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Side effect similarities of drugs have recently been employed to predict new drug targets, and
networks of side effects and targets have been used to better understand the mechanism of action of
drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins that
cause drug side effects. We integrated phenotypic data obtained during clinical trials with known
drug–target relations to identify overrepresented protein–side effect combinations. Using indepen-
dent data, we confirm that most of these overrepresentations point to proteins which, when
perturbed, cause side effects. Of 1428 side effects studied, 732 were predicted to be predominantly
caused by individual proteins, at least 137 of them backed by existing pharmacological or phenotypic
data. We prove this concept in vivo by confirming our prediction that activation of the serotonin 7
receptor (HTR7) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug
that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side
effects are mediated by individual proteins and create a reference for such relations.
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Introduction

While the aim of therapeutic pharmacological treatment is to
restore the function of protein interaction networks that have
been disturbed by disease, drugs often induce unintended
changes in the body causing debilitating side effects that may
require additional therapy or even lead to discontinuation of
the drug. Specific protein targets have been recognized not
only as important for the therapeutic effect of drugs, but also
for the occurrence of side effects (Whitebread et al, 2005;
Blagg, 2006; Imming et al, 2006; Tatonetti et al, 2009; Berger
and Iyengar, 2011). In turn, perturbations induced at individual
proteins influence pathways and functional modules, even-
tually leading to an observable phenotype (Scheiber et al,
2009). A number of studies have successfully used existing
biochemical data to identify candidate targets for particular
side effects. However, most systematic surveys toward
proteins that constitute the molecular basis of side effects
have concentrated on a small number of proteins or side effects
(seeBender et al, 2007; Yang et al, 2009, 2010; Berger and

Iyengar, 2011; and Supplementary information). For example,
the causes of several cardiovascular side effects were identified
in a survey of the literature (Whitebread et al, 2005). Potential
side effects of drug candidates were proposed to be predictable
from in vitro protein binding without investigating a causal
connection between protein binding and side effects (Krejsa
et al, 2003). There have also been a number of efforts to extend
the drug–target network to help explaining side effects (Xie
et al, 2007, 2009; Lounkine et al, 2012). These studies
employed various methods to predict new drug targets, but
implicitly assumed a causal connection between these novel
drug targets and side effects. Other studies of side effects imply
that a systematic association with proteins is feasible. For
example, pathways perturbed by drugs were related to the
occurrence of side effects (Scheiber et al, 2009), and a method
was proposed to find clusters of related drugs, targets and side
effects (Mizutani et al, 2012). Again, no global benchmark was
performed to show that the clusters correspond to causal
relations. We have shown earlier that shared side effects
between drugs can be used to predict shared targets
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(Campillos et al, 2008), with the underlying assumption that
drug targets are associated with specific patterns of side effects
independent of the drug that binds the protein. Here, we
integrated drug–target and drug–side effect relations to
identify target proteins that elicit specific side effects. By
recording whether agonistic or antagonistic changes of the
targets cause the unwanted side effect, we can also propose
ways by which the side effect can be counter-acted and
confirm this concept in a mouse model. In contrast to the
previous studies mentioned above, we based our analysis on
the complete set of drug–target and drug–side effect relations
and performed various benchmarks against the independent
data and literature. To show the predictive value of our
approach, we also tested a predicted side effect–target relation
using a mouse model.

