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Abstract

Microglial cells closely interact with senile plaques in Alzheimer’s disease and acquire the morphological appearance of an
activated phenotype. The significance of this microglial phenotype and the impact of microglia for disease progression have
remained controversial. To uncover and characterize putative changes in the functionality of microglia during Alzheimer’s
disease, we directly assessed microglial behavior in two mouse models of Alzheimer’s disease. Using in vivo two-photon
microscopy and acute brain slice preparations, we found that important microglial functions - directed process motility and
phagocytic activity - were strongly impaired in mice with Alzheimer’s disease-like pathology compared to age-matched
non-transgenic animals. Notably, impairment of microglial function temporally and spatially correlated with Ab plaque
deposition, and phagocytic capacity of microglia could be restored by interventionally decreasing amyloid burden by Ab
vaccination. These data suggest that major microglial functions progressively decline in Alzheimer’s disease with the
appearance of Ab plaques, and that this functional impairment is reversible by lowering Ab burden, e.g. by means of Ab
vaccination.
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Introduction

Microglial cells execute important functions in the brain. They

constantly survey their surrounding and react to acute tissue

injuries [1,2]. In the healthy brain, microglia contact synapses for

seconds, which can be prolonged up to one hour upon acute injury

and eventually leads to the disappearance of the contacted

neuronal structure [3,4]. Microglia are also involved in shaping

adult hippocampal neurogenesis through phagocytosis of apoptotic

newborn neuroblasts [5]. Together, these data highlight that so-

called ‘‘resting’’ microglia in the healthy brain are able to modify

their environment, e.g. by their intrinsic phagocytic activity [6].

In Alzheimer’s disease (AD), microglia are attracted to b-

amyloid (Ab) plaques, produce elevated levels of proinflammatory

cytokines and reactive oxygen species, and exhibit a change in

morphology [7–11]. These phenotypical and morphological

changes of microglia are commonly interpreted as an ‘‘activated’’

state [12,13]. However, microglial activation is not an all-or-none

process and the morphology of microglial cells does not necessarily

match their functional state [14,15].

A number of in vitro studies have not only shown that

administration of Ab stimulates the production of inflammatory

cytokines and activation markers in microglial cells [8] but also

triggers its uptake by receptor-mediated phagocytosis [16]. Further

studies found that microglial cells internalize soluble, protofibrillar

and fibrillar forms of Ab [9,17,18] in vitro and in vivo by several

mechanisms such as macropinocytosis or endocytosis, highlighting

the general aptitude of microglia to remove Ab. However, the

question of whether resident microglia restrict Ab plaque growth

in AD has remained controversial, as the recruitment of microglia

to Ab plaques does not seem to result in their degradation [13,18].

More importantly, we have recently found that temporary ablation

of microglia has no effect on the formation and maintenance of Ab
plaques [19]. Interestingly, expression of receptors and enzymes

involved in microglial Ab-uptake and degradation is progressively

downregulated in a transgenic mouse model of Alzheimer’s disease

[20]. Thus, it has been suggested that microglia are possibly less

efficient in removing and degrading Ab at later stages of

Alzheimer’s disease and become dysfunctional [13,20].

In order to characterize putative progressive AD-associated

changes in microglia not only at an expression level, but also
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functionally, we directly assessed and quantified microglial

phagocytic and directed motile function in AD mouse models

using two-photon microscopy and acute cerebral slice prepara-

tions. Furthermore, we reduced Ab plaque burden in an

Alzheimer’s disease mouse model by administering the Ab-specific

antibody Ab9 and assessed whether this interventional treatment

restores AD-associated functional changes in microglia. Our data

obtained from two different mouse models of Alzheimer’s disease

reveals further insight into specific changes of microglial behavior

during Alzheimer’s disease and suggest that Ab plaque deposition

and microglial function are closely interrelated.

Materials and Methods

Ethics Statement
All procedures involving handling of living animals were

performed in accordance with the German animal protection

law and were approved by the regional offices for health and social

services in Berlin.

Mouse Models
APPPS1 mice, a transgenic mouse model of cerebral amyloidosis

expressing human APP with the Swedish mutation (KM670/

671NL) and human mutated PS1 (PS1-L166P) [21] were kindly

provided by Mathias Jucker, University of Tübingen, Germany.

