the median cluster. If the PAS appeared in two tissue

types only, we used the mode of the second start position. Finally, if the

gene had one PAS cluster we called it constitutive; otherwise, it was

considered alternative.

5.4 Linear model to identify tissue-specific PAS

To determine tissue-specific contributions to PAS utilization, we imple-

mented a linear fixed-effects model. Let Nt
g, p denote the PAScount for

PAS cluster p for gene g in tissue t. Then

logðNt
g, pÞ ¼ �þ Tt þ Gg þ ðTt � GgÞ þ "

t
g, p ð1Þ

where � is a general intercept term, Tt is a tissue-specific effect, Gg is a

gene-specific effect, Tt � Gg is a tissue by gene interaction term and "tg, p is

the residual. There was no need to incorporate random effect terms as we

did not have variable replicates. Because we controlled for different tissue

depth, expression of each gene in each tissue, as well as any interaction

between tissues and genes, a correlation of the residual for a particular

PAS cluster with tissue suggests differences in PAS usages between tis-

sues. To quantify the differential usage of a PAS between tissues, we

computed the differences in the residuals "tg, p. We accounted for the

lack of usage of a PAS cluster in a certain tissue by adding pseudo-

counts. We applied this model on genes that are expressed in the three

tissue types, and fitted the model using Maximum Likelihood approach

as implemented in nlme R library (Pinheiro et al., 2011).

5.5 Permutation test to determine P-value

Our dataset was composed of three tissue libraries, each with the same set

of genes, but different PAS counts. To preserve library depth and gene

expression levels in each tissue, we first calculated the contribution per-

centage of each PAS cluster on the gene level [cf. Equation (1)]. Then, we

used these percentages in our permutations, but noted the total expres-

sion level of each gene in each library. Our null hypothesis assumes that

PAS clusters are non-tissue–specific regulated. To model this assumption

in our permutation test, in each round, we permuted tissue labels for each

PAS cluster; then, for each gene, the percentages of the permuted PAS

were used to represent a multinomial distribution, from which we drew a

random sample, scaled by the total gene expression value in each tissue.

As the minimal evidence for each cluster was set to five reads, missing

values, i.e. PAS clusters not detected in some of the tissues, were repre-

sented by a random number between 1 and 4.

5.6 Identifying individual and overlapping PASs

To identify tissue-specific PASs that are highly used in one individual

tissue, we used the difference between the highest and the median residual

values for each PAS as test statistic. For each PAS, we computed the test

statistic ftig
m
i¼1, where m¼ 5357 different PAS. For each of the observed

differences in our data, we obtained a P-value based on an empirical null

distribution from 1000 permutations. P-values were corrected for mul-

tiple hypothesis testing using the Storey FDR calculation (Storey and

Tibshirani, 2003). We used a liberal FDR of 0.25, to allow for the dis-

covery of significant events given the relatively small number of samples

being analyzed. The tissue-specificity threshold was set to 2.376 (in log

space, corresponding to P50.01, FDR50.25); all PASs showing a dif-

ference 42:376 were considered significant.

To characterize PAS clusters that are highly used in two tissue types

simultaneously (overlapping), we computed the test statistics to be the

difference between the mean of the highest two residual values and the

lowest value. PASs with residual difference between tissues 42:782 were

considered significant to the two tissues with the highest values (corres-

ponding to FDR50.25, P50.011).

5.7 Calculation of VI

To explore differences in APA usage among tissues, we calculated a VI

that compares the number of individual regulated PAS to overlap PAS.

The VI is defined as follows:

VIx, y ¼ ðIx þ IyÞ=Ox, y ð2Þ

where VIx, y is the VI between tissue x and tissue y, Ix and Iy are the

number of individually regulated tissue-specific PAS clusters in tissue x

and tissue y, respectively, and Ox, y is the number of overlapping regu-

lated tissue-specific PAS clusters in tissues x and y simultaneously. A low

value of VI between a pair of tissues indicates a high degree of correlation

in APA regulation, whereas a high value of VI indicates a weak
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correlation. The calculated indices for each pair are VILiverKidney¼ 1.44,

VIBrainLiver¼ 2, VIBrainKidney¼ 5.09.