Results

Detection of overrepresented protein–side effect
pairs

To systematically identify drug targets that cause a particular
side effect, we combined side effect data for approved
therapeutic drugs from SIDER 2 (Kuhn et al, 2010) with
drug–target binding data from multiple sources (see Materials
and methods) (Roth et al, 2000; Imming et al, 2006; Okuno
et al, 2006; Günther et al, 2008; Wishart et al, 2008; Flockhart,
2009; Gaulton et al, 2011) as stored in the STITCH 3 database
(Kuhn et al, 2012). Importantly, we also included information
about whether the drug acts as an agonist or antagonist (or, for
enzymes, as activator or inhibitor), as this information is often
critical to predict the physiological mechanism of the side
effect. Our initial data set contains annotations for 841 drugs
and 1465 human targets and off-targets. After removing
redundant data as well as target proteins and side effects that
are associated with less than five drugs (for which we cannot
make confident predictions, see Supplementary Figure 1), we
arrived at a combined network of 1428 side effects, 550
marketed drugs and 296 drug targets (see Supplementary
Figure 2 for histograms). Next, we predicted causal relation-
ships between protein binding and side effects by searching for
statistically significant correlations between the 5579 drug–
target binding relations and 57 388 drug–side effect relations in
our data set (Figure 1). These correlations allowed us to
determine the set of drugs that bind a given target and elicit a
particular side effect. We then calculated the significance (by
P-value using Fisher’s exact test) of overrepresentation against
the background incidence of the respective side effect. The
P-values are then adjusted to control for multiple hypothesis
testing, yielding q-values (as quantified by the ‘qvalue’
package for the R programming language; Storey and
Tibshirani, 2003). More formally, q-values represent the
minimum false discovery rate for which the association will
be regarded as significant.

Most drugs bind to sets of pharmacologically similar
proteins, for example, members of the same protein family
or complex (Kuhn et al, 2008; Hopkins, 2008). While it is likely
that only one of the targets is responsible for a given side effect,
a number of related targets will be predicted to cause the side
effect in such cases. Thus, counting individual proteins

predicted to cause a side effect inflates the number of false
positives. We therefore clustered predictions so that a verified
prediction for one of the cluster’s proteins also explains the
predictions for the other cluster members. Proteins predicted
to cause the same side effect are grouped into a cluster if it is
likely that a drug, binding one of the proteins, will also bind
one of the others (using 50% as probability cutoff, see
Materials and methods). After excluding predictions for
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Figure 1 Concept. (A) By combining known drug–target and drug–side effect
relations, overrepresented protein–side effect pairs are identified. Benchmarking
verifies that the observed correlations reflect causal relations (see Figures 2 and
3). (B) Once protein–side effect relations have been found, they can be used to
explain actual side effects observed for drugs by looking for proteins that are
predicted to cause the side effect among the drug’s targets. (C) To identify the
contributions of certain target classes (e.g., main targets or GPCRs), we filter the
drug targets accordingly. Then, only side effects explained by proteins that
belong to this subset of targets are considered. For example, main targets are
known for many drugs. We consider these to be the targets traditionally
associated with the therapeutic mechanism of action (see Materials and
methods). A given target can be a main target for one drug, but an off-target for
other drugs. Therefore, the set of drug targets that are considered can change
from drug to drug.
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metabolizing enzymes, which could cause side effects only
indirectly through similar active metabolites for various drugs
or through an increased concentration of environmental
chemicals, we found 732 side effects to be significantly
enriched for at least one drug target (with a q-value of
o0.01, see Supplementary Table 1 and Supplementary
Figure 3). For 634 of these side effects, we were able to
determine whether they were caused by an inhibition or
activation of the candidate target by classifying known drug–
target relations by their known modes of action (see Materials
and methods). The predicted protein–side effect relations
can be accessed at the SIDER database (http://side
effects.embl.de/).

Benchmarking against independent data sets

To test if the correlations detected by analyzing package inserts
reflected real physiological effects of the targets—caused by
drug binding—we benchmarked our data against a number of
independent protein–side effect data sets. Known protein–side
effect pairs, derived from an unbiased survey of the literature
(see Supplementary Table 2) and from a review on cardiovas-
cular-associated side effects (Whitebread et al, 2005), have
significantly lower q-values than the background distribution
(Figure 2A). The same is true for protein–side effect pairs
derived by mapping gene–phenotype pairs from knockout
mice (Figure 2B; Supplementary Figure 4), suggesting that a

deletion of a protein in mice is likely to elicit the same
phenotype as inhibiting the respective ortholog in humans
despite species and methodology differences. To put our
findings into context, we used the set-up of our global
benchmark to compare our approach with the performance
of the previously proposed ‘sparse canonical correlation
analysis’ method (Mizutani et al, 2012). Compared with our
predictions, we found a much less significant separation
between verified and non-verified predictions (see Supple-
mentary Figure 5).

