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Abstract

Molecular genetic studies in the circadian model organism Synechococcus have revealed that the KaiC protein, the central
component of the circadian clock in cyanobacteria, is involved in activation and repression of its own gene transcription.
During 24 hours, KaiC hexamers run through different phospho-states during daytime. So far, it has remained unclear which
phospho-state of KaiC promotes kaiBC expression and which opposes transcriptional activation. We systematically analyzed
various combinations of positive and negative transcriptional feedback regulation by introducing a combined TTFL/PTO
model consisting of our previous post-translational oscillator that considers all four phospho-states of KaiC and a
transcriptional/translational feedback loop. Only a particular two-loop feedback mechanism out of 32 we have extensively
tested is able to reproduce existing experimental observations, including the effects of knockout or overexpression of kai
genes. Here, threonine and double phosphorylated KaiC hexamers activate and unphosphorylated KaiC hexamers suppress
kaiBC transcription. Our model simulations suggest that the peak expression ratio of the positive and the negative
component of kaiBC expression is the main factor for how the different two-loop feedback models respond to removal or to
overexpression of kai genes. We discuss parallels between our proposed TTFL/PTO model and two-loop feedback structures
found in the mammalian clock.
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Introduction

Photoautotrophic organisms like plants and cyanobacteria are

subjected to a daily light-dark rhythm and have been demon-

strated to possess a self-sustained circadian clock. The simplest

circadian clock ticks in cyanobacteria. It consists of just three

proteins KaiA, KaiB and KaiC composing a post-translational

oscillator (PTO). This unique three-protein clock is well

described for Synechococcus elongatus PCC 7942 (hereafter Synecho-

coccus). The principal protein of the PTO is KaiC combining

three intrinsic enzymatic activities, autokinase, autophosphatase

and ATPase [1,2]. ATPase and kinase/phosphatase occur in the

C1 and C2 rings of the KaiC hexamer, respectively. KaiC

hydrolyzes ,15 ATP molecules daily [1]. The consensus view is

that the ATPase crosstalks with the kinase/phosphatase through

a structural coupling between the two rings [3]. KaiA promotes

and KaiB represses phosphorylation of KaiC. The three Kai

proteins form stable complexes during the subjective night [4,5].

KaiC forms hexamers and each KaiC monomer within the

hexamer possesses two main phosphorylation sites (T432 and

S431) [6]. The four forms of KaiC cycle in a stepwise fashion:

unphosphorylated (U-KaiC), threonine phosphorylated (T-

KaiC), both residues phosphorylated (D-KaiC), and serine

phosphorylated (S-KaiC) [7,8].

In the presence of ATP, the three proteins KaiA, KaiB and

KaiC are able to produce robust, temperature-compensated 24 h-

cycles of KaiC phosphorylation even in a test tube. In the cell,

KaiABC can drive the circadian transcriptional output without de

novo expression of the kai genes [2,9,10]. Thus, the basic timing

mechanism in cyanobacteria has been suggested to rely on post-

translational processes whereas in eukaryotic circadian systems it is

assumed to based upon transcriptional/translational feedback

loops. However, with the discovery of a cellular clock in human

red blood cells and in the alga Ostreococcus tauri that might keep

time using the rhythms of metabolism, O’Neill and colleagues

[11,12] contribute to a re-definition or at least a refinement of

biological timing mechanisms in eukaryotes that gain more and

more similarities to that found in cyanobacteria.

Various modeling approaches have been applied to the

KaiABC protein system to simulate the chemical network that is

able to generate self-sustained oscillations, reviewed by Johnson et

al. [13] and Markson and O’Shea [14]. Beside two other studies

[7,15], we could recently show with a quantitative, highly

nonlinear feedback model that oscillations in the Kai system are

a consequence of KaiA sequestration by serine phosphorylated

KaiBC complexes [16,17]. Robustness of oscillations against

concerted changes in Kai protein levels is a result of the fact that

most KaiA is inactive throughout the circadian cycle. Native mass

spectrometry further revealed the existence of three KaiC binding

sites for constant and phosphorylation-dependent sequestration of

KaiA and allowed us to establish a detailed map of the complex

formation dynamics [16].
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Progress has been made as well in unraveling the molecular

clock components that drive the observed global rhythms of

promoter activity, although the picture is not yet complete. The

consensus view is, that several factors function in the clock output

pathways, including SasA, RpaA, LabA and CikA [18–21]. A

recent study showed that an additional response regulator, RpaB,

is also a key regulator of the circadian output pathway [22]. These

output factors also play an important role in the regulation of

kaiBC expression. Further factors (Pex, LdpA, CikA, NhtA, PrkE,

IrcA, CdpA) have been revealed that may contribute to the clock

input pathway. They modulate the functioning of the KaiABC

protein clock [23–25]. A complementary scenario for circadian

regulation of global gene expression is, that the daily fluctuation of

chromosomal compaction and DNA supercoiling might influence

promoter activity [26–28].

The regulation of kaiBC expression plays an important role in

regulating the cyanobacterial circadian clockwork [29]. In

Synechococcus, the three clock genes, kaiA, kaiB and kaiC are

arranged as three adjacent genes. The kaiB and kaiC genes are

expressed as a dicistronic operon, while the kaiA gene possesses an

own promoter. The kaiA transcript is rhythmically abundant but

not its protein [30]. In contrast, the kaiBC transcripts and the KaiB

and KaiC proteins exhibit circadian cycles in abundance [30–33].

Moreover, overexpression of the kaiC gene for a few hours resets

the phase of the rhythm [30,33]. Experimentally however, the

existing reports on transcriptional/translational kaiBC regulation

(transcriptional/translational feedback loop, TTFL) are not consistent.

For instance, several studies indicate that phospho-KaiC is mainly

responsible for kaiBC suppression [34–37]. However, unpho-

sphorylated KaiC has been shown convincingly to repress global

transcription including its own upon overexpression [30,32,38].

Moreover, studies have implicated KaiA in the activation of kaiBC

expression but only in cooperation with KaiC [30,32]. The

ATPase activity of KaiC is also suggested to drive transcription

[39]. Taken together, these results have given rise to a model,

wherein KaiC is proposed to function in the positive and in the

negative limb of the kaiBC oscillatory loop. However, it is still not

known which phospho-state of KaiC promotes and which

phospho-state of KaiC suppresses expression of kaiBC.

In this work, we analyze various combinations of positive and

negative regulation of kaiBC expression through KaiC by

introducing a combined TTFL/PTO model that accounts for

the different phospho-states of KaiC. Simulations of inactivation

and overexpression of kai genes reveal that only one transcriptional

feedback combination can reproduce the existing data satisfacto-

rily. Importantly, the effects of simulated kai-knockout and kai-

overexpression on kaiBC expression differ in the tested models

depending on which phospho-form of KaiC drives kaiBC

transcription and which phospho-form suppresses it.

Results

12 possible two-loop transcriptional feedback models
reproduce the observed dynamics of kaiBC expression
and KaiC phosphorylation

For a theoretical investigation of which phospho-state of KaiC

positively and which phospho-state of KaiC negatively regulates

kaiBC transcription we chose existing kaiBC expression and KaiC

phosphorylation data to state our constraints. We did image

analysis of Figure S2 from Murayama et al. [35], where Northern

and Western blot analyses were employed, to track the relative

amount of kaiBC mRNA, unphosphorylated KaiC (UKaiC), and

total phosporylated KaiC protein (PKaiC) in wild-type cells under

constant light (LL) condition at 30uC. The levels of kaiBC mRNA,

UKaiC and PKaiC were averaged and the ratios of UKaiC and

PKaiC to total KaiC determined (Table S1). We chose the

Murayama data because they provided time course data of kaiBC

mRNA, UKaiC, and PKaiC protein levels from a single

experiment. Here, each simulation was fit to the Murayama time

course data resulting in optimal parameter sets (see Methods). The

workflow was as follows: we analyzed whether the simulated peak

phases of kaiBC mRNA, UKaiC and PKaiC protein levels gave

good fits to the Murayama data and showed a period of

,25 hours as observed experimentally [40]. If the period was

about 24–26 hours but the simulated peak phases were not well

reproduced we studied whether the simulation still can explain

existing data on peak phases from other in vivo experiments

[31,40–42]. Provided the previous criteria were fulfilled, we tested

further whether the model can also correctly reproduce the kaiBC

mRNA expression dynamics observed in kai gene-knockout and

overexpression mutants.

