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Abstract

Knowledge of the transmission field (B1
+) of radio-frequency coils is crucial for high field (B0= 3.0 T) and ultrahigh field

(B0$7.0 T) magnetic resonance applications to overcome constraints dictated by electrodynamics in the short wavelength
regime with the ultimate goal to improve the image quality. For this purpose B1

+ mapping methods are used, which are
commonly magnitude-based. In this study an analysis of five phase-based methods for three-dimensional mapping of the
B1

+ field is presented. The five methods are implemented in a 3D gradient-echo technique. Each method makes use of
different RF-pulses (composite or off-resonance pulses) to encode the effective intensity of the B1

+ field into the phase of
the magnetization. The different RF-pulses result in different trajectories of the magnetization, different use of the
transverse magnetization and different sensitivities to B1

+ inhomogeneities and frequency offsets, as demonstrated by
numerical simulations. The characterization of the five methods also includes phantom experiments and in vivo studies of
the human brain at 3.0 T and at 7.0 T. It is shown how the characteristics of each method affect the quality of the B1

+ maps.
Implications for in vivo B1

+ mapping at 3.0 T and 7.0 T are discussed.
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Introduction

Non-uniformities of the transmission radio-frequency (RF) field

(B1
+) constitute an adverse factor for high field (B0=3.0 T) and

ultrahigh field (B0$7.0 T) magnetic resonance (MR), which may

render diagnostics challenging. This practical impediment is

pronounced when imaging techniques sensitive to the excitation

flip angle (FA) are applied. The knowledge of the B1
+ field

distribution is essential to correct for B1
+ non-uniformities of single

channel or multi-channel transmit (TX) RF-coils. To trim or shim

the B1
+ field, multiple channel transmission has been pioneered

[1–3]. For this purpose, multi transmit arrays are used, which

require B1
+ mapping routines to calibrate each individual RF coil

element. This procedure can be time consuming when using TX

arrays comprising many transmit elements. Consequently accurate

and fast B1
+ distribution mapping is the key for ultrahigh field

clinical applications.

B1
+ mapping approaches commonly used are mainly magni-

tude-based and are generally confined to the ratios or the fit of

signal intensity images [4–11]. For this purpose sets of images are

acquired using either two flip angles [4–6], identical flip angles but

different repetition times (TR) [7], variable flip angles [8,9] or also

signals from spin-echoes and stimulated-echoes [10], as well as

signals from gradient-echoes and stimulated-echoes [11]. For most

of these magnitude-based approaches the quantitative B1
+

evaluation may be influenced by saturation effects given by T1

relaxation. This problem can be overcome with the use of long

repetition times (TR), which, however, would result in prolonged

acquisition times. Alternatively, phase-based methods have been

proposed as they are insensitive to T1 relaxation. They were also

found to be more accurate than magnitude-based methods,

especially at low flip angle regimes [12].

Realizing the advantages of phase-based methods for B1
+

mapping, this work characterizes five of these methods: A) an

optimized version for high field proton MRI [13] of the low flip

angle method proposed by Mugler [14,15] here named ‘‘Optimized

low-flip-angle method’’, B) the phase sensitive method of Morrell [16]

here named ‘‘Phase-sensitive method’’, C) the phase-based method of

Santoro [17,18], applied to high field proton MRI [19] here

named ‘‘FFA-CUP method’’, D) the Bloch-Siegert shift method of

Sacolick [20–22] here named ‘‘Bloch-Siegert method’’ and E) the

orthogonal pulses method proposed by Chang [23] here named

‘‘Orthogonal-pulses method’’. These phase-based methods share in

common the use of a composite or off-resonance RF-pulse to

encode the spatial B1
+ magnitude information into the phase of the

magnetization vector (M). Each method uses a different scheme of
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the RF-phases, generating a different evolution of M. The

sensitivity to B1
+ variations and frequency offsets is examined

using numerical simulations of the Bloch equations. Phantom

experiments and human brain imaging studies are conducted at

3.0 T and 7.0 T to scrutinize each method. This includes the

assessment of repetition times achievable, according to specific

absorption rate (SAR) levels, as well as the susceptibility to off-

resonance effects. For a balanced comparison, all methods are

used in conjunction with the same reading module.