5.8 Calculation of Shannon entropy

We assessed tissue-specific APA in the three tissue types by calculating

Shannon entropy on the count of each PAS cluster identified in each

tissue, according to (Schug et al., 2005). We only considered genes that

were expressed in the three tissue types, i.e. that had at least one PAS

cluster annotated for each tissue. We determined the relative expression

of each PAS cluster of a gene as follows:

wt
g, p ¼ ðN

t
g, p þ 1Þ=ðNt

g þ xg, pÞ ð3Þ

where Nt
g, p¼ the PAScount for PAS p for gene g in tissue t, Nt

g is the

summation of PAScount for all PASs of gene g in tissue t and xg, p is the

number of different PAS clusters for gene g. Next, we computed the

probability of observing a PAS cluster in each tissue by

Pðt j pÞ ¼ wt
g, p=

X

t

wt
g, p ð4Þ

Calculation of entropy values followed (Schug et al., 2005). Entropy

values close to zero represent the group of PAS clusters that are specific

to a single tissue, and increase when the PAS cluster is more broadly used

in different tissue types, or when the relative contribution of the tissue to

the overall usage of the PAS decreases (Schug et al., 2005).

5.9 Dataset for constitutive classification against

background

Our dataset is best described as a set of sequences, each is composed of an

array of characters A, C, G, T. The length of each sequence is 201 char-

acters. For the positive training data, the element at position 101 repre-

sents the polyA site (median of the PAS cluster). We chose a flanking

region of 100nt upstream and downstream of the mode of the PAS clus-

ter because previous studies have shown that most of the main features of

polyA sites are located in this region (Cheng et al., 2006). We refer to the

101th position as 0, upstream sequences as (�100,�1), and downstream

sequences as (þ1,þ100). We restricted our dataset to include PAS clusters

for genes that are expressed in the three tissue types.

To choose a biologically motived background/negative dataset, for

each true PAS mode in our PAS cluster positive dataset, we randomly

selected 10 positions downstream of the stop codon, but did not include

the 100nt just upstream of the mode of the PAS. If the gene does not

have an annotated stop codon, we select positions from the last 500nt but

not including the last 100nt upstream of the mode of the PAS. We then

retrieved the sequence of the 100 nt upstream and downstream of these

selected sites to compose our negative dataset.

5.10 String kernels and SVM

Kernel functions measure the similarity between different data points in

the feature space. For our purposes, the similarity is between two seg-

ments of DNA sequences with the same length. As noted earlier, the main

cis-regulatory elements responsible for polyadenylation are located in the

flanking region (�40,þ40) nt from polyA sites, while further downstream

and/or upstream (�100,þ100) of the polyA site lie some other G/U-rich

segments of sequences, with varying length, location and exact sequence

compositions. The spectrum kernel considers the global similarities be-

tween two given sequences, by counting the number of occurrences of k-

mer motifs (referred to as ‘order’ in Section 5.12) over the entire sequence.

The Weight degree kernel with shifts focuses on local similarities between

the given sequences by counting the number of matching k-mers at the

same positions, within a window around the matching position (referred

to as ‘shift’). We applied both string kernels on the region (�100,þ100).

5.11 Handling unbalanced data

Our negative dataset has 10 times more examples than the positive set.

This unbalanced dataset could be challenging for classifiers; because the

data is unbalanced, the cost of misclassification is also unbalanced; thus,

a false negative is more costly than a false positive (Ben-Hur et al., 2008).

Therefore, we assigned relative misclassification penalty, C, for each set

according to its number of examples; for positive training data, C is 10

times larger than that of the negative training data (Provost, 2000).

5.12 Model selection

To settle on the combination of parameters, which represent our model’s

ability to accurately distinguish the surrounding sequence of polyA sites

from other genomic loci, we applied model selection. The four parameters

to be optimized are (i) misclassification penalty or the SVM (C), (ii)

length of the substrings compared (order), (iii) positional shifts/window

around polyA site for WD kernel and (iv) length of the flanking region

around the PAS. We tried different values for each of these parameters,

while fixing the rest. To avoid over-fitting, first, we randomly split our

data; 20% for model selection and 80% for training and testing. These

two sets were kept independent of each other. In the model selection

phase, we applied 2-fold cross validation, and selected parameters that

gave the highest auROC. The optimal values for each parameter is shown

in Table 2. We then used the selected parameters in the training and test

phase by applying 5-fold cross validation. Evaluation curves were drawn

using ROCR package (Sing et al., 2005).

5.13 SVM on tissue-specific regulated PAS clusters

In this experiment, our positive examples were the set of individual and

overlap tissue-specific sites, and negative examples were constitutive sites,

expressed in the three tissue types and with exactly one PAS cluster. As

the WD kernel clearly outperformed the spectrum kernel on the recogni-

tion of constitutive sites, we only used the WD kernel for the rest of our

analyses.