The model we developed couples our previous PTO model for

the KaiABC core clock [16] to transcription/translation of the

kaiBC operon resulting in a combined TTFL/PTO model. KaiC

monomers are found in three different pools in the PTO portion of

our model: KaiC monomers are part of a KaiC hexamer (CH-

pool), a KaiBC complex (CB-pool) or are present in free monomers

(CP-pool). In each pool, the KaiC monomers exist in four

phosphorylation states U - unphosphorylated, T- threonine

phosphorylated, S - serine phosphorylated and D - double

phosphorylated. The production of new KaiC molecules occurs

within the monomer pool. There, KaiC monomers assemble to

hexamers to become active. For simplicity, all forms of KaiC are

degraded with the same constant rate. Oscillation of kaiBC mRNA

was realized by introducing a combination of a positive and a

negative feedback loop into the model system. The element in the

respective loop is KaiC. In the positive feed-forward loop, KaiC

drives transcription of the kaiBC operon while in the negative

feedback loop KaiC suppresses kaiBC transcription (see Methods

Author Summary

Many organisms possess a true circadian clock and
coordinate their activities into daily cycles. Among the
simplest organisms harboring such a 24 h-clock are
cyanobacteria. Interactions among three proteins, KaiA,
KaiB, KaiC, and cyclic KaiC phosphorylation govern the
daily rhythm from gene expression to metabolism. Thus,
the control of the kaiBC gene cluster expression is
important for regulating the cyanobacterial clockwork. A
picture has emerged in which different KaiC phospho-
states activate and inhibit kaiBC expression. However, the
mechanism remains to be solved. Here, we investigated
the impact of each KaiC phospho-state on kaiBC expres-
sion by introducing a model that combines the circadian
transcription/translation rhythm with the KaiABC-protein
oscillator. We tested 32 combinations of positive and
negative transcriptional regulation. It turns out that the
kaiBC expression and KaiC phosphorylation dynamics in
wild type and kai mutants can only be described by one
mechanism: threonine and double phosphorylated KaiC
hexamers activate kaiBC expression and the unphosphory-
lated state suppresses it. Further, we propose that the
activator-to-repressor abundance ratio very likely deter-
mines the kaiBC expression dynamics in the simulated kai
mutants. Our suggested clock model can be extended by
further kinetic mechanisms to gain deeper insights into
the various underlying processes of circadian gene
regulation.

Two Feedback Loops Run kaiBC Expression
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and Text S1). We then studied the role of U-KaiC, T-KaiC, D-

KaiC, S-KaiC, and total phosphorylated KaiC (P-KaiC) in kaiBC

transcription with respect to positive and negative regulation. This

kind of test is novel. In particular, we tested each phospho-form of

KaiC within the CH-pool (HU+, HT+, HD+, HS+) as to positive kaiBC

regulation. We disregarded phospho-forms of KaiC from the CB-

pool because studies strongly indicate that they do not promote

kaiBC expression [43,44]. In addition, we considered each

phospho-form of KaiC from the CH-pool (HU2, HT2, HD2,

HS2) (Group I) and the CB-pool (BU2, BT2, BD2, BS2) (Group II)

as to negative regulation of kaiBC (Table 1). For example, T-KaiC

hexamers activate kaiBC transcription whereas U-KaiC hexamers

inhibit it. We call this feedback combination the HT+-HU2 model.

Another example, T-KaiC hexamers activate kaiBC transcription

whereas U-KaiBC complexes repress it. We call this feedback

combination the HT+-BU2 model.

One can argue (1) that D-KaiC follows T-KaiC close in time

and thereby it would be hard to dissect the single contribution of

both phospho-forms of KaiC on kaiBC transcription or (2) that all

three phosphorylated forms of KaiC (T-KaiC, D-KaiC, S-KaiC)

may act on the kaiBC promoter. Therefore, we also took into

consideration that T-KaiC and D-KaiC (HTD+) as well as T-KaiC,

D-KaiC, and S-KaiC (HP+) from the CH-pool compete for the

kaiBC promoter. Furthermore, we considered that T-KaiC, D-

KaiC and S-KaiC from the CH- and the CB-pool compete for the

kaiBC promoter to inactivate transcription (HP2 and BP2,

respectively). Although regulation of kaiBC could also be via

heterogenous KaiC hexamers states we show with a binomial

distribution calculation that using the homogenous phospho-states

U, T, D and S as responsible for the feedback regulation is a

reasonable assumption (see Text S1).

In the end, we tested 32 combinations (Table 1). Optimal

parameters for each model were identified (Table S3, see also

Methods). We deliberately based our models exclusively on the

cycling dynamics of the four KaiC forms to test whether we still

could arrive at an output that is congruent with the experimental

data. In particular, we disregarded other clock-related proteins

that might be involved in transcriptional regulation [34].

Six models in each of both two-loop feedback network groups

reproduce the observed dynamics of kaiBC expression and KaiC

phosphorylation. The most promising models of Group I, in which

each phospho-form of KaiC from the CH-pool negatively feeds

back on kaiBC transcription, are the following: two models in

which U-KaiC hexamers repress kaiBC transcription and TD-

KaiC hexamers or all three phosphorylated forms of KaiC

promote it (HTD+-HU2; HP+-HU2); one model in which T-KaiC

hexamers downregulate kaiBC transcription and U-KaiC hexa-

mers activate the kaiBC promoter activity (HU+-HT2); one model in

which D-KaiC hexamers repress kaiBC transcription and S-KaiC

hexamers turn kaiBC transcription on (HS+-HD2); and two models

in which S-KaiC hexamers suppress kaiBC transcription and T-

KaiC hexamers or TD-KaiC hexamers promote it (HT+-HS2;

HTD+-HS2). Figure 1A shows a simulated expression profile of the

HTD+-HU model as an example of a good fit model of Group I.

The results from the other five data fits are given in Figure S1. In

summary, kaiBC mRNA oscillates with maximal expression 6–13 h

after dawn, UKaiC cycles with peak phases during the first half of

the subjective day (LL0-7) whereas maximal KaiC phosphoryla-

tion occurs from LL7 to LL15 as observed experimentally [31,40–

42]. The oscillations consistently follow a period of 24–26 h in LL

(Table S2). Other tested feedback combinations of Group I cannot

explain the data points satisfactorily despite extensive parameter

space searches. A prime example of a model which deviate from

experiments is shown in Figure 1B. The full results are

summarized in Figure S2 and S3 (see also Table S2).

Six simulations of feedback combinations of Group II also

explain the peak phases of kaiBC mRNA, UKaiC and PKaiC

levels under LL condition, showcased for the HD+-BT2 model in

Figure 1C. In the Group II, phospho-forms of KaiC from the CB-

pool negatively feed back on kaiBC transcription. Further good fit

Table 1. Overview of tested models.