Materials and Methods

Theory
The B1

+ mapping methods analyzed in this work make use of

a complex RF-pulse envelope (a rectangular composite pulse or an

off-resonance Fermi pulse) for excitation, with separately con-

trolled amplitude and phase (Fig. 1). Each pulse achieves a different

trajectory of the magnetization M, depending on the combination

of amplitude and phase of the RF-pulse. The trajectories of M for

the five pulses are depicted in Fig. 2 for the ideal case where

DB0=0. The presence of B0 inhomogeneities, or other sources of

frequency offsets, results in deviations from the ideal trajectory.

All the five trajectories can be represented by a different

polygon lying on the surface of a unitary sphere. Each of them is

characterized by a different number of sides and it is traversed

a different number of times: A – Optimized low-flip-angle

method) a squared trajectory which is traversed for one and a half

turns [13–15], B – Phase-sensitive method) a rectangular

trajectory which is traversed for a half turn [16], C – FFA-CUP
method) an off-origin loop trajectory which is traversed for

a single turn [17–19], D – Bloch-Siegert method) an initial

excitation followed by an off-resonance pulse (which is equivalent

to traversing a small circular trajectory for several turns) [20–22]

and E – Orthogonal-pulses method) a square trajectory which
is traversed for a half turn [23].

At the end of each RF-pulse, the local magnetization presents

a phase accrual depending on the local B1
+ intensity and frequency

offset experienced, as shown in the curves of Fig. 3. The theoretical

description of this effect has been already reported in

[16,18,20,23], and is briefly resumed here.

For methods A, B, C and E the RF-pulse can be divided into

sub-pulses of flip-angle a and RF-phase F, denoted with aF. Each
sub-pulse aF represents a rotation about a different axis, due to

their different RF-phase. The magnetization accumulates a phase

shift which is proportional to the local B1
+ field intensity because of

the non-commutativity of rotations about different axes.

Method D, after the initial excitation, uses an off-resonance RF-

pulse. In this case the RF-phase varies linearly within the pulse and

the magnetization accumulates a phase shift proportional to the

local B1
+ field intensity, due to the well-known Bloch-Siegert shift

effect [24].

Figure 1. RF-pulse envelopes for phase-based B1
+ mapping. Diagrams of the composite pulses used for all methods: A – Optimized low-flip-

angle method, B – Phase-sensitive method, C – WFA-CUP method, D – Bloch-Siegert method, E – Orthogonal-pulses method. Pulse timing, intensity of
the B1

+ field (in mT) and RF-phases (in degrees) are sketched. The parameters used are: A) a= 20u and duration of 600 ms; B) a=90u and duration of
600 ms; C) p0=20u, a=15u and duration of 400 ms (plus the duration of the p0 pulse); D) p0= 20u, a= 425u and duration of 4000 ms (plus the duration
of the p0 pulse); E) a= 60u and duration of 325 ms.
doi:10.1371/journal.pone.0057982.g001
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To cancel phase contributions due to sources other than B1
+,

such as the receive coil sensitivity (B1
2), the acquisition of two

phase images, obtained with opposite senses of rotation of the

magnetization (opposite RF-phase schemes), is required for all

methods. The subtraction of the images preserves the B1
+

information, while removing all other time-independent phase

contributions.

A – Optimized low-flip-angle method. Excitation is

performed by the application of the non-selective composite pulse:

[a2135 a245 a45 a135 a2135 a245] (Fig. 1A). The pulse moves the

magnetization vector about a square, of side length a, through 1.5

turns (Fig. 2A) [13]. A second image must be acquired using

a corresponding pulse that moves the magnetization in the

opposite sense of rotation: [a245a2135a135a45a245a2135].

B – Phase-sensitive method. Excitation is performed by the

application of the non-selective composite pulse: [2a0 a90]
(Fig. 1B). For a small flip angle a the pulse moves the

magnetization vector along a rectangular trajectory, with one side

of length 2a and the other of length a, through 0.5 turns (Fig. 2B -

blue line). The method is originally proposed using a nominal flip

angle a=90u (which performs the trajectory in Fig. 2B - red line)

[16]. A second image must be acquired with the first sub-pulse

reversed in sign: [2a180 a90].

C – FFA-CUP method. Excitation is performed by the

application of the non-selective composite pulse: [p0290 a2157.5

a2112.5 a267.5 a222.5 a+22.5 a+67.5 a+112.5 a+157.5] (Fig. 1C). The
magnetization vector is moved away from the origin by the first

sub-pulse, named p0. The phase accrual is achieved by traversing

for 1.0 turn an octagonal trajectory of side a shifted from the

origin. The use of the first pulse p0 separates the excitation from

the phase accrual in order to optimize the sensitivity to B1
+

variations [17,19]. A second image must be acquired with the

composite pulse: [p0+90 a+157.5 a+112.5 a+67.5 a+22.5 a222.5 a267.5

a2112.5 a2157.5].