APP23 mice, which express APP with the Swedish mutation [22]

were provided by Novartis, Basel, Switzerland. For two-photon

imaging experiments Cx3cr1gfp/gfp mice [23] were crossbred to

APPPS1 mice and resulting offspring heterozygous for Cx3cr1GFP

and/or for the APPPS1 transgenes was used for imaging

experiments. Cx3cr1gfp/gfp mice were kindly provided by Frank

Kirchhoff, University of Saarland, Germany. All mice were kept

under standard housing conditions with a 12 h light/dark cycle

and access to standard food and water ad libitum. Throughout this

study transgene-negative littermates were used as controls except

when using APP23 mice, where age-matched wildtype animals

served as controls. Female and male mice were included in the

experiments in an about equal distribution.

Primary Microglial Cell Culture
Microglial cultures were prepared from cerebral cortex of 1–3

day old APPPS1 and wildtype mice as previously described [24]

and cultured in DMEM supplemented with 10% fetal calf serum,

2 mM L-glutamine, 100 units/ml penicillin and 100 mg/ml

streptomycin. After establishment of an astrocytic monolayer,

medium was additionally supplemented with 30% L929-condi-

tioned DMEM (M-CSF-secreting mouse fibroblast cell line) to

stimulate microglial proliferation. After separating microglia from

the underlying astrocytic layer by shaking for one hour at

100 rpm, cells were seeded on glass coverslips at a density of

56104/cover slip. Cultures were used for experiments one day

after plating. Cell-culture media and supplements were purchased

from PAA Laboratories GmbH (Cölbe, Germany).

Vaccination Paradigm
Ab9 (mouse anti Ab aa. 1–16 IgG2a k, QED Bioscience Inc.) or

total nonspecific mouse IgG (control, SLM66; Equitech Bio) were

injected intraperitoneally at 500 mg twice a week for 6 weeks in

age-matched APPPS1 mice (n = 3 per group) or WT (n = 2 per

group) starting at 170 days of age.

Preparation of Acute Brain Slices
Mice were decapitated and brains were carefully removed and

washed in artificial cerebrospinal fluid (aCSF) containing (in mM):

NaCl 134; KCl 2.5; MgCl2 1.3; CaCl2 2; K2HPO4 1.25; NaHCO3

26; D-glucose 10; pH 7.4. The buffer solution was saturated with

carbogen (95% O2, 5% CO2). 130 mm thick coronal slices were

prepared using a vibratome (Microm, Walldorf, Germany) at 4uC,

and were kept in brain slice buffer at room temperature (21–25uC)

for 2 h until the phagocytosis experiment was performed.

Assessment of Phagocytosis
To quantify microglial phagocytic activity in acute brain slices,

experiments were performed in APPPS1 and non-transgenic

littermates at 7–9 week and at 4 and 9 month (n = 3–4 per age

group and genotype) of age, as well as in 20 month old APP23

mice and aged-matched wildtype mice (n = 3 per genotype). Acute

brain slices or primary microglial cell cultures (3 independent

experiments) were incubated with a suspension of FCS-coated

Yellowgreen fluorescent carboxylated microspheres (3 mm diam-

eter, Polysciences Europe GmbH) at a concentration of 1.76107

microspheres/ml for 60 min (slices) or 30 min (cell culture) at

37uC, intensively washed and finally fixed with 4% paraformal-

dehyde. Brain sections and microglial cell cultures were stained

with anti-Iba-1 and anti-Ab (4G8) antibodies to visualize microglia

and Ab plaques, respectively.

Immunohistochemistry
Fixed brain slices and primary microglial cells were incubated

with 0.75 mg/ml anti-Iba-1 antibody (Wako) and 0.5 mg/ml 4G8

antibody (Signet). 6.25 mg/ml donkey anti-rabbit Cy3, 2.5 mg/ml

donkey anti-mouse DyLight 649 (Jackson ImmunoResearch) or

4 mg/ml Alexa Fluor 568 goat anti rabbit (Invitrogen) secondary

antibodies were used. After washing, slices were incubated for

30 min with Hoechst 33258 (Sigma-Aldrich; 1:10000) or DRAQ5

(Cell Signalling Technology; 1:1000) in 0.1 M PB and mounted in

Aqua polymount for further analysis using confocal microscopy.