GROUP I GROUP II

Hexamer pool (negative
regulation)

Hexamer pool (positive
regulation) Figure

KaiBC complex pool
(negative regulation)

Hexamer pool (positive
regulation) Figure

P-KaiC (HP2) U-KaiC (HU+) S2D P-KaiC (BP2) U-KaiC (HU+) S4D

U-KaiC (HU2) T-KaiC (HT+) S2A U-KaiC (BU2) T-KaiC (HT+) S4A

D-KaiC (HD+) S2B D-KaiC (HD+) S4B

S-KaiC (HS+) S2C S-KaiC (HS+) S5A

TD-KaiC (HTD+) 1A TD-KaiC (HTD+) 1D

P-KaiC (HP+) S1A P-KaiC (HP+) S4C

T-KaiC (HT2) U-KaiC (HU+) S1B T-KaiC (BT2) U-KaiC (HU+) S5B

D-KaiC (HD+) 1B D-KaiC (HD+) 1C

S-KaiC (HS+) S3A S-KaiC (HS+) S5C

D-KaiC (HD2) U-KaiC (HU+) S3B D-KaiC (BD2) U-KaiC (HU+) S4E

T-KaiC (HT+) S3C T-KaiC (HT+) S5D

S-KaiC (HS+) S1C S-KaiC (HS+) S5E

S-KaiC (HS2) U-KaiC (HU+) S3D S-KaiC (BS2) U-KaiC (HU+) S6A

T-KaiC (HT+) S1D T-KaiC (HT+) S6B

D-KaiC (HD+) S3E D-KaiC (HD+) S6C

TD-KaiC (HTD+) S1E TD-KaiC (HTD+) S6D

doi:10.1371/journal.pcbi.1002966.t001

Two Feedback Loops Run kaiBC Expression
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Figure 1. Simulations of models with different combinations of positive and negative transcriptional feedback regulation of the
kaiBC operon. 12 of 32 tested two-loop feedback models, each six of Group I and Group II, sufficiently reproduce the experimental observed phase
relations between kaiBC mRNA, unphosphorylated KaiC (UKaiC) and total phosphorylated KaiC (PKaiC) protein and period of oscillation. In Group I

Two Feedback Loops Run kaiBC Expression
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models are HT+-BU2, HD+-BU2, HP+-BU2, HU+-BP2, and HU+-

BD2 (Figure S4). Other transcriptional feedback combination

cannot recapitulate the expression dynamics as observed experi-

mentally (Figure S5 and S6). An example expression profile is

shown in Figure 1D.

Three models correctly reflect the kaiBC expression and
phosphorylation dynamics in the kaiA mutant

Of 32 tested combinations for kaiBC feedback regulation, 12

generated time courses fit to existing experimental data. Six

models in which in each case the negative KaiC feedback species

originates from the CH-pool (Group I) and six models in which in

each case the negative KaiC feedback species is from the CB-pool

(Group II). In a next step we tested whether these models would

hold true if we simulate nullification of the kaiA gene as was done

by setting the kaiA transcription rate to zero (Text S1). From

previous experiments we know that kaiA-inactivated (kaiA2) strains

reduce kaiBC promoter activity relative to the wild type [30,32].

Additionally, the lack of the KaiA protein causes the unpho-

sphorylated form of KaiC (U-KaiC) to be most abundant in the

cell [32]. This suggests U-KaiC states to inhibit kaiBC transcrip-

tion. On the other hand, Murayama et al. plausibly show that

phosphorylated KaiC forms mainly regulate repression of the

kaiBC promoter activity [35]. Therefore, we deliberately decided

not to impose any constraints as to which phospho-state of KaiC

promotes and suppresses, respectively, kaiBC transcription and

analyzed the good-fit models further.

In all 12 tested models, kaiA deletion abolishes overt circadian

rhythms of kaiBC mRNA and PKaiC. Furthermore, KaiC

phosphorylation reaches consistently a constant minimum of

,0% phosphorylated KaiC (Figure 2 and S7). However, deletion

of the kaiA gene reduces the kaiBC mRNA level only in the HTD+-

HU2, HP+-HU2 and HTD+-HS2 models of Group I (Figure 2A–C)

as well as in the HD+-BT2 model of Group II (Figure 2D). By

contrast, the absence of the kaiA gene in the other eight models

leads to higher kaiBC expression levels, which contradict the

observed positive role of KaiA on kaiBC (Figure S7). It implies that

KaiA has lost its positive influence on kaiBC expression. We

hypothesized that is due to a dysfunctional negative feedback loop

in these models. In order to investigate this hypothesis, we studied

the dynamics of the respective positive and negative KaiC

feedback species in all 32 tested models shortly after kaiA

transcription has been removed. Figure 3 gives two representative

simulation results of Group I and Group II showing the dynamics

of kaiBC expression and of the KaiC phospho-forms which feed

forward and back, respectively, on kaiBC. kaiA transcription was

removed by the time kaiBC transcription had achieved its

minimum (Text S1). As seen for the HTD+-HU2 model, oscillation

of TD-KaiC hexamers damps out as U-KaiC hexamers do

(Figure 3A). In agreement with existing experiments, the levels of

kaiBC mRNA and KaiC phosphorylation are constitutively

reduced whereas the amount of U-KaiC hexamers is enhanced.

An explanation for these damped oscillations is as follows: In the

first cycle, the quantities of T-KaiC and D-KaiC hexamers suffice

to promote kaiBC expression. Newly synthesized KaiC proteins are

phosphorylated very fast. Repression of kaiBC transcription is low

due to a small quantity of U-KaiC hexamers. As the levels of T-

KaiC and D-KaiC hexamers reach their peak, degradation takes

over the dynamics such that T-KaiC and D-KaiC hexamer levels

drop resulting in suppression of kaiBC by U-KaiC hexamers. With

lacking KaiA proteins, TD-KaiC phosphorylation ceases and U-

KaiC constitutively accumulates to repress further transcription of

kaiBC. These dynamics were observed in those models in which U-

KaiC hexamers are assumed to suppress kaiBC. By contrast, the

HU+-HT2 model does not show such a behavior (Figure 3B).

Rather, the level of threonine phosphorylated KaiC hexamers

drops immediately. There are not any T-KaiC hexamers, which

could negatively feed back on kaiBC. In addition, U-KaiC

hexamers increase steadily. As a result, kaiBC expression is not

reduced. Interestingly, each tested model in which T-KaiC, D-

KaiC and S-KaiC hexamers is assumed to inhibit kaiBC

transcription could not replicate the downregulation of kaiBC as

seen in kaiA2-mutant strains. After removing kaiA transcription

KaiC phosphorylation ceases abruptly such that the negative

feedback loop is not functional to suppress kaiBC transcription.

However, three models suggest that suppression of kaiBC is

possible if there is a proper abundance ratio of the transcriptional

activator to repressor (Figure S8A). Thus, removing the kaiA gene

from the HT+-HD2 model turns kaiBC transcription down as well.

Here, D-KaiC hexamers (negative regulator) display a lower

expression rhythm than T-KaiC hexamers (positive regulator) but

the oscillation damps out more slowly than that of T-KaiC

hexamers such that the negative feedback loop is functional to

suppress kaiBC transcription further. In the HTD+-HS2 and HD+-

HS2 models D-KaiC and S-KaiC hexamers display nearly the

same peak expression rhythm shortly after kaiA has been removed

but the level of S-KaiC hexamers (negative regulator) again damps

out more slowly. This causes constitutive suppression of kaiBC

(Figure S8B, C).

In the case of the Group II models, where in each combination of

positive and negative regulation the transcriptional repressor is from

the KaiBC complex pool, we reason that the peak expression

rhythms of KaiBC complexes are always too low to fulfill the role as

negative regulator of kaiBC transcription in the kaiA2 mutant

(Figure 3C). Only the enhanced retention of the transcriptional

activator alone can suppress kaiBC expression rhythm in the

simulated kaiA-knockout mutant (Figure 2D, 3D). This retention is

also the reason why simulated kaiA-overexpression causes decreased

kaiBC transcript levels as well as observed for the HD+-BT2 model

contradicting experimental findings (Figure S9). In summary, we

rejected the idea that phospho-forms of KaiC from the CB-pool

function as transcriptional repressors and decided to analyze the

HTD+-HU2, HP+-HU2 and HTD+-HS2 model in more detail.