D – Bloch-Siegert method. This method makes use of an

off-resonance pulse of frequency shift DvRF applied immediately

after an excitation: [p0290 a290,Dv] (Fig. 1D). The off-resonance

pulse moves the magnetization about a circular trajectory

traversed several times (Fig. 2D). The number of loops is given

by the duration of the pulse multiplied by the off-resonance

frequency. The off-resonance pulse can be seen as a pulse in which

the RF phase F is continuously varied during its duration t,
according to F=DvRF?t. A second image must be acquired using

the opposite frequency shift:

-DvRF. The method is originally proposed using an off-

resonance Fermi pulse of frequency shift DvRF= 4 kHz and

duration of 8 ms [20]. However it has been widely shown [21,22]

Figure 2. Trajectories of the magnetization during RF-excitation. Evolution of M in a unitary sphere during the RF-pulses of Fig.1 (red lines),
under ideal conditions (DB0= 0) for all methods: A – Optimized low-flip-angle method, B – Phase-sensitive method, C – WFA-CUP method, D – Bloch-
Siegert method, E – Orthogonal-pulses method. A) a squared trajectory is traversed for one and a half turns; B) for small flip angles a rectangular
trajectory is traversed for half turn (blue line: a=18u), the flip angle originally proposed moves M into the transverse plane (red line: a= 90u); C) an
intial pulse moves M far from the origin, then an octagonal loop is traversed for one turn only; D) an initial excitation is followed by an off-resonance
pulse, which is equivalent to traversing a circular trajectory for several turns; E) for small flip angles a square trajectory is traversed for half turn (blue
line: a=12u), the flip angle originally proposed moves M close to the transverse plane (red line: a= 60u).
doi:10.1371/journal.pone.0057982.g002
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that different values of the pulse duration and frequency shift, as

well as different pulse shapes, can be used to optimize this method.

Here we used a Fermi pulse of frequency shift DvRF= 4 kHz and

duration of 4 ms.

E – Orthogonal-pulses method. Excitation is performed by

the application of the non-selective composite pulse: [a0 a90]
(Fig. 1E). For a small flip angle a the pulse moves the

magnetization vector along a square trajectory, with side of length

a, through 0.5 turns (Fig. 2E – blue line). The method is originally

proposed using a nominal flip angle a=60u (which performs the

trajectory in Fig. 2E - red line) [23]. A second image must be

acquired with the phases of the two sub-pulses swapped: [a90 a0].

Numerical Simulations
MATLAB (MathWorks Inc, Natick, USA) software was used to

calculate the dynamics of the magnetization during the excitation

pulses, by means of numerical simulations of the Bloch equations.

A range of values of the frequency offset (21 kHz # DB0#1 kHz,

with an increment of 50 Hz) and of the B1
+ intensity (rescaling the

flip angle from 0 to 2 times the nominal value, with an increment

of 0.05) was used. The sensitivity of the different methods to the

local variations of the B1
+ field and of the frequency offset is

expressed by the variable Y (Fig. 3), which is defined as the

subtraction of the phase accruals obtained from the two

complementary scans required by each method. The intensity of

the B1
+ is expressed in terms of the total flip angle (TotalFA) used

by each pulse, which results from the total duration and amplitude

of the RF applied, regardless of its RF-phase scheme.

At high field strengths the TotalFA represents a crucial

parameter, as the SAR levels limit the lowest achievable TR.

This is especially the case for the methods used in this work, which

require values of TotalFA of the order of several tens to a few

hundred degrees. In order to quantify the efficiency (e) of each
method to convert the employed RF-power into a phase accrual Y
the following variable was defined and calculated:

e TotalFA,DBoð Þ~Y TotalFA,DBoð Þ{Y 0,0ð Þ
TotalFA2

tRF!
DY

RSAR
ð1Þ

where tRF is the total duration of the pulse.