Confocal Microscopy and Quantification of Phagocytosis
Confocal laser scanning microscopy was performed on Leica

SPE and Zeiss LSM5 Exciter confocal microscopes with LAS AF

and ZEN 2008 software, respectively. In brain sections derived

from acute brain slices z-stacks of 20 mm thickness were performed

using a 40x objective with a step size of 1 mm beginning from the

top of the slice, where the microspheres are located. Beads per cell

were counted using Image J MacBiophotonics cell counter plugin

ensuring that only beads inside a cell were counted as positive. The

phagocytic index was determined by assessing the percentage of

cells which contained 0, 1–4, 5–7, 8–10 and .10 microspheres per

cell. The percentage of cells in each group was multiplied by the

corresponding grade of phagocytosis (1–4:1, 5–7:2, 8–10:3,

.10:4). The sum of the products in each group was then termed

and displayed as phagocytic index [25]. 4–15 ROIs (i.e. fields of

view) were analyzed per animal.

Plaque Load Assessment
Brain sections were incubated in 0.001% Thiazine Red (Sigma)

solution in 0.1 M PB, thereby labeling the b-sheet structure of

dense core plaques [26]. Thiazine Red-positive plaques were

quantified by scanning cerebral sections with a Nikon Ti Epsilon

microscope using a TRITC FL-filter set and fixed acquisition

settings. Large images of whole coronal brain section were

obtained by stitching single images using NIS Elements software.

Coverage of respective brain area (cortex, hippocampus, cerebel-

lum) by Thiazine Red-positive plaques was quantified by

analyzing images using Image J with a fixed intensity threshold.

Staining artifacts were manually removed prior to analysis. 3–4

b-amyloid Deposition Causes Microglial Dysfunction
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whole coronal brain sections were analyzed per animal and

respective brain region.

Two-photon Imaging of Acute Brain Slices
300 mm thick acute coronal slices were prepared from 10 month

oldmice(3micepergenotype)andstainedwith0.001%ThiazineRed

in aCSF for 10 min before imaging experiment. Imaging was

performed with a two-photon laser scanning microscope directly

coupledtoaChameleonultrafast laser (Coherent). Inorder tocreatea

discrete laser lesion, the laser was focused at 235 mm depths from the

surface of the z-stack at a wavelength of 800 nm until autofluores-

cence was visible. In APPPS1-Cx3cr1+/gfp mice laser lesions were

placed next to an Ab plaque with a maximum distance to a

neighboring Thiazine Red-positive plaque of 80 mm.For monitoring

microglial responses 60 mm z-stacks were imaged with a step size of

3 mm covering a field of 307.26307.2 mm every minute for 60 min.

Recordings were analyzed with Image J MacBiophotonics, as

adapted from Davalos et al. 2005 [2]. For calculating the average

microglial response 7 (Cx3cr1+/gfp) or 8 (APPPS1-Cx3cr1+/gfp) ROIs

from 4 mice per genotype were analyzed.

In vivo Imaging
For intravital imaging, b-amyloid plaques were labeled with

methoxy-XO4 (10 mg/kg) as described [27]. Methoxy-XO4 was

kindly provided by William Klunk, University of Pittsburgh, USA.

Before surgery mice were anesthetized by i.p. injection of a xylazine

and ketamine mix in physiological saline (9.2 and 131 mg/kg body

weight correspondingly). At approximately the center of the parietal

bone a small cranial window with a 1.5–2 mm diameter (corre-

sponding to an area of 1.8–3 mm2) was prepared using a high-speed

dental drill. A circular bone fragment was carefully removed and the

dura mater was left intact. Focal lesion and time-lapse recording was

started 30 min after the surgical procedure to ensure absence of

bleeding. All in vivo recordings were made in a time interval between

30 minand8 hafter the surgicalprocedure.Theskullwas fixed to the

microscope stage and aCSF was placed into the chamber to allow

imaging using a water-immersion objective (20x, NA 0.95, WD

2 mm; Olympus, Germany). Imaging was performed by a commer-

cially available multiphoton imaging system(TriM ScopeI,LaVision

BioTec, Germany), equipped with a Ti:Sa laser (Chameleon Ultra II,

Coherent). Fluorescence (GFP excitation wavelength 920 nm,

methoxy-XO4 excitation wavelength 800 nm) was collected by

three non-descanned PMT-detectors using dichroic mirrors and

three interference filters (593/40 nm, 525/50 nm and 447/40 nm).