We manually investigated the most confident causality
predictions for each side effect (q-valueo10� 5, 116 side
effects). Of these, predictions for 72 side effects were directly
supported by the literature or mouse phenotypes. Thirteen
side effects were more indirectly supported by reports that link
the side effect to classes of drugs with a known common
mechanism (see Materials and methods). Thus, 73% of the
most confident predictions have direct or indirect support from
the literature or observed phenotypes (Figure 3). In 22 cases,
the link between protein and side effect appeared novel (see
Supplementary Table 1). Nine predictions were reported to
have other causes, like immunological hypersensitivity reac-
tions (a total of 8% false positives). To be able to extrapolate
the accuracy to our large set of 732 predictions (q-
valueo10� 2), we manually investigated all protein–side effect
pairs for which the side effect could be mapped to a mouse
phenotype. We find direct support for 80% and a low fraction
of false positives (3%, Figure 3). Thus, regarding cases for
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Figure 2 Validation against independent data sets. (A) Two reference sets of protein–side effect pairs were derived from independent sources: 30 cardiovascular-
related pairs from Whitebread et al (left) and 44 protein–side effect pairs annotated by us from an unbiased survey of the literature by scanning PubMed abstracts for co-
occurring proteins and side effects and manually verifying candidates (right, see Supplementary Table 2). A density plot of the q-value distribution for protein–side effect
associations (i.e., the estimated false discovery rate) shows a significant enrichment in lower q-values for pairs within the reference sets. For some proteins of the
reference sets, our method predicted whether the protein would be activated or inhibited by drugs causing the side effect. For these, the protein–side effect association
with the lowest q-value was used. We calculated P-values using a one-sided Kolmogorov–Smirnov test. (See Supplementary Figure 10 for a logarithmic version of this
plot.) (B) Gene–phenotype associations from knockout mice were mapped to human protein–side effect pairs, and related proteins were combined into clusters (see
Materials and methods). Of the 91 protein–side effect pairs with a q-value of o0.01, 25 protein–side effects pairs directly matched phenotypes in mutated mouse strains
(27%). This is a significant enrichment over the background rate of 11% (156 exact matches for 1403 protein–side effect clusters, P¼ 6� 10� 6 using Fisher’s exact
test; P¼ 6� 10� 10 without clustering, see Supplementary Figure 4).
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which we found no or only indirect literature support, 581 of
the 732 predictions represent novel associations between
individual proteins and a particular side effect that are likely to
be causative, often with an implied mode of action (target
activation or inhibition, see Supplementary Table 1 and the
SIDER database).

These 732 side effects are predicted to be associated with
262 different proteins, corresponding to about three side
effects per protein (if each side effect was caused by only one
protein). To put this ratio into context, we determined the
number of side effects per target in our predictions and in the
independent data sets described above (cardiovascular side
effects, literature-derived side effects and mouse phenotypes).
We found that there are many proteins that cause only one side
effect, but a small number of proteins are pleiotropic and elicit
many side effects. For all data sets, we find that this
distribution follows a power law (Supplementary Figure 6).
We conclude from this analysis that the number of predicted
side effects per protein is similar to the number observed in the
independent data sets.

In vivo validation

To illustrate the power and potential of our large-scale
approach, we validated in vivo our predicted association
between activation of the serotonin receptor 1 family
and hyperesthesia (increased pain sensitivity), which is
a side effect of triptans, a group of drugs used to treat migraine
(q-value: 9�10� 4, see also Supplementary Figure 7). This
example was selected by a filtering procedure: We first selected
side effects predicted to be caused by protein activation
(not by inhibition or modulation), that is, to be verifiable in a
gene knock-out model. This reduced the number of predic-
tions from 952 to 124. We next excluded 23 clusters of proteins
with 5 or more proteins. We finally screened the remaining
101 predictions for those corresponding to a mouse phenotype
that was amenable to testing in our experimental setting.
Out of the 101 predictions, the tested prediction is the 24th
prediction.