The HTD+-HU2 model reproduces the kaiBC expression
dynamics of oxkaiA and oxKaiC mutants

Several kaiA overexpression (oxkaiA) studies showed that KaiC

becomes progressively more hyper-phosphorylated meaning in

and Group II, the transcriptional repressor originates from the hexamer pool (CH-pool) and the KaiBC complex pool, respectively (CB-pool; see also
Table 1). (A and B) Representative time-series of a good-fit (A) and a not-good-fit model (B) of Group I: the HTD+-HU2 and the HD+-HT2 model. (C and
D) Representative time-series of a good-fit (C) and a not-good-fit model (D) of Group II: the HD+-BT2 and the HTD+-BU2 model. As examples, HD+,
double phosphorylated KaiC (D-KaiC) from the CH-pool promotes kaiBC transcription; HT2, threonine phosphorylated KaiC (T-KaiC) from the CH-pool
suppresses kaiBC transcription; BT2, threonine phosphorylated KaiC (T-KaiC) from the CB-pool suppresses kaiBC transcription. Fitted oscillations of
kaiBC mRNA, UKaiC, and PKaiC protein levels are shown as red, blue and black solid curves, respectively. The average level of kaiBC transcription was
standardized to 1. The levels UKaiC und PKaiC are ratios to total KaiC. The symbols represent data from image analysis (see Methods; Table S1). The
results of the other model fits are summarized in Figures S1, S2, S3 (Group I models) and Figures S4, S5, S6 (Group II models). The parameters are
given in Table S3. The subjective-day phase is from 0 to 12 hours (LL0-12), the subjective-night phase from 12 to 24 hours (LL12-24).
doi:10.1371/journal.pcbi.1002966.g001

Two Feedback Loops Run kaiBC Expression
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particular mainly threonine and double phosphorylated forms of

KaiC accumulate and become constant in time [30,37,41]. In

agreement with these observations, our published PTO model,

which is part of our combined TTFL/PTO model in this study,

also correctly simulates a higher KaiC phosphorylation level when

KaiA is solely enhanced [16]. Additionally, elevated KaiA levels

dose-dependently increase kaiBC expression and damp it to

arhythmicity [30,37,41]. Thus, repression of the KaiC phosphor-

ylation rhythm correlates with the suppression of the kaiBC

transcription rhythm as simulated by the three remaining models

(HTD+-HU2, HP+-HU2, HTD+-HS2) of our analysis as well

(Figure 4). In all three models, threonine and double phosphor-

ylated KaiC hexamers compete for the kaiBC promoter to activate

transcription. Consequently, we would expect that these models

reproduce the same kaiBC expression dynamics upon an excess of

KaiA proteins. The simulation results show that in the HTD+-HU2

model and in the HTD+-HS2 model kaiBC mRNA and KaiC

phosphorylation rhythm were consistently suppressed with a 6–10-

fold higher transcriptional activity of kaiA (Figure 4A, B). Note the

transcriptional activators are identical in both models, only the

repressor with U-KaiC hexamer and S-KaiC hexamer, respec-

tively, is different. At this point in our analysis we asked whether S-

KaiC and U-KaiC hexamers compete for the kaiBC promoter and

thus suppress kaiBC transcription. However, such a feedback

combination could not reproduce the peak phase of kaiBC mRNA

and a rhythm of 24 hours (Figure S10; Table S2).

Surprisingly, the HP+-HU2 model simulates a different dynamical

behavior of accumulation of kaiBC transcripts although there is not

much difference between the HTD+-HU2 and HP+-HU2 models. The

sole difference is that serine phosphorylated KaiC hexamers in

addition T-KaiC and D-KaiC hexamers can promote kaiBC

transcription in the HP+-HU2 model. However, a 17-fold increase

in kaiA transcription is required to finally eliminate any rhythm in

the HP+-HU2 model (Figure 4C) that is in contrast to simulations of

the HTD+-HU2 and HTD+-HS2 models. Furthermore, up to a 16-fold

value, the kaiBC amplitude and KaiC phosphorylation rhythm

strongly increase in order to then abruptly decreases. Such an

abrupt dynamical behavior is not observed in both in vitro and in vivo

experiments. We therefore could reject another combination of

transcriptional feedback regulation [37,41,45].

Figure 2. Four two-loop feedback models reproduce the effects of kaiA knockout mutants on kaiBC expression and KaiC
phosphorylation. Predicted time-series of kaiBC expression and KaiC phosphorylation in the absence of the kaiA gene. Deletion of the kaiA gene
was simulated through setting the kaiA transcription rate to zero. Of the six models of Group I, which captured the measured kaiBC expression and
KaiC phosphorylation dynamics, three models correctly reflect the effects of kaiA depletion as well: HTD+-HU2 (A), HP+-HU2 (B), and HTD+-HS2 (C).
Simulated deletion of kaiA transcription in these models destroys kaiBC gene expression and KaiC phosphorylation rhythm in parallel. The levels of
kaiBC mRNA and PKaiC are reduced. These models were analyzed further in Figure 4. (D) Of the six models of Group II, only the HD+-BT2 model
correctly reflects the effects of kaiA depletion as well. This model, however, cannot reproduce upregulation of kaiBC expression upon overexpression
of the kaiA gene (see Figure S9). The HU+-HT2, HS+-HD2 and HT+-HS2 models of Group I and the HT+-BU2, HD+-BU2, HP+-BU2, HU+-BP2, and HU+-BD2 fail
to recapitulate downregulation of kaiBC expression upon kaiA inactivation (Figure S7). The abbreviations are explained in Figure 1.
doi:10.1371/journal.pcbi.1002966.g002
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In a next step we asked whether we could rule out one of the

two remaining feedback mechanisms by simulating constitutive

overexpression of KaiC. We followed a previous lab experiment

where a reporter strain was transformed with plasmid

pTS2KPtrc::kaiC to ectopically induce overexpression of the kaiC

gene [32]. Here, we simulated constitutive overexpression of kaiC

in both models by increasing the translational rate of unpho-

sphorylated KaiC monomers at the time of minimal kaiBC

expression (see Text S1). In the HTD+-HU2 model, KaiC

phosphorylation and UKaiC expression rhythms damp out

Figure 3. Initial dynamics of the transcriptional KaiC feed-back species in simulated kaiA knockout mutants. Each panel depicts the
simulated expression dynamics of the positive transcriptional regulator, the negative transcriptional regulator and kaiBC mRNA for the first days in LL
after kaiA transcription was removed. (A and B) Predicted time-series for two models of Group I. The HTD+-HU2 model (A) predicts decreased kaiBC
mRNA levels in the absence of kaiA transcription. In this simulation, TD-KaiC phosphorylation ceases and U-KaiC constitutively accumulates. As a
result, kaiBC transcription is suppressed. Down-regulation of kaiBC was predicted from all models in which U-KaiC hexamers are assumed to suppress
kaiBC. The HU+-HT2 model (B) predicts an enhanced kaiBC level when the kaiA gene is absent. In this kaiA-knockout simulation the threonine
phosphorylated KaiC hexamer level drops immediately. There are no T-KaiC hexamers, which could negatively feed back on kaiBC. In addition, U-KaiC
hexamers increase steadily. As a result, kaiBC expression is not reduced. All models in which D-KaiC, T-KaiC, and S-KaiC hexamers negatively feed back
on kaiBC cannot reproduce suppression of kaiBC when kaiA is absent. After removing kaiA transcription KaiC phosphorylation ceases abruptly such
that the negative feedback loop is not functional to down-regulate kaiBC transcription. However, three exceptions suggest that the peak amplitude
rhythms of the transcriptional activator and the transcriptional repressor species are crucial (Figure S8). (C and D) Predicted time-series for two
models of Group II. The peak amplitude rhythms of the U-KaiBC complexes in the HT+-BU2 model (C) are too low to fulfill the role as negative
regulator of kaiBC transcription in the kaiA2 mutant. Only the enhanced retention of the transcriptional activator (D-KaiC hexamers) in the HD+-BT2