Funding: This project was funded by a grant from the National Science

Foundation (MCB-0822033).

Conflict of Interest: none declared.

REFERENCES

Ahmed,F. et al. (2009) Prediction of polyadenylation signals in human DNA se-

quences using nucleotide frequencies. In Silico Biol., 9, 135–148.

Akhtar,M.N. et al. (2010) POLYAR, a new computer program for prediction of

poly (A) sites in human sequences. BMC Genomics, 11, 646.

Table 2. Model selection parameters for classification of constitutive sites

against background

Parameter Set of values Optimal value

Weight degree kernel with shifts

Order {1, 2 , . . . , 24} 8

Shift {4, 8 , . . . , 48} 12

C {0.177, 0.25 , . . . , 5.6} 1.4

Spectrum kernel

Order {1, 2 , . . . , 24} 8

C {0.177, 0.25 , . . . , 5.6} 5.6

Note: Model selection was performed on 20% of the data that was kept independ-

ent, and applying cross validation.

i115

Modelling of tissue-specific alternative polyadenylation

 at FA
K

/M
D

C
 on July 5, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


Andreassi,C. and Riccio,A. (2009) To localize or not to localize: mRNA fate is in

30UTR ends. Trends Cell Biol., 19, 465–474.

Beaudoing,E. and Gautheret,D. (2001) Identification of alternate polyadenylation

sites and analysis of their tissue distribution using EST data. Genome Res., 11,

1520–1526.

Beaudoing,E., D et al. (2000) Patterns of variant polyadenylation signal usage in

human genes. Genome Res., 10, 1001–10.

Ben-Hur,A. et al. (2008) Support vector machines and kernels for computational

biology. PLoS Comput. Biol., 4, e1000173.

Blekhman,R. et al. (2010) Sex-specific and lineage-specific alternative splicing in

primates. Genome Res., 20, 180–189.

Chang,T. et al. (2011) Characterization and prediction of mRNA polyadenylation

sites in human genes. Med. Biol. Eng. Comput., 49, 1–10.

Chen,F. et al. (1995) Cleavage site determinants min the mammalian polydenylation

signal. Nucleic Acids Res., 23, 2614–2620.

Cheng,Y. et al. (2006) Prediction of mRNA polyadenylation sites by support vector

machine. Bioinformatics, 22, 2320–2325.

Crooks,G. et al. (2004) WebLogo: a sequence logo generator. Genome Res., 14,

1188–1190.

David,L. et al. (2006) A high-resolution map of transcription in the yeast genome.

Proc. Natl Acad. Sci. USA, 103, 5320–5325.

Derti,A. et al. (2012) A quantitative atlas of polyadenylation in five mammals.

Genome Res., 22, 1173–1183.

Fu,Y. et al. (2011) Differential genome-wide profiling of tandem 30 UTRs among

human breast cancer and normal cells by high-throughput sequencing. Genome

Res., 21, 741–747.

Hajarnavis,A. et al. (2004) A probabilistic model of 30 end formation in caenorhab-

ditis elegans. Nucleic Acids Res., 32, 3392–3399.

Hu,J. et al. (2005) Bioinformatic identification of candidate cis-regulatory elements

involved in human mRNA polyadenylation. RNA, 11, 1485–1493.

Jan,C. et al. (2010) Formation, regulation and evolution of caenorhabditis elegans 30

UTRs. Nature, 469, 97–101.

Ji,Z. and Tian,B. (2009) Reprogramming of 30 untranslated regions of mRNAs by

alternative polyadenylation in generation of pluripotent stem cells from different

cell types. PLoS One, 4, 8419.

Kalkatawi,M. et al. (2012) Dragon polya spotter: predictor of poly (A) motifs

within human genomic DNA sequences. Bioinformatics, 28, 127–129.

Legendre,M. and Gautheret,D. (2003) Sequence determinants in human polyade-

nylation site selection. BMC Genomics, 4, 7.

Leslie,C. et al. (2002) The spectrum kernel: a string kernel for SVM protein classi-

fication. Pac. Symp. Biocomput., 575, 564–575.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics, 25, 1754–1760.

Liu,H. et al. (2003) An in-silico method for prediction of polyadenylation signals in

human sequences. Genome Inform., 14, 84–93.

Majoros,W. and Ohler,U. (2007) Spatial preferences of microRNA targets in

30 untranslated regions. BMC Genomics, 8, 152.