XYZ-Stacks were collected every minute with a z-plane distance of

2 mm at a frequency of 400 Hz covering a depth range of 20 mm to

80 mm. The focal laser lesion was applied at a depth of 60 mm by

steering the laser spot to the center of the field of view and irradiating

for 300 ms with 50 mW energy at 920 nm. Microglial response was

analyzed as described above with 8 (Cx3cr1+/gfp) and 6 (APPPS1-

Cx3cr1+/gfp) ROIs from 3 mice per genotype.

Statistical Analysis
Data sets were tested for normality by Shapiro-Wilks Test using

SPSS. Two-sided levels of significance were determined by using

the non-parametric Mann-Whitney-U- Test or the parametric T-

Test according to the distribution and are depicted as *p,0.05,

**p,0.01, ***p,0.001. Data are presented as mean 6 s.e.m. For

statistical analyses matching regions of interest (ROI) of multiple

acute brain slices or cell cultures derived from various mice per

experimental group were assessed as indicated and analyzed in a

standardized fashion.

Results

Directed Microglial Process Motility Towards Acute Tissue
Lesion is Impaired in Transgenic AD Mice

Microglia respond to defined tissue injuries by extending their

processes towards the lesion in an ATP-dependent fashion [2]. We

usedthiscanonical functionofmicrogliaasameasuretoevaluatetheir

functionality in an AD mouse model in vivo by intravital time-lapse

two-photon microscopy. Notably, the ability of microglia for directed

extensionof theirprocesses towardsa lesionwas largely reduced inAb
plaque carrying APPPS1-Cx3cr1+/gfp mice (Fig. 1A and B and
Videos S1 and S2), which were obtained by crossbreeding APPPS1

mice, a mouse model of cerebral amyloidosis [21] with Cx3cr1gfp/gfp

mice [23], a mouse model that allows visualization of microglia. Ab
plaques were labeled by intraperitoneal injection of Methoxy-XO4

[27]. Whereas microglia from 8 month old Cx3cr1+/gfp control

animals moved their processes towards the laser-induced injury with

an average peak response of 2.4460.6 arbitrary units (a.u.), we only

detected a sparse response of microglia in 8 month old APPPS1-

Cx3cr1+/gfp mice, which harbor a substantial Ab burden at that age

(average peak response of 0.4460.22 a.u., Fig. 1A and B). Since in

situ experiments using acute cerebral slices allow stringent quantifi-

cation of microglial response in a high number of experiments, we

additionally conducted two-photon microscopy studies in acute

coronal cerebral slices. Here, microglia exhibited slightly slower but

otherwise similar process motility towards the lesion as compared to

in vivo experiments. Importantly, microglial response towards the

laser lesion in acute cerebral slices from 10 month old Ab plaque-

carrying APPPS1-Cx3cr1+/gfp mice were significantly reduced com-

pared to their Cx3cr1+/gfp littermates (Fig. 1C and D, Videos S3
and S4). Together, these data indicate that lesion-directed process

extension as a typical functional feature of microglia is severely

impaired in APPPS1 mice that harbor Ab plaques.

Phagocytic Activity of Cortical Microglia is Impaired in
APPPS1 and APP23 Mice

We next aimed to investigate another key function of microglia -

their phagocytic capacity. Since directed microglial process

motility was similarly impaired when assessed intravitally or in

acute cerebral slices derived from APPPS1 mice, we reasoned that

defined microglial functions are adequately reflected in acute

cerebral slice preparations. As microglia in different brain regions,

including cerebellum and hippocampus, can be readily evaluated

with this in situ method, we used cerebral slice preparations to

investigate microglial phagocytic capacity and quantified uptake of

fluorescent polystyrene microparticles by microglia of APPPS1

mice as described previously [25]. Likewise to the impaired

directed process extension, microglial phagocytic activity in 9

month old APPPS1 mice was significantly reduced when compared

to wildtype littermates (Fig. 2A).

Mutations of PS1 have been suggested to influence the

phagocytic activity of cells [28,29]. To prove that functional

decline of microglia is a general feature of AD pathology, and to

exclude an impact of the PS1 transgene on microglia in APPPS1

mice unrelated to amyloid pathology, we assessed microglial

phagocytic activity in APP23 mice, a transgenic mouse model of

cerebral amyloidosis that is based on transgenic expression of APP

with the Swedish mutation [22], but not of mutated PS1. Again,

using in situ quantification of microglial phagocytosis, we detected

a drastic impairment of microglial phagocytic activity in APP23

mice (Fig. 2B). While we formally cannot exclude an – overall

rather unlikely - impact of the APP-transgene on the performance

of microglia from APP23 mice, these data indicate that microglial

dysfunction occurs in cerebral amyloidosis mouse models irre-

b-amyloid Deposition Causes Microglial Dysfunction
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spective of the transgenic strain used and, thus, is dependent on

cerebral amyloidosis.