Triptans bind to a variety of serotonin receptors, including
their main targets, HTR1B and HTR1D, as well as a number of
related off-target receptors like HTR7, which had previously
been described as an ‘HTR1-like receptor’ (Hoyer et al, 2002).
To refine our prediction and to identify the specific target
receptor, we gathered additional data on the frequency of
hyperesthesia in patients and on the affinities of triptans to
their targets (see Supplementary Table 3 for affinities and
Supplementary Table 4 for pain-related side-effect frequen-
cies). We found that activation of HTR7 showed the strongest
correlation with hyperesthesia (see Supplementary Figure 8).
We then tested if the triptan with highest frequency of
hyperesthesia in human subjects, zolmitriptan, altered pain
sensitivity in mice. In an initial test, we looked for increased
mechanosensitivity (von Frey filament test) (Möller et al,
1998) and thermal sensitivity (hot plate test) (Mogil et al,
1999). While we found no significant effect on mechanosensa-
tion (see Supplementary Table 5), zolmitriptan indeed elicits a
significant increase in thermal pain sensitivity in mice
(Figure 4A). To test whether activation of HTR7 causes the
side effect, we pre-treated mice with the selective HTR7
antagonist SB-269970 (Lovell et al, 2000). Although SB-269970
had no effect on pain sensitivity alone (Figure 4B), pre-
treatment with SB-269970 prevented the effect of zolmitriptan
on pain sensitivity (Figure 4C), arguing for a selective blockade
of the drug side effect. While in vitro tests for cellular activity of
zolmitriptan were inconclusive (Supplementary Figure 9) and
SB-269970 could influence pain sensation via its reported off-
target activity (Kauppila et al, 1998; Foong and Bornstein,
2009), a mechanism via HTR7 is consistent with the finding
that the research chemical 8-OH-DPAT, an HTR1A and HTR7
agonist (Sprouse et al, 2004), elicits hyperesthesia in rats
(Millan et al, 1989). Furthermore, the triptans with the lowest
incidence of hyperesthesia (sumatriptan and naratriptan) have
the lowest relative affinity for HTR7 versus the therapeutic
target. These data strongly support our prediction that
activation of HTR7 by zolmitriptan in patients is responsible
for the reported hyperesthesia side effect. Our in vivo findings
also illustrate the possibility of a directed blocking of a side
effect and imply that our systematic computational screen is an
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Figure 3 Benchmarking of the predictions for different false discovery rates. The subset of side effect that corresponds to mouse phenotypes is shown separately.
Furthermore, we distinguish if the side effect occurs when protein is activated (act) or inhibited (inh) by drugs. Direct support comes from the existing literature describing
the connection between protein and side effect and from mouse phenotypes (dark green). In many cases, the literature suggests multiple causal proteins (medium
green). Papers that associate a class of drugs with the same mechanism to a side effect give indirect support (light green). Predictions remained unexplained for two
reasons: either not even indirect associations were found in a literature search (light blue), or (for more lenient cutoffs) we did not attempt to verify these predictions (dark
blue). In some cases, we found an alternative explanation in the literature (red) or that the association was caused by text-mining errors (e.g., when labels contain generic
warnings; yellow).
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effective and economical route to the identification of side
effect-causing proteins.

Discussion

The predicted protein–side effect relations can now be used to

explain actual drug–side effect pairs that have been recorded in

package inserts and to quantify the contributions of various

classes of proteins toward the etiology of side effects. To this

end, we looked for proteins among the drug’s targets that

explain an observed side effect among the 732 side effects for

which we have identified causal proteins (excluding metabo-

lizing enzymes). For many drugs, there is a target that is

thought to mediate the therapeutic effect of the drug. We

extracted these drug–target pairs from the literature, and

designate these ‘canonical targets’ as main targets (see

Materials and methods). For drugs with known main targets,

our method explained 35% of all drug–side effect pairs. We

found that main targets are solely responsible for 12% of all

drug–side effect pairs (Figure 5A). In 8% of the cases, both

main and off-targets elicited the side effect at the same time.