model (D) alone can suppress kaiBC expression rhythm in the simulated kaiA-knockout mutant. Note the different Y-scalings. The abbreviations are
explained in Figure 1.
doi:10.1371/journal.pcbi.1002966.g003
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(Figure 5A). UKaiC hexamers consistently exist in large excess that

results in suppression of kaiBC [32]. Elevated levels of U-KaiC

cease any rhythm in the HTD+-HS2 model as well (Figure 5B). In

this case, however, the positive transcriptional regulators (T-KaiC

and D-KaiC hexamers) are more abundant than the repressor (S-

KaiC hexamers). This means that positive regulation of kaiBC

transcription outweigh negative regulation. Therefore, a complete

suppression of kaiBC is not possible.

In the HTD+-HU2 model, U-KaiC hexamers are assumed to

suppress kaiBC transcription. To exclude that simulated downreg-

Figure 4. Sensitivity of kaiBC mRNA and KaiC phosphorylation dynamics against stepwise increase in KaiA protein. Shown are
simulations for the HTD+-HU2 model (A), the HTD+-HS2 model (B), and the HP+-HU2 model (C). Enhanced concentration of the kaiA transcript and thus
KaiA protein was simulated through enhancing the transcriptional rate of the kaiA gene. The three models show different sensitivity against changes
in the kaiA-transcriptional rate. The models in (A) and (B) were analyzed further in Figure 5. The abbreviations are explained in Figure 1.
doi:10.1371/journal.pcbi.1002966.g004
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ulation of kaiBC is only due to the assumed negative feedback

control we also simulated the oxKaiC mutant for the HU+-HT2 and

HS+-HD2 models from Figures S1B and S1C. Note that these two

models did not capture the effects of kaiA deletion. We found

however that both feedback models caused suppression of kaiBC

transcription in response to induced overexpression of U-KaiC

monomers (Figure S11). We could thus obviate that our

assumption in the HTD+-HU2 model, namely that U-KaiC

hexamers suppress kaiBC, implied the reduced kaiBC mRNA

levels in the simulated oxKaiC mutant. Rather, we reason that

again the peak expression ratio of the transcriptional activator to

repressor determines the effect of induced KaiC overproduction

on kaiBC. To sum up, from our 32 tested combinations of positive

and negative regulation of kaiBC transcription via the four

phospho-states of KaiC, only a particular two-loop feedback

mechanism has remained (see also Figure 6).

Discussion

Existing data support the view that the different phospho-states

of KaiC govern the timing mechanism of the cyanobacterial

circadian oscillator as well as clock output generating 24 h gene

expression rhythms. In addition, KaiC was shown to promote

expression of its own kaiBC transcript and to repress it. However,

which phospho-state of KaiC is involved in transcriptional

activation and which in transcriptional suppression has remained

unclear due to inconsistent reports [30,34–36]. In this study, we

developed a combined TTFL/PTO model, which considers

stepwise KaiC phosphorylation and dephosphorylation. Using

the combined TTFL/PTO model we investigated which phospho-

states of KaiC are positive and negative elements of kaiBC

expression by analyzing systematically various combinations of

transcriptional feedback regulation – 32 in this study. We found

for many tested models that when the expression level of the

transcriptional repressor is too low compared to the level of the

activator, positive regulation outcompetes negative regulation.

This can be particularly seen in those two-loop feedback

combinations, in which different phospho-states of KaiBC

complexes negatively feed back on kaiBC (Figures 3C, S9).

Interestingly, our simulations showed that only a particular

combination of positive and negative feedback loops could

reproduce the observed dynamics of kaiBC expression and the

KaiC phosphorylation cycle, including the phenotypes of kaiA

gene-knockouts and KaiA and KaiC overexpressors. In vitro

experiments show that KaiC phosphorylation does not depend on

variations of KaiB protein, provided that a minimal amount of

KaiB protein is present [17,46]. We conclude that variations of

kaiB transcription rates have no effect on KaiC phosphorylation in

the in vivo system. We, therefore, have focused on overexpression

studies of KaiA and KaiC.

Thus, we propose that threonine and double phosphorylated

KaiC hexamers promote kaiBC transcription whereas the unpho-

sphorylated KaiC hexamers shut it off. Our suggested two-loop

feedback model is in perfect agreement with experiments, in which

overexpression of U-KaiC represses its own transcription [30,38].

Further, our suggestion that T-KaiC and D-KaiC hexamers

promote transcription of kaiBC agrees a study in which peak KaiC

phosphorylation and ATPase activity are closely coupled and

thought to trigger the activation of kaiBC expression [39]. Peak

KaiC ATPase activity occurs towards the end of the subjective day

in vivo and may dictate the timing of KaiC phosphorylation [39].

We are aware of published data, which indicate that U-KaiC

hexamers release phosphorylated SasA at dawn which in turn

transfers its phosphate group to RpaA [44]. This in fact would

mean that U-KaiC hexamers indirectly promote expression of

kaiBC. However, our tested models where U-KaiC hexamers are

assumed to turn kaiBC transcription on (HU+-HT2, HU+-HD2,

HU+-HS2 and HU+-HP2) failed to reproduce suppression of kaiBC

when the kaiA gene is absent.

The picture of circadian regulation of kaiBC transcription that

emerges from our theoretical analysis is as follows (Figure 7):

Depending on its phospho-state, KaiC activates and represses

Figure 5. Initial dynamics of the transcriptional KaiC feed-back species in simulated KaiC-overexpression mutants. KaiC
overexpression was simulated through increasing the translational rate of unphosphorylated KaiC monomers at time of minimal kaiBC expression.
Each panel depicts the simulated expression dynamics of the positive transcriptional regulator, the negative transcriptional regulator and kaiBC
mRNA for the first days in LL after KaiC-overexpression was induced in the (A) HTD+-HU2 and (B) HTD+-HS2 models. The HTD+-HU2 feedback model
reproduces the effects of KaiC overexpression on kaiBC transcription. The abbreviations are explained in Figure 1.
doi:10.1371/journal.pcbi.1002966.g005
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clock-related proteins, which regulate the transcription of many

clock target genes, including the kaiBC gene cluster itself. For

example, SasA and RpaA function in the daytime positive

feedback loop. By contrast, CikA, LabA, and RpaB are negative

elements of the nighttime pathway. During the first half of the

night, LabA and CikA likely initiate repression of the activity of

RpaA through interaction with inhibitory proteinaceous factors so

that transcription of kaiBC starts to decline [22,34]. Later in the

night phase, an additional transcriptional regulator accumulates,

RpaB. Since the unphosphorylated KaiC hexamers are most

prevalent at that time as well, we propose that the KaiC hexamers

signal their unphosphorylated state through an so far unknown

mechanism, so that RpaB becomes active and binds specifically to

the kaiBC promoter as shown experimentally [22]. Consequently,

transcription of kaiBC is suppressed permanently. At this point,

unphosphorylated KaiC hexamers may set in train a series of

events. They exist in abundance and interact with a delay with

KaiA. KaiA has a high affinity to U-KaiC hexamers. Comple-

mentarily, U-KaiC hexamers may also trigger dephosphorylation

of SasA. Thus during daytime, U-KaiC hexamers become less

abundant because KaiA promotes autophosphorylation of KaiC.