Impairment of Microglial Phagocytic Capacity Correlates
Temporally and Spatially with the Appearance of Plaques

To test whether the observed impairment of microglial

phagocytosis depends on Ab plaque deposition, we compared

microglial phagocytosis in 7–9 week old APPPS1 mice that had not

yet developed detectable amyloid plaque burden to 7–9 week old

APPPS1 mice that showed first cortical amyloid plaques (Fig. 3A
and Fig. S1), as detected by 4G8 immunohistochemistry or

Thiazine Red staining. Importantly, in slices prepared from 7–9

week old APPPS1 mice lacking cortical plaque load, microglial

phagocytosis was as efficient as in wildtype littermates. However,

we observed a significant reduction in phagocytosis in acute slices

from 7–9 week old APPPS1 mice that showed first cortical amyloid

plaques (Fig. 3A). In slices from 4 month old APPPS1 mice with

significant cortical plaque load (Fig. 3A and Fig. S1), impairment

of microglial phagocytosis was already similar to 9 month old

APPPS1 mice (Fig. 3A). Overall, relative microglial phagocytic

activity and cortical Ab plaque burden exhibited a significant

inverse correlation with a Spearman’s correlation coefficient of r
(rho) = 20.75 (p = 0.0014, Fig. 3B).

To further establish the interconnection of Ab plaque appear-

ance and microglial dysfunction, we investigated microglial

phagocytosis in various brain regions of APPPS1 mice differing

in the onset of plaque deposition [21]. In plaque-bearing cortices

of 7–9 week old APPPS1 mice, phagocytic activity was impaired,

whereas it was normal in still plaque-free hippocampi of the same

APPPS1 animals (Fig. 3C and Fig. S1). Moreover, phagocytic

capacity was impaired in hippocampi from 4 month old APPPS1

mice, when plaques were present in that region. Importantly, in

the cerebellum, which is devoid of plaques even in aged APPPS1

mice ([21] and Fig. S1), phagocytic capacity remained unaltered

also at 4 months of age (Fig. 3D).

Furthermore, we did not observe a significant difference in the

phagocytic capacity of primary microglia derived from non-

transgenic or APPPS1 mice at postnatal day 1–3, i.e. prior to

plaque deposition (Fig. 3E), indicating that impairment of

phagocytosis is acquired in the presence of Ab plaques over time.

Ab-plaque Load Reduction by Anti-Ab Antibody
Administration Restores Microglial Phagocytic Capacity
in APPPS1 Mice

Finally, we investigated whether the functional impairment of

microglia in plaque-bearing AD mice is reversible by interventions

aimed at lowering Ab burden. One way to counteract progressive

Ab plaque deposition is Ab vaccination resulting in reduced

plaque burden and increased number of Ab-laden microglia in the

cortex of AD patients [30]. Additionally, clearance of amyloid

Figure 1. Lesion-directed microglial process movement is impaired in a mouse model of cerebral amyloidosis. (A) Representative
intravital two-photon microscopy images and (B) time course of microglial process movement towards a laser-induced micro-lesion (dashed circle) in
8 month old live anaesthetized APPPS1-Cx3cr1+/gfp (n = 6) and Cx3cr1+/gfp mice (n = 8). Ab plaques are stained with Methoxy-XO4 (blue, *). (C)
Representative images and (D) relative microglial response to laser lesions in acute cortical cerebral slices of 10 month old APPPS1-Cx3cr1+/gfp (n = 8)
and Cx3cr1+/gfp (n = 7) mice. Ab plaques are stained with Thiazine Red (red, *). Data are mean 6 s.e.m, *p,0.05. Scale bars: 10 mm. a.u. = arbitrary
units.
doi:10.1371/journal.pone.0060921.g001
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deposits and increase in microglial response was observed by in vivo

imaging after stimulation with Ab-specific antibodies when

administered directly to an open skull preparation in a mouse

model of AD [31].