MR Hardware
Phantom studies and in vivo experiments of the human brain

were performed at magnetic field strengths of 3.0 T and 7.0 T. For

this purpose, methods A-E were implemented on a clinical 3.0 T

MR-scanner (TIM Verio, Siemens Healthcare, Erlangen, Ger-

many) and a whole body 7.0 T MR-scanner (Magnetom, Siemens

Healthcare, Erlangen Germany), using a dedicated sequence

development environment (IDEA, Siemens Healthcare, Erlangen,

Germany). At 3.0 T a transmit/receive (TX/RX) birdcage coil

(Siemens Healthcare, Erlangen, Germany) operating in the

circular polarized (CP) mode was used (diameter = 27 cm,

Figure 3. Curves of sensitivity to B1
+ and B0 inhomogeneities. Phase accrual curves of the five methods plotted versus the TotalFA of the RF-

pulses and a frequency offset distribution 21 kHz # DB0#1 kHz. The frequency offset range is the same for all methods, while the TotalFA ranges
differ, as well as the phase accrual Y. These curves were derived from simulations (using the same parameters as in Fig. 1) and used for the 2D
interpolation to obtain the B1

+ maps. Methods: A – Optimized low-flip-angle method, B – Phase-sensitive method, C – WFA-CUP method, D – Bloch-
Siegert method, E – Orthogonal-pulses method.
doi:10.1371/journal.pone.0057982.g003
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length = 31 cm). At 7.0 T a TX/RX birdcage coil (Siemens

Healthcare, Erlangen, Germany) operating in the CP mode was

used (diameter = 34 cm, length = 38 cm).

Implementation of the B1
+ Mapping Techniques

The implementation comprises a standard 3D gradient-echo

sequence, where the excitation is performed for each method by

the non-selective RF-pulses sketched in Fig. 1 and described in the

Theory section.

To reduce bulk motion effects the two images required by each

method were acquired interleavedly. To examine and correct for

variations in the main magnetic field (B0) across the object DB0
maps were acquired. For this purpose a secondary gradient-echo

readout was added to the sequence; the DB0 maps (Fig. 4) were

obtained from the subtraction of the two phase images acquired at

different echo times (TE) [25].

B1
+ maps (Figs. 5–8) were calculated for each method from the

measured phase accrual Y and the DB0 map, using the

corresponding curve of sensitivity of Fig. 3 as a lookup table and

performing a linear 2D interpolation.

For comparison, a standard 3D gradient-echo technique was

used to acquire three-dimensional B1
+ maps using the double-

angle method (DAM) [4]. This required the acquisition of two

magnitude images with nominal flip angles of a=60u and

2a=120u together with repetition times of TR.5T1 [5].

Specific Absorption Rate Adjustment
Each method uses a different RF-power level. Since the SAR

represents the limiting factor for the minimum achievable TR at

high field strengths for all methods, the RF-pulse amplitudes (i.e.

the nominal B1
+) were individually adjusted for each method in

order to accomplish identical SAR levels, given a common

repetition time. This corresponds to truncating the sensitivity

curves of Fig. 3 to a TotalFA value which guarantees identical SAR

levels for all methods. The TRs were adjusted in in vivo

experiments - according to the volunteer weight - to achieve

a nominal SAR level of 2.4 W/kg. This value corresponds to 75%

of the SAR limit for the normal and first level operating modes for

head imaging, as given by the IEC guidelines [26].

The nominal values of a, TotalFA and B1
+ for the five methods

are reported in Table 1, together with the duration of the RF-

pulses and the repetition times. The nominal B1
+ values are

calculated starting from the reference voltage necessary to obtain

a 1 ms rectangular p-pulse, and adjusted according to the duration

t and the TotalFA of the pulses of the five methods. The reported

B1
+ intensity represents the average value within the pulse.

Identical parameters were used for both phantom and in vivo

experiments.

Phantom Studies
A synopsis of the imaging parameters used for phantom studies

at 3.0 T and 7.0 T is shown in Table 1. The basic imaging

parameters were kept constant for all methods, including: field of

view FOV= (20062006200) mm3, matrix size of 32632616 (plus

zero-filling interpolation) and receiver bandwidth BW=800 Hz/

pixel. The echo times were set to the minimum possible value,

Figure 4. DB0 maps in phantom and in vivo at 3.0 T and 7.0 T.
Top: central axial partition of the 3D DB0 maps obtained at 3.0 T (top-
left) and at 7.0 T (top-right) in phantom with DTE = 2.5 ms; strong B0
offsets are visible at the air-water interface in the upper part of the
phantom. Bottom: central sagittal partition of the 3D DB0 maps of the
human brain obtained at 3.0 T (bottom-left) with DTE = 2.46 ms and at
7.0 T (bottom-right) with DTE = 3.06 ms; strong B0 offsets are visible in
the sphenoid sinuses area and, at 7.0 T, in the neck region. All maps are
in hertz.
doi:10.1371/journal.pone.0057982.g004