The next circadian cycle is initiated in which T-KaiC and D-KaiC

hexamers activate the positive limb of the kaiBC oscillatory loop.

Experimentally, it is shown that phosphorylation of KaiC and

SasA-RpaA peak from subjective day to dusk under constant light

(LL) conditions (from LL8 to LL16) [19,31,41,42]. At that time,

SasA very likely interacts with the T-KaiC and D-KaiC hexamers

and thereby mediates a phospho-transfer to RpaA. We follow the

suggestion by Hanaoka et al. [22] that RpaA may mediate the

dissociation of RpaB from the kaiBC promoter region and the

kaiBC operon is transcribed. In summary, the competing actions of

‘positive’ (TD-KaiC hexamers, SasA, RpaA) and ‘negative’ factors

(U-KaiC hexamers, LabA, CikA, RpaB) are separated in time.

Furthermore, the two actions initiate each other. So far, a further

positive-negative feedback loop, coupled or uncoupled from the

core clock, has not been reported for other genes in cyanobacteria.

Though, an alternative two-loop regulation of gene expression is

known for the light-responsive gene psbA with, separated in time,

sigma factor-mediated positive and negative regulation for the

transcriptional and post-transcriptional step of psbA expression,

respectively [47].

On the other hand, there are genes, which resemble the kaiBC

gene cluster in high amplitude and peak time of expression

rhythm, such as the circadian input histidine kinase gene cikA and

the circadian response regulator gene rpaA as well as transcripts of

three sigma factor genes, rpoD5/sigC, rpoD6 and sigF2 [48].

Previous studies have already suggested sigma factors to be

involved in the circadian output control as well [49,50]. Thus,

activation and repression of kaiBC expression is accompanied by

transcriptional activation and inhibition of many clock-related

genes. In Synechococcus, about 30% [48] to 64% [27] of the entire

transcriptome is under circadian control. The output pathways for

kaiBC expression are likely required for the clock machinery to

coordinate circadian gene expression globally, through basic

transcriptional activity and changes in the chromosome status,

which in turn affect transcriptional rates [26]. The interplay of

local and global transcription control may explain the variety of

amplitude and phase rhythms of circadian promoter activities

[48,51].

Similar two-loop feedback structures are found in the clock of

fungi [52], flies [53] and mammals [54]. Furthermore, results

strongly indicate that positive and negative feedbacks together

sustain the amplitude of circadian gene expression rhythms [55].

In these species, key transcriptional factors, such as fungal

Frequency (FRQ), fly Period (PER) and Timeless (TIM), and

mouse mPER and mCRY, have two functions. For example,

mouse BMAL1 drives rhythmic clock gene expression through its

association with its constitutively available partner, CLOCK. The

logical equivalent of BMAl1 and CLOCK in the cyanobacteria

clock system could be TD-KaiC and KaiA, respectively. Further-

more, similar to cyano U-KaiC, mouse mCRY and mPER are

known to suppress its own expression by turning off its mBMAL1-

mCLOCK-dependent transcription. In their second role, elevated

levels of mPER and mCRY in the current cycle stimulate

transcription of mBMAL1 for the next. In the cyanobacteria

system, the abundance of U-KaiC leads to KaiC autophospho-

rylation promoted by KaiA.

Another similar mechanism is found in the mouse system where

RORa and REV-ERBa regulate transcription of their target

genes, which include themselves by promoting and repressing,

respectively, transcription of BMAL1 [53,54,55]. Outside but

linked to the two-core loop as well are the clock proteins E4BP4

and DBP. E4BP4 is indirectly activated by the BMAL1-CLOCK

dimer and suppressed by mPER and mCRY, as is the case with

the dbp gene. In this case, DBP activates whereas E4BP4

suppresses the transcription of clock target genes at different times

of day [56] that is analogous to cyano RpaA and cyano RpaB,

respectively. Thus, despite the differences in detail, the various

mammalian factors seem to interact within interlocked positive

Figure 6. Workflow of the model selection process.
doi:10.1371/journal.pcbi.1002966.g006
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Figure 7. The HTD+-HU2-two-loop feedback model for the cyanobacterial circadian clock. KaiB translation was not considered in the model
because KaiB has only little effect on the autophosphatase activity of KaiC at 30uC [7,46,58]. Therefore, KaiB is omitted from the figure. Details are
described in the text.
doi:10.1371/journal.pcbi.1002966.g007
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and negative loops that are functionally comparable to those of

cyanobacteria.

Based on the work of Bintu et al. [57], we chose a minimal set of

parameters, which regulates transcription of Synechococcus kaiBC.

Thus, the kaiBC gene expression is assumed to be dependent only on

the concentration of each phospho-state of KaiC. Interactions of

KaiC with other clock-related transcription factors (e.g. SasA/

RpaA, RpaB), regulating kaiBC transcription, are lumped into two

effective regulation factors, which describe the fold-change in kaiBC

gene expression approximately. In doing so, we assume simple

activation and simple repression for the regulation of transcription

of the kaiBC operon. Furthermore, using Bintu et al.’s thermody-

namic model of gene regulation, we also assume that transcription

initiation is proportional to the steady-state level of expression of the

kaiBC gene. However, the difficulty of this simplification lies in the

fact that there are very likely several different mechanisms that can

interfere with the expression of kaiBC and thus also affect the

response to overexpression and deletion of kai genes, such as

transcriptional and/or posttranscriptional modification mecha-

nisms. Besides, we did not consider the contribution of several

different mechanisms to kaiBC expression (e.g. noncircadian

regulation, cooperative interaction with KaiC ATPase). Conse-

quently, we cannot completely rule out that other combinations of

positive and negative feedback loops reflect the regulation of kaiBC

expression in the living cell more reliably. However, using our

combined TTFL/PTO model systems, we analyzed as many

reasonable combinations of positive and negative regulation of

kaiBC transcription as possible and provided for each model the

optimal values of the respective parameters, which can be used for

further theoretical studies (Table S3). As more experimental data

become available, it will be possible to re-evaluate our proposed

two-loop feedback model as to whether it can still consistently

explain the experimental data. In the case, where this model is

found wanting, it can be extended with, for example, other

regulatory loops of the clock input/output. Alternatively, the other

31 tested models could be re-examined. Finally, our TTFL/PTO

model system with its various combinations of positive and negative

transcriptional feedback regulation together with future advances in

experiments could help to reveal how the circadian output pathways

allow the KaiC protein to control several hundred rhythmically

regulated genes in the cyanobacterial genome.

Methods

Our mathematical model comprises a post-translational oscil-

lator (PTO) and a transcriptional/translational feedback loop

(TTFL). The PTO is based on rhythmic KaiC phosphorylation

and is described in detail by Brettschneider et al. [16]. Briefly, the

KaiC monomers in the PTO portion are part of a KaiC hexamer

(CH-pool), a KaiBC complex (CB-pool) or are present in free

monomers (CP-pool). In each pool, the KaiC monomers exist in

four phosphorylation states U - unphosphorylated, T- threonine

phosphorylated, S - serine phosphorylated and D - double

phosphorylated. In this picture, the concentration of the four

phospho-forms of KaiC monomers constitutes a phosphorylation

state vector, C, with elements Ci, i[ U , T , S, Df g. The three

pools are defined in the following

CH~ CH
U , CH

T , CH
D , CH

S

� �
, CB~ CB

U , CB
T , CB

D, CB
S

� �
,

CP~ CP
U , CP

T , CP
D, CP

S

� �
The dynamics of these KaiC monomers are described in equations

1–3

dCH

dt
~THzCHzb{:CBzcz:CP ð1Þ

dCB

dt
~TB:CBzbz:CH ð2Þ

dCP

dt
~c{ CHzCB

� �
{cz:CPzk2bcBCmRNAdiU{k4bcdij ð3Þ

with

TH
ij ~a0

ijz
~aaA

ij

KM
j

A
f
2{bz

i dij{c{dij{k4bcdij , ðaÞ

TB
ij ~a0

ijzb{
i dij{c{dij{k4bcdij : ðbÞ

Here, the production of new KaiC molecules occurs within the

monomer pool with the rate k2bc (Eq. 3). For simplicity, we assume

that all phospho-forms KaiC of the CH-, CB- and CP-pool are

degraded with the same constant rate (k4bc). Further, we

disregarded KaiB translation because KaiB has only little effect

on dephosphorylation at 30uC [7,46,58].