Off-targets alone, on the other hand, elicited 15%. The latter

category offers the possibility to intervene by reducing off-

target activity in analogy to the example described above

(Figure 4).
To quantify the influence of major known target families, we

subdivided all relevant targets into a number of subsets
according to their membership in protein families. Among the
five important families of protein targets (Overington et al,
2006), we found that G protein-coupled receptors (GPCRs)
contributed most to the observed side effects (Figure 5B). As
these ratios are dependent on the number of drugs targeting
the given targets, we also computed the fraction of explained
drug–side effect pairs for subsets of drugs (Figure 5C). Again,
the fraction of explained drug–side effect pairs is highest
among the drugs that mainly target GPCRs: regardless of on- or
off-target activity, 38% of drug–side effect pairs can be

explained by drugs binding to GPCRs. This perhaps reflects
the large number of diverse drugs that are available for GPCRs
and the high number of known targets for these drugs. GPCRs
might mediate side effects more directly than other targets, as
they directly influence the nervous system. Phenotypes that
are caused by aberrations in the nervous system are readily
detected. In contrast, other targets probably cause more subtle
intra-organismal phenotypes.

Our approach can only make predictions for proteins that
are the targets of a certain number of drugs. If a protein is an
off-target of only very few drugs, then there is not enough
statistical power to ascribe observed side effects to this protein.
Therefore, if a causal connection cannot be made with the
current data set, a more complete drug–target matrix may
uncover such a connection in the future. However, for very rare
off-targets it will remain impossible to statistically detect side
effects from clinical data. While more off-targets are discov-
ered, additional targets are unlikely to invalidate existing
confident predictions. For example, if a certain side effect
always occurs for the main target of a diverse set of drugs, then
a newly discovered off-target would need to be connected to all
of the drugs to achieve a similar P-value. Given that the drug–
target matrix is being screened more exhaustively, it seems
unlikely to discover such systematic gaps. Nonetheless, very
common side effects with multiple etiologies can also not be
resolved, as they will not be sufficiently overrepresented for
any particular target. Physiologically, combinations of pertur-
bations on different targets will also have different effects than
individually perturbing the proteins. However, given the low
number of drugs compared with the number of targets and
their combinations, detecting differential effects of target
combinations is infeasible.

Taken together, for more than half of the investigated side
effects, we can predict which proteins cause the side effects
upon perturbation by a marketed drug. For the majority of
these proteins, we also predict whether their activation or
inhibition causes the side effect. Using an animal model, we
confirmed that a single protein causes a complex side effect
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and showed that restoring the altered protein activity with
another, specific drug blocks this unwanted complex pheno-
type. With a more densely populated drug–target matrix that
includes all off-targets of a drug, our approach should be able
to deduce more protein–phenotype relationships with
increased sensitivity and selectivity. Identification of indivi-
dual proteins that mediate a particular side effect is not only an
entry point into the molecular mechanisms underlying
side effects, but also opens the possibility of predicting
personalized risk of side effects based on large-scale patient
genotyping data.

Materials and methods

Ethics statement

All animal work has been conducted according to relevant national
and international guidelines.

Drugs and targets

Side effects were imported from the SIDER 2 database (Kuhn et al,
2010), which contains information for 996 drugs and 4192
distinct side effects. We import drug–target information from the
STITCH 3 database, which in turn is based on the following
sources: DrugBank, GLIDA, Matador, PDSP Ki Database, BindingDB,
ChEMBLdb and a review article (Roth et al, 2000; Imming et al, 2006;
Okuno et al, 2006; Günther et al, 2008; Wishart et al, 2008;
Flockhart, 2009; Gaulton et al, 2011). Using a STITCH confidence
cutoff of 0.5, we find drug targets for 841 of the drugs with side-effect
information.