Figure 5. B1
+ maps in phantom at 3.0 T. Central axial partition of

the 3D B1
+ maps obtained with methods A-E in phantom at 3.0 T using

a birdcage TX/RX coil. Identical repetition times (TR = 30 ms) and SAR
levels were used for all methods. The same partition of the B1

+ map
acquired for comparison with the DAM with TR = 500 ms is also shown
(F). All maps are normalized to their nominal B1

+ given in Table 1 in mT.
The typical central spot of the birdcage TX/RX coil is visible. The contour
plots (with contour increment of 0.05) show that the B1

+ distributions
obtained from the phase-based methods are consistent with the DAM.
Methods: A – Optimized low-flip-angle method, B – Phase-sensitive
method, C – WFA-CUP method, D – Bloch-Siegert method, E –
Orthogonal-pulses method, F – Double Angle method.
doi:10.1371/journal.pone.0057982.g005

Phase-Based B1+ Mapping at High Magnetic Fields
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which depends on the pulse duration of each method. For DB0
mapping an inter-echo time of DTE=2.5 ms was used. TRs

needed to be prolonged at 7.0 T, in order to accomplish identical

SAR levels as at 3.0 T.

A spherical phantom (18 cm diameter), filled with water and

doped with 50 mM Na and 20 mM CuSO4, was prepared. This

setup provides sufficient RF-loading and short T1 relaxation time

Table 1. Nominal values of the initial excitation angle (p0), flip angle of each sub-pulse (a), total flip angle (TotalFA), B1+ intensity,
total duration of the RF-pulses, echo times (TE) and repetition times (TR) for the experiments performed in phantom and in vivo, at
3.0 T and 7.0 T, with methods A–E.

Method p0 a TotalFA Total Duration B1
+ intensity TE TR [ms] at 3.0 T TR [ms] at 7.0 T

[deg] [deg] [deg] [ms] [mT] [ms] phantom/in vivo phantom/in vivo

A - 20 120 600 13.0 1.55 30/30 110/110

B - 40 120 600 13.0 1.42 30/30 110/110

C 20 15 140 490 14.6 1.47 30/30 110/110

D 20 250 270 4250 4.14 5.21 30/30 110/110

E - 45 90 325 18.1 1.25 30/30 110/110

DAM - 60 60 300 13.0 2.00 500/6000 500/6000

120 120 600 13.0 500/6000 500/6000

Also the parameters for the comparison with the DAM are listed. The echo times are calculated relatively to the center of the first sub-pulse for each method.
doi:10.1371/journal.pone.0057982.t001

Figure 6. B1
+ maps in phantom at 7.0 T. Central axial partition of

the 3D B1
+ maps obtained with methods A-E in phantom at 7.0 T using

a birdcage TX/RX coil. Identical repetition times (TR= 110 ms) and SAR
levels were used for all methods. The same partition of the B1

+ map
acquired for comparison with the DAM with TR = 500 ms is also shown
(F). All maps are normalized to their nominal B1

+ given in Table 1 in mT.
The typical central spot of the birdcage TX/RX coil and the destructive
interference patterns around it are visible. The contour plots (with
contour increment of 0.05) show that the B1

+ distributions obtained
from the phase-based methods are consistent with the DAM. Methods:
A – Optimized low-flip-angle method, B – Phase-sensitive method, C –
WFA-CUP method, D – Bloch-Siegert method, E – Orthogonal-pulses
method, F – Double Angle method.
doi:10.1371/journal.pone.0057982.g006

Figure 7. B1
+ maps in vivo at 3.0 T. Central sagittal partition of the

3D B1
+ maps of the human brain obtained with methods A-E in vivo at

3.0 T using a birdcage TX/RX coil. Identical repetition times (TR = 30 ms)
and SAR levels were used for all methods. The central slice of the B1

+

map acquired for comparison with the 2D DAM, with TR= 6000 ms, is
also shown (F). All maps are normalized to their nominal B1

+ given in
Table 1 in mT. Methods: A – Optimized low-flip-angle method, B – Phase-
sensitive method, C – WFA-CUP method, D – Bloch-Siegert method, E –
Orthogonal-pulses method, F – Double Angle method.
doi:10.1371/journal.pone.0057982.g007

Phase-Based B1+ Mapping at High Magnetic Fields
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(at 3.0 T: T1 < 70 ms, T2 < 40 ms). The latter affords reasonable

scan time for the DAM approach.