The elements Tij of transition matrices TH of the hexamer pool

and TB of the KaiBC complexes contain the net transition rates

from the KaiC phosphorylation state j to i, with

i[ U , T , D, Sf g. Further, a0
ij represents the basal phospho-

transition rates of KaiC and ~aaA
ij the KaiA-dependent phospho-

transition rates of KaiC. The total concentration of the three

pools is described by CH
tot, CB

tot, and CP
tot. The remaining

transition rates are given by

bz
i ~

cS

6

CH
S

CH
tot

� �5

diSz
cD

6

CH
D

CH
tot

� �5

diD ðcÞ

b{
i ~

cU

6

CS
B

CB
tot

� �5

diU ðdÞ

cz~k
CP

tot

KP

� �5

: ðeÞ

Here, b+ and b2 are the binding rates and dissociation rates of

KaiB oligomers and KaiC hexamers, respectively. Assembly of

monomers to hexamers increases the concentration of CH with

rate cz. Inversely, KaiC hexamers and KaiBC complexes

decompose linearly into the CP-pool with rate c{. The exchange

of KaiC monomers among the hexamers synchronizes the

phosphorylation status within the population of KaiC molecules.

The Kronecker delta is denoted by dij and the transition rates

between the Ci elements with i[ U , T , D, Sf g by cU, cS and cD.

The hexamer assembly is dependent on the probability that five

other monomers of CP have aggregated to the monomer and is

characterized by the Michaelis-Menten constant KP as well.

Moreover, free KaiA are constantly sequestrated through KaiAC

complexes.
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Here, the dissociation constants KD
AC , KD

AS and KM
j determine

the amount of A2C6 complexes and of free KaiA dimers A
f
2

� �
.

The total amount of KaiA dimers and KaiC hexamers are

denoted by Atot
2 and Ctot

6 , respectively. In the late phosphoryla-

tion phase, KaiBC complexes CB
tot

� �
rapidly start to build up.

KaiBC complexes with exclusively serine phosphorylated KaiC

CB
S

� �
inactivate KaiA. This KaiA sequestration induces the

dephosphorylation phase of the system.

In this study, we focus on the TTFL portion of the model.

Transcription and translation of the kai genes (kaiA, kaiB, kaiC) is

based on the Goodwin model [59]. The equations 4–6 describe the

dynamics of the mRNAs of kaiA and kaiBC as well as the protein

KaiA

dAmRNA

dt
~k1a{k3aAmRNA ð4Þ

dBCmRNA

dt
~k1bc

1zlX

1zX
: 1

1zY
{k3bcBCmRNA ð5Þ

with X~CH
U , CH

T , CH
D , CH

S , CH
P and

Y~CH
U , CH

T , CH
D , CH

S , CH
P , CB

U , CB
T , CB

D, CB
S , CB

P :

dAtot
2

dt
~k2aAmRNA{k4aAtot

2 : ð6Þ

For ease of reading, we changed the nomenclature for the X and Y

in equation (5) into X~HU , HT , HD, HS, HP and Y~HU ,

HT , HD, HS, HP, BU , BT , BD, BS, BP:
The kaiA mRNA does not show any significant circadian

rhythm the transcript is therefore synthesized with a constant rate,

k1a (Eq. 4). Transcription of kaiB and kaiC is lumped into one

equation because both genes share the same promoter (Eq. 5).

Previous studies assigned KaiC a main role both in suppression

and activation of kaiBC transcription. In our approach, we use the

term for transcriptional activation and transcriptional repression,

respectively, showcased in Tab. 1 from Bintu et al. to describe

transcription of the kaiBC operon [57; see also Text S1]. In

particular, we follow the assumption that within the KaiC

hexamer pool (CH) one of the phospho-states of KaiC (X) turns

kaiBC transcription on. We additionally assume that one of the

phospho-states of KaiC within the hexamer pool or KaiBC

complex pool (Y) turns it down. The fold-change l is given by the

ratio of gene expression (here transcription rate) in the presence

and absence of transcription factors. Unknown mechanisms,

which regulate transcription of kaiBC, are lumped into l. This

parameter thus characterizes the effective interactions between the

molecular players (Text S1). Moreover, the protein synthesis

(constant rate k2) is dependent on the corresponding synthesized

mRNA amount (Eqs. 3, 6). Degradation of mRNAs (k3) and Kai

proteins (k4) is a reaction of first order as well.

The model was designed as a system of 15 ODEs and

implemented using Matlab (R2011b, Mathworks, Cambridge,

UK), with a solver for stiff systems (ode15s). We tested different

combinations of the phospho-states of KaiC as positive and

negative regulators of kaiBC transcription. The parameters for the

PTO portion were derived from our previous study [16].

Parameters of the TTFL portion were found by fitting the

expression profiles of the variables to published expression values

[35], using ASAMIN, a MATLAB wrapper routine to ASA

(Adaptive Simulated Annealing; www.ingber.com).

Our method of parameter estimation uses a cost function as

described in Text S1. We repeated the parameter search from

three different initial conditions. For each tested two-loop feedback

model, three parameter sets were determined. An optimal

parameter set was chosen from these three by comparing the

simulated phase relations between kaiBC mRNA, UKaiC and

PKaiC protein, oscillation rhythms and period of oscillation to the

experimental data derived from our image analysis from Figure 2

from Murayama et al. [35] (see Table S1). The parameters of the

optimal sets are given in Table S3.

Supporting Information

Figures S1 Fits for further five two-loop transcriptional feedback

models of Group I, which sufficiently reproduce the experimental

observed phase relations between kaiBC mRNA, unphosphory-

lated KaiC (UKaiC) and total phosphorylated KaiC (PKaiC)

protein and period of oscillation: (A) HP+-HU2, (B) HU+-HT2, (C)

HS+-HD2, (D) HT+-HS2, (E) HTD+-HS2. In each panel, time-course

accumulation of kaiBC mRNA (red solid line), unphosphorylated

KaiC (UKaiC, blue solid line), and total phosphorylated KaiC

protein (PKaiC, black solid line). The levels UKaiC und PKaiC

are ratios to total KaiC. The subjective-day phase is from 0 to

12 hours (LL0-12). The subjective-night phase is from 12 to

24 hours (LL12-24). The average level of kaiBC transcription was

standardized to 1. The symbols represent data from image analysis

(see Methods; Table S1). The parameters are given in Table S3.

The abbreviations are explained in Figure 1 in the main text.

(TIF)

Figures S2 Fits for two-loop transcriptional feedback models of

Group I, which fail to reproduce the experimental observed phase

relations between kaiBC mRNA, unphosphorylated KaiC (UKaiC)

and total phosphorylated KaiC (PKaiC) protein and period of

oscillation (part 1): (A) HT+-HU2, (B) HD+-HU2, (C) HS+-HU2, (D)

HU+-HP2. In each panel, time-course accumulation of kaiBC

mRNA (red solid line), unphosphorylated KaiC (UKaiC, blue

solid line), and total phosphorylated KaiC protein (PKaiC, black

solid line). The levels UKaiC und PKaiC are ratios to total KaiC.