We curated information on activation and inhibition as different
phenotypes occur when a protein is bound by agonists or antagonists.
We manually annotated information listed in DrugBank records and
Imming et al (2006) and added these data to the STITCH 3 database.
From STITCH, we also retrieved information derived from Natural
Language Processing analysis of PubMed abstracts, Medical Subject
Headings (MeSH) pharmacological actions and Anatomical Therapeu-
tic Chemical classification (ATC) entries. If a protein is activated or
inhibited, then this annotation is added as a separate virtual protein to
the database. For example, a beta blocker will have additional targets
representing the inhibited beta-adrenergic receptors. Proteins asso-
ciated with the same set of drugs are merged into one non-redundant
target, as we cannot distinguish them from the drug–target data. For
the purpose of calculating significantly enriched side effects, we create
a non-redundant set of drugs by removing 218 drugs that are too
chemically similar to other drugs using a Tanimoto 2D chemical
similarity cutoff of 0.7 as computed with the Chemistry Development
Kit (Steinbeck et al, 2003) and the redundancy removing algorithm
described by Hobohm (Hobohm et al, 1992) (using Algorithm 2 of the
original paper).

Main targets are meant to be those targets that are commonly
thought to mediate the therapeutic effect of a given drug. Of course, so-
called off-targets may well also add to the therapeutic mechanism of
action in ways that have not been understood yet. We annotated
targets as main targets if they were listed in the review by Imming et al
(2006), in the MeSH Pharmacological Actions and in the ATC codes
(if applicable). However, we removed protein families of 10 or more
members. Thus, a kinase inhibitor does not have all kinases associated
as its main target.

Using the Gene Ontology (GO), targets were classified as GPCRs
(GO:0004930), nuclear receptors (GO:0004879), ion channels
(GO:0005216), kinases (GO:0016301), or enzymes (GO:0003824,
excluding kinases and metabolic enzymes). In case of conflicting
annotations for a given protein, associations between the protein and
the child GO terms were counted and the top GO term was kept. To
classify the main target class of a given drug, again the GO term with
the most annotations was kept. For example, a drug annotated as
serotonin receptor inhibitor will have both GPCRs and ion channels
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drug–side effect pairs where both main and off-targets contribute to the etiology of
the side effect. The set of side effects is limited to 732 for which we have identified
causal proteins. (B) Important families of targets were selected from Overington
et al (2006), and the fraction of drug–side effect pair that can be explained by the
individual protein families is shown. In this figure, ‘target’ refers to all binding
partners that are not metabolizing proteins, and ‘enzyme’ refers to enzymes that
are neither kinases nor metabolizing proteins. (C) For each drug, we identify the
most prevalent protein family among its main targets, and quantify the contribution
of this protein family and the remaining proteins toward the side effects. For
example, for drugs that have GPCRs as their main targets, 40% of all drug–side
effect pairs can be explained through any target. Almost all of these, namely 38% of
all drug–side effect pairs can be explained through the protein subset of GPCRs,
which includes both on- and off-target effects. (See Supplementary Figure 11 for
the distribution of q-values for the different classes of proteins.)
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(the 5-HT3 receptor family) among its main targets, but GPCRs will
usually outnumber the ion channels.

Prediction of proteins causing side effects

We connect side effects to proteins through the side effect–drug and
drug–target relations. For each side effect–protein pair, we count the
number of drugs that elicit the side effect, that target the protein, that
do both, and that do neither. Then, we calculate the P-value for
overrepresentation using Fisher’s exact test. Although for over half of
all possible combinations between side effects and proteins no drugs
are annotated with both the side effect and the protein, 194 560 tested
protein–side effect pairs remain to be evaluated. Thus, any P-value
needs to be corrected for multiple testing. This is done using the
‘qvalue’ package for the R programming language (Storey and
Tibshirani, 2003). For example, in the analyzed (non-redundant) data,
12 drugs inhibit the adrenergic beta receptor 1. All but of them are
annotated to cause bradycardia (decreased heart rate), while among
the complete set of 550 drugs, 184 cause this side effect. This yields a P-
value of 4�10� 5. Correcting for multiple testing, this still corresponds
to a q-value of 9�10� 4.