Ethics Statement
For the in vivo feasibility study, two healthy subjects without any

known history of neurovascular disease were included after due

approval by the local ethical committee (registration number DE/

CA73/5550/09, Landesamt für Arbeitsschutz, Gesundheitsschutz

und technische Sicherheit, Berlin, Germany). Informed written

consent was obtained from each volunteer prior to the study.

In vivo Studies
Human brain imaging was performed at 3.0 T and 7.0 T in

healthy subjects using the five phase-based methods (A-E) and the

DAM. FOV was adjusted to (23062306176) mm3 at 3.0 T and

(21062106160) mm3 at 7.0 T, in order to cover the whole brain

with 16 sagittal partitions using a matrix size of 32632616 (plus

zero-fill interpolation). The inter echo time for the DB0 map was

set to DTE=2.46 ms at 3.0 T and DTE=3.06 ms at 7.0 T, to

make sure that fat and water are in phase for both TEs.

For the DAM approach only a central partition of the brain was

acquired, since covering the whole brain would have required

several hours of scan time: a constraint that is dictated by the T1 of

the brain (gray matter: T1 < 1800 ms, white matter T1 < 1000 ms

at 3.0 T [27]), so that the repetition time was set to TR=6000 ms.

Results

Numerical Simulations
The results derived from the simulations are shown in Figs. 2

and 3. The trajectories of M during excitation (Fig. 2) are used to

qualitatively estimate the use of transverse magnetization. The

curves displayed in Fig. 3 represent the sensitivities to B1
+

variations (expressed as the TotalFA) and frequency offsets (DB0 in

Hz). The frequency offset range is identical for all the curves, while

the total flip angle ranges vary (TotalFA axis), as well as the phase

accrual ranges (Y axis). Efficiency e is used to combine the flip

angle range and phase accrual characteristics in a single variable

that supports a balanced comparison. The values of e were

calculated for each method at the center of the sensitivity curves

using Eq. 1.

A – Optimized low-flip-angle method. This method

revealed the lowest B1
+ sensitivity among all methods, with

e=0.44 ms/deg. Its sensitivity curve presents a rather flat de-

pendency upon frequency offsets. A discontinuity is observed for

some combinations of DB0 and TotalFA (Fig. 3A). In terms of usage

of the transverse magnetization its composite pulse is equivalent to

an excitation of
ffiffiffi

2
p

a (Fig. 2A).

B – Phase-sensitive method. This method shows the highest

B1
+ sensitivity, with e=1.91 ms/deg. For frequency offsets

exceeding a range of approximately 6500 Hz the phase accrual

Y experiences a discontinuity (Fig. 3B). A folding, leading to non-

unique phase information which could not be decoded into the B1
+

value, can also be observed outside of this range. This method

employs the highest transverse magnetization, as the composite

pulse is equivalent to a 90u excitation, when a=90u (Fig. 2B).
C – FFA-CUP method. This method has a high B1

+

sensitivity, with e=1.52 ms/deg. The dependency upon frequency

offsets is more pronounced than in method A. This method does

not present the discontinuities observed for methods A and B
(Fig. 3C). The use of transverse magnetization is equal to p0

(Fig. 2C). Its value can be chosen equal to the Ernst angle in order

to optimize the signal, without affecting the B1
+ sensitivity. This is

not possible for methods A and B.
D – Bloch-Siegert method. This method exhibits a low B1

+

sensitivity, with e=0.66 ms/deg, because it requires a much larger

TotalFA compared to the other methods. This results also in

a longer pulse duration, which manifests itself in a TE pro-

longation. The sensitivity curve of this method presents a rather

modest dependency upon frequency offsets (Fig. 3D). The use of

transverse magnetization depends only on the initial excitation p0

(Fig. 2D), and can therefore be controlled, like for method C.

E – Orthogonal-pulses method. This method presents an

intermediate B1
+ sensitivity, with e=0.82 ms/deg. Its sensitivity

curve shows a non-negligible dependency upon frequency offsets.

A reduced B1
+ sensitivity was observed for small flip angles versus

the high flip angle regime (Fig. 3E). In terms of usage of the

transverse magnetization the composite pulse used is equivalent to

a flip angle larger than a (at small flip angles it is equal to
ffiffiffi

2
p

a, like
for method A) (Fig. 2E).

Phantom Studies
The results derived from phantom experiments at 3.0 T and 7.0

T are shown in Figs. 5 and 6. All maps present the typical behavior

of a birdcage resonator, where B1
+ is higher at the center. At 7.0

T, due to destructive interference patterns, some areas around the

center present a lower intensity.