Mangone,M. et al. (2010) The landscape of C. elegans 30 UTRs. Science, 329,

432–435.

Marioni,J. et al. (2008) RNA-seq: an assessment of technical reproducibility and

comparison with gene expression arrays. Genome Res., 18, 1509–1517.

Mayr,C. and Bartel,D. (2009) Widespread shortening of 30UTRs by alternative

cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138,

673–684.

Moore,M. (2005) From birth to death: the complex lives of eukaryotic mRNAs.

Science, 309, 1514–1518.

Ni,T. et al. (2010) A paired-end sequencing strategy to map the complex landscape

of transcription initiation. Nat. Methods, 7, 521–527.

Nunes,N. et al. (2010) A functional human poly (a) site requires only a potent DSE

and an a-rich upstream sequence. EMBO J., 29, 1523–1536.

Ozsolak,F. et al. (2010) Comprehensive polyadenylation site maps in yeast and

human reveal pervasive alternative polyadenylation. Cell, 143, 1018–1029.

Pinheiro,J. et al. (2011) The R development core team 2011 nlme: Linear and non-

linear mixed effects models. R package version 3.1-102. R Foundation for

Statistical Computing, Vienna, Austria. http://cran.r-project.org/web/packages/

nlme/index.html.

Provost,F. (2000) Machine learning from imbalanced data sets 101. In: Proceedings

of the AAAI2000 Workshop on Imbalanced Data Sets, Austin TX.

Rätsch,G. et al. (2005) RASE: recognition of alternatively spliced exons in

C. elegans. Bioinformatics, 21 (Suppl. 1), i369–i377.

Salamov,A. and Solovyev,V. (1997) Recognition of 30-processing sites of human

mRNA precursors. Comp. Appl. Biosci., 13, 23–28.

Sandberg,R. et al. (2008) Proliferating cells express mRNAs with shortened

30untranslated regions and fewer microRNA target sites. Science, 320,

1643–1647.

Schug,J. et al. (2005) Promoter features related to tissue specificity as measured by

shannon entropy. Genome Biol., 6, R33.

Shao,Y. et al. (2009) Density clustering based SVM and its application to polyade-

nylation signals. In: Proceedings of the Third International Symposium on OSB,

Zhangjiajie, China, pp. 117–122.

Shepard,P. et al. (2011) Complex and dynamic landscape of RNA polyadenylation

revealed by PAS-Seq. RNA, 17, 761–772.

Shi,Y. et al. (2009) Molecular architecture of the human pre-mRNA 30 processing

complex. Mol. Cell, 33, 365–376.

Sing,T. et al. (2005) Rocr: visualizing classifier performance in r. Bioinformatics, 21,

3940–3941.

Sonnenburg,S. et al. (2006) Arts: accurate recognition of transcription starts in

human. Bioinformatics, 22, e472.

Sonnenburg,S. et al. (2007) Accurate splice site prediction using support vector

machines. BMC Bioinformatics, 8 (Suppl. 10), S7.

Storey,JD. and Tibshirani,R. (2003) Statistical significance for genomewide studies.

Proc. Natl Acad. Sci. USA, 100, 9440–9445.

Tabaska,J. and Zhang,M. (1999) Detection of polyadenylation signals in human

DNA sequences. Gene, 231, 77–86.

Tian,B. and Graber,JH. (2012) Signals for pre-mRNA cleavage and polyadenyla-

tion. Wiley Interdiscip. Rev. RNA, 3, 385–396.

Tian,B. et al. (2005) A large-scale analysis of mRNA polyadenylation of human and

mouse genes. Nucleic Acids Res., 33, 201–212.

Wang,E. et al. (2008) Alternative isoform regulation in human tissue transcrip-

tomes. Nature, 456, 470–476.

Zarudnaya,M. et al. (2003) Downstream elements of mammalian pre-mRNA poly-

adenylation signals: primary, secondary and higher-order structures. Nucleic

Acids Res., 31, 1375–1386.

Zhang,H. et al. (2005a) Biased alternative polyadenylation in human tissues.

Genome Biol., 6, R100.

Zhang,H. et al. (2005b) PolyA_DB: a database for mammalian mRNA polyadeny-

lation. Nucleic Acids Res., 33 (Suppl. 1), D116–D120.

i116

D.Hafez et al.

 at FA
K

/M
D

C
 on July 5, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://cran.r-project.org/web/packages/nlme/index.html
http://cran.r-project.org/web/packages/nlme/index.html
http://bioinformatics.oxfordjournals.org/