Clustering of predictions

Most drugs bind to a wide range of targets. Indeed, it has been
shown that drugs will generally bind most members of protein families
(Kuhn et al, 2008; Hopkins, 2008), albeit with varying potency. The
result of this is that for a given side effect, multiple members
of the same protein family will be predicted to cause the side effect. If
one of the members of the family is known to cause the side effect, then
the other targets should not be regarded as false positives, but
rather as a consequence of the broad binding profile of drugs. A similar
cause of redundant predictions is the case of protein complexes, where
it is not clear which subunit is the actual target. To address this
problem, we have implemented a simple clustering mechanism.
Each side effect is treated independently. At a given q-value cutoff,
there is a number of proteins predicted to be causal for the side
effect under consideration. First, proteins known to cause the side
effect are identified, for example, by comparison of mouse phenotypes
(see below) or by the literature searches. Second, proteins are
assigned to the known causal protein, forming clusters of proteins: if
at least half of the drugs that bind one target also bind another target
that is predicted to cause the same side effect, then we define them to
be a cluster.

Mapping of gene–phenotype associations

For 89 drug targets, we were able to obtain phenotypes of mouse
strains carrying null mutations in the target proteins from the Mouse
Genome Informatics resource (Bult et al, 2010) and mapped terms from
the Mammalian Phenotype Ontology one-to-one to human side effects
by strict matching of synonyms, resulting in 116 knockout phenotypes
that corresponded to human drug side effects. In total, 398 knockout–
phenotype pairs could be mapped to protein–side effect pairs.

Verification of predictions

Predictions were regarded as directly supported in any of the following
cases: The association between protein and side effect has been
reported in the literature, or has been observed in a knockout mouse
model. A related or similar phenotype was observed in mice that could
not be automatically mapped. The opposite phenotype was reported in
mutant mice, suggesting an involvement of the protein in the
regulation of the observed phenotype despite a different outcome
between temporary inhibition and constitutive knockout of the
protein. In many cases, the existing literature does not pinpoint a
single protein, but rather a group of proteins, to be responsible for a
given side effect. Indirect support comes from papers that link a class
of drugs with the same mechanism (e.g., selective serotonin reuptake
inhibitors) to the side effect.

Mouse model

Male and female mice of 2 months of age (C57BL/6J and N, Charles
River, Calco, Italy and EMMA, Monterotondo, Italy, respectively) were
used in this study. Animals were housed in groups of 4–6/cage with
food and water ad libitum at 22–241C on 12-h light cycle with lights on
at 0700 h. All procedures were approved by the Italian Ministry of
Health and the EMBL Animal Ethics Committee.

Hot plate test

Thermal sensitivity was measured using the hot plate test (Mogil et al,
1999). Mice were briefly handled each day for 4 days before and
on the experimental day. Mice were brought to the testing room 30 min
before injection. Testing of female or male mice was alternated. All
tests were carried out between 0900 and 1300 h. Mice were placed
on a hot plate apparatus (Ugo Basile, Varese, Italy) maintained at
55.0±0.21C and the latency to the first hind-paw withdrawal was
recorded. Animals were removed from the plate after the first response
or after 60 s as a cutoff time. Hind-paw withdrawal was scored from
videotape (by MAB) as a foot lifting, shake or lick (Hammond, 1993;
Espejo and Mir, 1993). Ambulatory movements were not considered as
responses.