Figure 8. B1
+ maps in vivo at 7.0 T. Central sagittal partition of the

3D B1
+ maps of the human brain obtained with methods A-E in vivo at

7.0 T using a birdcage TX/RX coil. Identical repetition times
(TR = 110 ms) and SAR levels were used for all methods. The central
slice of the B1

+ map acquired for comparison with the 2D DAM, with
TR = 6000 ms, is also shown (F). All maps are normalized to their
nominal B1

+ given in Table 1 in mT. Methods: A – Optimized low-flip-
angle method, B – Phase-sensitive method, C – WFA-CUP method, D –
Bloch-Siegert method, E – Orthogonal-pulses method, F – Double Angle
method.
doi:10.1371/journal.pone.0057982.g008
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The B1
+ maps obtained with methods A-E (Figs. 5–6, A–E) are

compared to the DAM approach (Figs. 5–6, F).

B0 inhomogeneities can be observed at the air-water interface

from the DB0 maps shown in Fig. 4 (top), especially at 7.0 T.

However, the fit performed using the sensitivity curves provides

a very good estimation of B1
+ in these regions. Even for the phase-

sensitive method (B), the FFA-CUP method (C) and the orthogonal-pulses

method (E) which are most sensitive to frequency offsets. This is

confirmed by the contour plots in Figs. 5 and 6. Compared to the

DAM no B1
+ distortion can be observed in these areas.

All methods revealed sufficient signal, as the T1 of the phantom

was short enough (T1 < 70 ms) to allow recovery of the

magnetization.

In vivo Studies
The results of the human brain studies at 3.0 T and 7.0 T are

summarized in Figs. 7 and 8. The results obtained with methods

A–E (Figs. 7–8, A–E) for brain regions are in agreement with the

DAM (Figs. 7–8, F). The typical B1
+ peak of a birdcage coil can be

observed at the center of the brain both at 3.0 T and 7.0 T. At 7.0

T a region of signal void due to destructive interference is visible in

the area of the cerebellum. It should be noted that all methods

except the Bloch-Siegert method (D) present some regions where the

B1
+ estimation is not correct, both at 3.0 T and at 7.0 T. This is

due to the 3.5 ppm chemical shift between fat and water

(corresponding to a resonance frequency difference of 150 Hz/

T). The individual phases of water and fat signals are affected by

the presence of B1
+ inhomogeneities and frequency offsets, as

demonstrated by the sensitivity curves (Fig. 3). Since the signal

from each pixel is given by the complex sum of these two

components, the resulting phase is decoded into a wrong B1
+ value

during the fitting. In fact, the DB0 maps shown in Fig. 4 (bottom)

do not account for this effect, as they were acquired with fat and

water in phase. Due to air-tissue interfaces, strong B0 offsets were

observed in the sphenoid sinuses area, extending into the interior

of the brain. The correction fit performs correctly in this region.

At 7.0 T the Bloch-Siegert method (D) shows SNR loss in the

regions with short T2
*, such as the areas nearby the bones.

Discussion

In this work five phase-based methods used for B1
+ mapping

have been examined carefully at magnetic field strengths of 3.0 T

and 7.0 T. The characteristics of each method were analyzed by

means of numerical simulations, phantom studies and in vivo

experiments.

Although all methods have in common the use of a complex RF-

pulse (composite or off-resonance pulse) for excitation, in

conjunction with the same gradient-echo readout scheme, it is

shown here that the five methods exhibit different sensitivities to

B1
+ inhomogeneities and frequency offsets. Furthermore they

make different use of transverse magnetization and hence reveal

different SNR, depending on the TR/T1 ratio. For these reasons,

the quality of the B1
+ maps obtained from each method depends

on the specific experimental conditions (T1, T2
*, frequency offset

and dynamic range of B1
+ in the region of interest) and on the

parameters settings (TR, TE, flip angles and duration of the RF-

pulse).

In this work, a fixed TR and an identical SAR level were used

for all methods to compare their performances under fast imaging

conditions. This approach was chosen deliberately since SAR

limits dictate the minimum TR achievable, especially at high and

ultrahigh magnetic field strengths. Within these limits all phase-

based methods support short TR, since full relaxation of the

longitudinal magnetization is not required prior to each excitation.