The subjective-day phase is from 0 to 12 hours (LL0-12). The

subjective-night phase is from 12 to 24 hours (LL12-24). The

average level of kaiBC transcription was standardized to 1. The

symbols represent data from image analysis (see Methods; Table

S1). The parameters are given in Table S3. The abbreviations are

explained in Figure 1 in the main text.

(TIF)

Figures S3 Fits for two-loop transcriptional feedback models of

Group I, which fail to reproduce the experimental observed phase

relations between kaiBC mRNA, unphosphorylated KaiC (UKaiC)

and total phosphorylated KaiC (PKaiC) protein and period of

oscillation (part 2): (A) HS+-HT2, (B) HU+-HD2, (C) HT+-HD2, (D)

Two Feedback Loops Run kaiBC Expression
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HU+-HS2, (E) HD+-HS2. In each panel, time-course accumulation

of kaiBC mRNA (red solid line), unphosphorylated KaiC (UKaiC,

blue solid line), and total phosphorylated KaiC protein (PKaiC,

black solid line). The levels UKaiC und PKaiC are ratios to total

KaiC. The subjective-day phase is from 0 to 12 hours (LL0-12).

The subjective-night phase is from 12 to 24 hours (LL12-24). The

average level of kaiBC transcription was standardized to 1. The

symbols represent data from image analysis (see Methods; Table

S1). The parameters are given in Table S3. The abbreviations are

explained in Figure 1 in the main text.

(TIF)

Figures S4 Fits for further five two-loop transcriptional feedback

models of Group II, which sufficiently reproduce the experimental

observed phase relations between kaiBC mRNA, unphosphory-

lated KaiC (UKaiC) and total phosphorylated KaiC (PKaiC)

protein and period of oscillation: (A) HT+-BU2, (B) HD+-BU2, (C)

HP+-BU2, (D) HU+-BP2, (E) HU+-BD2. In each panel, time-course

accumulation of kaiBC mRNA (red solid line), unphosphorylated

KaiC (UKaiC, blue solid line), and total phosphorylated KaiC

protein (PKaiC, black solid line). The levels UKaiC und PKaiC

are ratios to total KaiC. The subjective-day phase is from 0 to

12 hours (LL0-12). The subjective-night phase is from 12 to

24 hours (LL12-24). The average level of kaiBC transcription was

standardized to 1. The symbols represent data from image analysis

(see Methods; Table S1). The parameters are given in Table S3.

The abbreviations are explained in Figure 1 in the main text.

(TIF)

Figures S5 Fits for two-loop transcriptional feedback models of

Group II, which fail to reproduce the experimental observed phase

relations between kaiBC mRNA, unphosphorylated KaiC (UKaiC)

and total phosphorylated KaiC (PKaiC) protein and period of

oscillation (part 1): (A) HS+-BU2, (B) HU+-BT2, (C) HS+-BT2, (D)

HT+-BD2, (E) HS+-BD2. In each panel, time-course accumulation

of kaiBC mRNA (red solid line), unphosphorylated KaiC (UKaiC,

blue solid line), and total phosphorylated KaiC protein (PKaiC,

black solid line). The levels UKaiC und PKaiC are ratios to total

KaiC. The subjective-day phase is from 0 to 12 hours (LL0-12).

The subjective-night phase is from 12 to 24 hours (LL12-24). The

average level of kaiBC transcription was standardized to 1. The

symbols represent data from image analysis (see Methods; Table

S1). The parameters are given in Table S3. The abbreviations are

explained in Figure 1 in the main text.

(TIF)

Figures S6 Fits for two-loop transcriptional feedback models of

Group II, which fail to reproduce the experimental observed phase

relations between kaiBC mRNA, unphosphorylated KaiC (UKaiC)

and total phosphorylated KaiC (PKaiC) protein and period of

oscillation (part 2): (A) HU+-BS2, (B) HT+-BS2, (C) HD+-BS2, (D)

HTD+-BS2. In each panel, time-course accumulation of kaiBC

mRNA (red solid line), unphosphorylated KaiC (UKaiC, blue

solid line), and total phosphorylated KaiC protein (PKaiC, black

solid line). The levels UKaiC und PKaiC are ratios to total KaiC.

The subjective-day phase is from 0 to 12 hours (LL0-12). The

subjective-night phase is from 12 to 24 hours (LL12-24). The

average level of kaiBC transcription was standardized to 1. The

symbols represent data from image analysis (see Methods; Table

S1). The parameters are given in Table S3. The abbreviations are

explained in Figure 1 in the main text.

(TIF)

Figure S7 Predicted time-series of kaiBC expression and KaiC

phosphorylation for the models of Group I and II, which show

circadian oscillation of kaiBC mRNA, UKaiC protein and PKaiC

protein levels with consistent peak concentration and phase

relation (Figure 1, S1, S4) but fail to recapitulate downregulation

of kaiBC expression upon kaiA inactivation. (A–C) Group I models:

(A) HU+-HT2, (B) HS+-HD2, (C) HT+-HS2. (D–H) Group II

models: (D) HT+-BU2, (E) HD+-BU2, (F) HP+-BU2, (G) HU+-BP2,

(H) HU+-BD2.

(TIF)

Figure S8 Initial dynamics of the transcriptional KaiC feed-back

species in simulated kaiA-knockout mutants. Each panel depicts the

simulated expression dynamics of the positive transcriptional

regulator, the negative transcriptional regulator and kaiBC mRNA

for the first days in LL shortly after kaiA transcription was removed

from the (A) HT+-HD2, (B) HTD+-HS2 and (C) HD+-HS2 models.

(TIF)

Figure S9 Effect of depletion and overexpression of the kaiA

gene on the expression dynamics of kaiBC mRNA and KaiC

phosphorylation predicted from the HD+-BT2 model. Deletion of

the kaiA gene was simulated through setting the kaiA transcription

rate to zero whereas overexpression was achieved by increasing

the rate 100-fold (Text S1).

(TIF)

Figures S10 Fits for two-loop transcriptional feedback models

of Group II, which fail to reproduce the experimental observed

phase relations between kaiBC mRNA, unphosphorylated KaiC

(UKaiC) and total phosphorylated KaiC (PKaiC) protein and

period of oscillation (part 3): (A) HT+-BSU2, (B) DT+-BSU2, (C)

HTD+-BSU2. In each panel, time-course accumulation of kaiBC

mRNA (red solid line), unphosphorylated KaiC (UKaiC, blue

solid line), and total phosphorylated KaiC protein (PKaiC, black

solid line). The levels UKaiC und PKaiC are ratios to total KaiC.

The subjective-day phase is from 0 to 12 hours (LL0-12). The

subjective-night phase is from 12 to 24 hours (LL12-24). The

average level of kaiBC transcription was standardized to 1. The

symbols represent data from image analysis (see Methods; Table

S1). The parameters are given in Table S3. The abbreviations are

explained in Figure 1 in the main text.

(TIF)

Figure S11 Initial dynamics of the transcriptional KaiC feed-back

species in simulated KaiC overexpression mutants. KaiC was

simulated through increasing the translational rate of unpho-

sphorylated KaiC monomers at time of minimal kaiBC expression.

Each panel depicts the simulated expression dynamics of the positive

transcriptional regulator, the negative transcriptional regulator and

kaiBC mRNA for the first days in LL shortly after KaiC overexpression

was induced in the (A) HU+-HT2 and (B) HS+-HD2 models.

(TIF)

Table S1 Data from the image analysis.

(DOC)

Table S2 Values of the simulated peak phases and period for the

tested two-loop feedback model. For each model, the values base

upon the optimal parameter set chosen (see Methods). The models

highlighted in grey were analyzed further.

(DOC)

Table S3 List of the optimal parameter values of the TTFL.

(DOC)

Text S1 Supporting Information. More detailed information on

choice of the activation and repression term in equation (5), cost

function, binomial distribution calculation and simulations of kai

mutants.

(DOC)
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