Mechanical nociception

Mechanical allodynia was assessed using a Dynamic Plantar Anesthe-
siometer (Ugo Basile, Varese, Italy) by measuring the latency to
withdraw the hind paw from a graded force applied to the plantar
surface using a von Frey filament. The electronic von Frey Fiber device
applies a single non-flexible filament (0.5 mm in diameter) with
increasing force (0.1 g/s; from 0 to 5 g; Wijnvoord et al, 2010) against
the plantar surface of the mouse over a 10-s period. The paw
withdrawal response automatically turned off the stimulus, and the
pressure eliciting the response was recorded. For measurements, mice
were placed individually into red enclosures on a framed metal mesh
floor and allowed to acclimate for 10 min before testing. Paw
withdrawal thresholds were measured in triplicate for each paw of
each animal, allowing at least 30 s intervals between successive
measurements. In case of no withdrawal up to 5 g this maximum force
is maintained until the paw is withdrawn. The paw withdrawal
threshold is numerically obtained in seconds (latency of withdrawal).
In addition to thermal nociception, we assessed the sensitivity to
mechanical nociceptive stimuli using an automated dynamic plantar
test (Wijnvoord et al, 2010). No significant effect was observed in the
mean paw withdrawal latency for either of dose of Zolmitriptan (0.5
and 2.5 mg/kg, i.p.) used when compared with the saline group. Since
no difference was found within the male group or the female group, we
combined the male and female data.

Drugs

Zolmitriptan ((4S)-4-[[3-[2-(Dimethylamino)ethyl]-1H-indol-5-yl]methyl-
2-oxazolidinone, Toronto Research Chemicals, Toronto, Canada) and
the selective serotonin 7 receptor antagonist SB-269970 ((2-R)-1-[(3-
hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl] pyrroli-
dine hydrochloride, Sigma-Aldrich, Milan, Italy) were dissolved in
saline (0.9% NaCl). Sonication was used to help dissolve zolmitriptan.
Mice were injected 30 min before testing with vehicle or zolmitriptan
(0.5 and 2.5 mg/kg, i.p.) and, if applicable, pre-treated 20 min prior
with vehicle or SB-269970 (1 or 2.5 mg/kg).

Statistical analysis

Data were analyzed using two-way analysis of variance (ANOVA,
sex� treatment). In all cases, no significant effect or interaction
involving sex was found. In cases of significance, post hoc testing was
performed using Student–Newman–Keuls post hoc test. An a-value of
0.05 was used.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Möller KA, Johansson B, Berge OG (1998) Assessing mechanical
allodynia in the rat paw with a new electronic algometer. J Neurosci
Methods 84: 41–47

Okuno Y, Yang J, Taneishi K, Yabuuchi H, Tsujimoto G (2006) GLIDA:
GPCR-ligand database for chemical genomic drug discovery.
Nucleic Acids Res 34: D673–D677

Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug
targets are there? Nat Rev Drug Discov 5: 993–996

Roth BL, Lopez E, Patel S, Kroeze W (2000) The multiplicity of sero-
tonin receptors: uselessly diverse molecules or an embarrassment
of riches? Neuroscientist 6: 252–262

Scheiber J, Chen B, Milik M, Sukuru SCK, Bender A, Mikhailov D,
Whitebread S, Hamon J, Azzaoui K, Urban L, Glick M, Davies JW,
Jenkins JL (2009) Gaining insight into off-target mediated effects of
drug candidates with a comprehensive systems chemical biology
analysis. J Chem Inf Model 49: 308–317

Sprouse J, Reynolds L, Li X, Braselton J, Schmidt A (2004) 8-OH-DPAT
as a 5-HT7 agonist: phase shifts of the circadian biological clock
through increases in cAMP production. Neuropharmacology 46:
52–62

Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E
(2003) The Chemistry Development Kit (CDK): an open-source
Java library for Chemo- and Bioinformatics. J Chem Inf Comput Sci
43: 493–500

Storey JD, Tibshirani R (2003) Statistical significance for genomewide
studies. Proc Natl Acad Sci USA 100: 9440–9445

Tatonetti N, Liu T, Altman R (2009) Predicting drug side-effects by
chemical systems biology. Genome Biol 10: 238

Whitebread S, Hamon J, Bojanic D, Urban L (2005) Keynote
review: in vitro safety pharmacology profiling: an essential
tool for successful drug development. Drug Discov Today 10:
1421–1433

Identification of proteins that cause side effects
M Kuhn et al

8 Molecular Systems Biology 2013 & 2013 EMBO and Macmillan Publishers Limited

www.nature.com/msb
http://medicine.iupui.edu/clinpharm/ddis/table.aspx
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