Amyloid plaque burden was therefore reduced in 5 month old

plaque-carrying APPPS1 mice by passive Ab vaccination admin-

istering the anti-Ab antibody Ab9 [32] biweekly for six weeks. This

treatment significantly diminished Thiazine Red-stained dense

core plaques in the hippocampus of APPPS1 mice, while there was

no significant reduction of amyloid in the cortex when compared

to control IgG-treated APPPS1 littermates (Fig. 4B left, 4A left).
Strikingly, in accordance with the regional reduction in cerebral

amyloid plaques, microglial phagocytic activity, measured in acute

cerebral slices, was restored to levels found in Ab9- or IgG-treated

wildtype mice exclusively in the hippocampus (Fig. 4B right). In

contrast, microglial cells in the cortex, which lacked a substantial

decrease in amyloid plaque burden, were still dysfunctional

(Fig. 4A right). Thus, microglial dysfunction is not irreversibly

impaired by Ab plaque deposition, but can be restored during the

course of disease.

Discussion

The Ab plaque-associated functional decline of microglia we

have shown here may explain why temporary ablation of

microglia for up to 30 days in APPPS1 mice does not change the

formation and maintenance of Ab burden [19]. Our findings may

also give an explanation as to why microglia fail to sufficiently

remove Ab plaques in AD in vivo [18,20], and would support the

notion of a dystrophic rather than an activated phenotype of

microglia at late stages of AD [33].

Our methodological approach to quantify phagocytosis extends

existing data on the function of AD-associated microglia during

disease progression. It allowed us to overcome restrictions of

current approaches including (i) the ex vivo analysis of isolated

microglia whose functionality could be disturbed by the isolation

procedure per se, (ii) post-mortem studies, which are stationary,

typically restricted to defined time points, and do not provide

direct information about cellular functionality or (iii) in vivo

imaging studies that are typically limited to superficial cortical

brain areas.

Mechanistically, Ab may directly affect microglial function, as

we were able to detect a significant inverse correlation between Ab
plaque burden and microglial phagocytic activity. Further studies

will be required to address the question, of what kind of Ab species

may be responsible for inducing microglial dysfunction.

A large number of in vitro studies have shown that microglial

cells release a battery of proinflammatory mediators, including

nitric oxide and tumor necrosis factor alpha (TNFa), when

stimulated with Ab peptides [34–36]. Such chronic production of

inflammatory molecules by microglia and/or constant exposure to

a proinflammatory microenvironment within plaque-bearing AD

brains may present another explanation of why microglial function

may be influenced negatively [13,37,38]. This hypothesis is also

supported by the finding that microglia stimulation with the

proinflammatory cytokine TNFa leads to a downregulation of

receptors involved in Ab binding and degradation and reduces

phagocytosis of Ab in vitro [20].

To investigate a second biologically relevant microglial function

we studied process motility by assessing process extensions towards

an acute injury induced by a laser lesion [1,2]. Our results

obtained from in vivo observations were similar to data retrieved by

us in acute brain slices with respect to speed and quantity of lesion-

directed process movements. The significant decrease in the

amount of microglial processes sent towards the injury site, which

we consistently found both in vivo and in situ, supports a report on

impaired baseline dynamics of plaque-associated microglia [27].

However, another detailed analysis of baseline microglial process

turnover in APPPS1 mice has shown that turnover speed of

processes in microglia near plaques (within 50 mm from the plaque

surface) was similar compared to microglia in non-transgenic

animals. Only process speed in microglia directly on Ab plaques

was slightly but significantly reduced [9].

Notably, we show that functional impairment of microglial

phagocytosis can be reversed to non-diseased aptitude by reducing

amyloid by Ab vaccination. This speaks against microglial

senescence as the main underlying mechanism for the decline in

microglial function demonstrated herein. Microglial senescence

has been described in the human brain during aging and in

Alzheimer’s disease and is associated with telomere shortening and

reduced telomerase activity [39]. In contrast to the microglial

phenotype reported here, cellular senescence is irreversible, at least

in lymphocytes and at late stages of cellular senescence [40].

However, similar mechanisms might be involved in inducing

microglial dysfunction and have to be investigated in future

Figure 2. Phagocytic capacity of cortical microglia is impaired
in two mouse models of cerebral amyloidosis. (A) Representative
images (left) and microglial phagocytic index (in arbitrary units, a.u.,
right) of 9 month old APPPS1 mice and wildtype littermate controls (3
mice per genotype; p,0.001). Images show microglia (Iba-1, red), Ab
(4G8, blue) and fluorescent microspheres (green). Orthogonal views of
z-stack images are shown in the bottom panel. (B) Representative
images (left) and microglial phagocytic index of 20 month old APP23
and age-matched control mice (3 mice per genotype, p,0.001, right)
are shown. Data are mean 6 s.e.m, ***p,0.001. Scale bars: 10 mm.
doi:10.1371/journal.pone.0060921.g002

b-amyloid Deposition Causes Microglial Dysfunction
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studies. Furthermore, microglial senescence may play an impor-

tant role in humans during aging.

These data highlight the interrelation of plaque deposition and

microglial behavior, thus expanding the possible modes of action

of other amyloid-reducing approaches to rescuing microglial

function. Such view is in line with a recent report on bexarotene-

mediated reduction of Ab burden, which resulted in an

improvement in neuronal function and, importantly, increased

the number of Ab-laden microglia [41].

Taken together, our data demonstrate that microglial dysfunc-

tion develops early in the course of AD in an Ab-dependent

fashion and can be restored by interventional anti-Ab approaches,

such as Ab vaccination. Our findings therefore suggest that novel

treatment strategies aimed at maintaining or increasing microglial

Figure 3. Impairment of microglial phagocytosis in APPPS1 mice correlates with Ab plaque deposition. (A) Ab plaque load (brain area
covered by Thiazine red-positive plaques) and relative microglial phagocytic activity normalized to corresponding wildtype littermate in the cortex of
7–9 week, 4 and 9 month old APPPS1 mice. 7–9 week old mice were sub-classified according to apparent 4G8 positive plaque deposition as with (+)
or without (2) detectable plaque load. (B) Correlation between extent of plaque load and relative microglial phagocytic activity in the cortex of
APPPS1 mice. (C, D) Thiazine red-covered area and relative phagocytic activity of microglia in the hippocampus of 7–9 week and 4 month old mice
(C) and in the cerebellum of 4 month old APPPS1 mice (D). Absolute values of microglial phagocytic indices from APPPS1 mice were normalized to
wildtype littermate controls (3–4 mice per age group and genotype, ***p,0.001). (E) Phagocytic index (3 independent experiments, p = 0.181) and
representative images of primary microglial cultures from wildtype and APPPS1 mice. Microglia (Iba-1, red), nuclei (DRAQ5, blue) and microspheres
(green). All data are mean 6 s.e.m, *p,0.05, **p,0.01. a.u. = arbitrary units. Scale bars: 10 mm.
doi:10.1371/journal.pone.0060921.g003

b-amyloid Deposition Causes Microglial Dysfunction

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e60921



function may represent an attractive therapeutic approach even at

advanced stages of AD.

Supporting Information

Figure S1 Age- and brain area-dependent Ab plaque load in

APPPS1 mice. Representative confocal images of fixed and stained

acute coronal brain slices from APPPS1 mice of the indicated age

showing cortex (a), hippocampus (b) or cerebellum (c). Microglia

(Iba-1, red), Ab plaques (Thiazine Red, green) and nuclei (Hoechst

33258; blue). Scale bars: 50 mm.

(TIF)

Video S1 Rapid microglial response toward an acute laser lesion

in Cx3cr1+/gfp mice. Intravital time-lapse two-photon microscopy

over a period of 36 min shows rapid microglial response upon a

laser lesion in 8 month old Cx3cr1+/gfp mice.

(AVI)

Video S2 Impaired microglial response toward an acute laser

lesion in APPPS1-Cx3cr1+/gfp mice. Intravital time-lapse two-

photon microscopy over a period of 54 min shows attenuated

response of microglial processes (green) toward a laser lesion in 8

month old APPPS1-Cx3cr1+/GFP mice. Ab plaques are stained with

Methoxy-XO4 (blue).

(AVI)

Video S3 Rapid microglial response to a laser-induced lesion in

an acute cerebral slice from Cx3cr1+/gfp mice. Time-lapse two-

photon microscopy of an acute cerebral slice from 10 month old

Cx3cr1+/gfp mice over a time period of 60 min displays rapid

microglial process accumulation around a laser-induced lesion.

(AVI)

Video S4 Microglial response to a laser-induced lesion is

impaired in acute brain slices from APPPS1-Cx3cr1+/gfp mice.

Time-lapse two-photon microscopy of an acute cerebral slice from

10 month old APPPS1-Cx3cr1+/gfp mice over a period of 60 min

shows impaired accumulation of microglial processes around a

laser-induced tissue lesion. Ab plaques are stained with Thiazine

Red (red).

(AVI)
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