Due to this SAR restriction the feasibility of using short TRs varies

for each method, and depends primarily on the characteristics for

the small nominal flip angle regime. The main challenge in the

small flip angle regime is achieving enough B1
+ sensitivity, given by

the phase accrual. In order to quantify the ability of each method

to convert the employed RF-power into the B1
+ information,

efficiency, which is defined as the specific phase accrual per unit

SAR, was examined carefully. The phase-sensitive method (B) showed
the best efficiency, followed by the FFA-CUP method (C), the

orthogonal-pulses method (E), the Bloch-Siegert method (D) and the

optimized low-flip-angle method (A). According to our results, the use of
very short TRs in conjunction with methods which have a low

efficiency results in highly noise-corrupted B1
+ maps [28].

Another important characteristic for the quality of the resulting

B1
+ maps is represented by the consumption of longitudinal

magnetization. Since the SNR of phase images is directly

proportional to that of magnitude images, the amount of

longitudinal magnetization available at each repetition should

support the phase measurements with enough signal, in order to

provide reliable phase images. In this regard, the FFA-CUP method

(C) and the Bloch-Siegert method (D) are superior to the others. In fact

the pulses used by these two methods include an initial excitation

which is independent from the B1
+ sensitization. To optimize the

SNR this initial excitation can be set to the Ernst-angle. According

to the simulations the phase-sensitive method (B), which provides the

highest efficiency, uses the largest transversal magnetization and

may be affected by a severe SNR drop when the TR/T1 ratio is

too small [28]. The large use of transverse magnetization could be

useful if another reading module, such as EPI, is used. However

this approach bears the risk to result in geometric distortion

artifacts, due to magnetic field inhomogeneities, which pose

a significant challenge [29], especially at 7.0 T.

It should be noted that B1
+ mapping is not a problem limited to

proton MRI. For instance the phase-sensitive method (B) has been

applied to 23Na MRI [30], where the low MRI signal and the

short relaxation time T1 require a large use of transverse

magnetization, without incurring in saturation effects. On the

other hand, the optimized low-flip-angle method (A) and the FFA-CUP
method (C) were originally proposed for low field MRI using

hyperpolarized 3He [14,17,18], were the frequency offsets are not

significant, and the longitudinal magnetization needs to be

preserved.

For all methods, except the Bloch-Siegert method (D), the

knowledge of DB0 is required to perform a correct fitting to

obtain the B1
+ magnitude. This may require additional scan time.

However, the acquisition of a second echo is feasible and affords

the DB0 mapping with no extra scan time. In any case, localized B0

shimming would further improve the results. For these methods

the presence of the fat-water chemical shift may affect the

estimation of B1
+, as the DB0 maps do not account for this effect.

In this case a fat-water separation approach could be eventually

applied to remove artifacts.

All the five methods revealed that the sensitivity change induced

by frequency offsets (DB0 direction) would be reduced for shorter

pulse durations. Also the frequency offsets, at which the

discontinuities observed for the optimized low-flip-angle method (A)
and the phase-sensitive method (B) occur, could be shifted away from

the chosen range of 61 kHz, as they are inversely proportional to

the pulse duration. On the downside this approach would hamper

the efficiency e (Eq. 1), since the SAR is increased for shorter RF-

pluses due to the increase in the peak power necessary to achieve

the same flip angle.
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Among the methods used here, the Bloch-Siegert method (D) was

found to be the least sensitive to DB0 offsets and chemical shift

effects, due to its flat sensitivity curve in the frequency offset

direction.

Unlike all the other methods, the Bloch-Siegert method (D) supports

also 2D mapping. This can be beneficial when time constraints do

not allow for a full 3D acquisition; for example for B1
+ mapping of

the heart, where scan time constraints dictated by cardiac and

respiratory motion need to be managed carefully. On the other

hand the Bloch-Siegert method (D) presents a smaller efficiency than

the phase-sensitive method (B), the FFA-CUP method (C) and the

orthogonal-pulses method (E), and requires the longest pulse duration

among all the methods. This feature results in SNR degradation

for short T2
* regions, such as interfaces with strong susceptibility

gradients.

As our work is focused on the excitation pulse, results are

derived using a standard 3D gradient-echo sequence, a Cartesian

k-space sampling scheme and a single channel TX/RX coil.

However, all the methods are inherently compatible with other

3D-imaging modules and k-space sampling schemes, as long as the

phase information is preserved. Therefore all the methods can be

accelerated using multi-echo techniques, or k-space undersampling

techniques. This can be useful for B1
+ mapping applications in

other organs, including cardiac or abdominal MRI where

physiological motion constraints dictate the viable window of data

acquisition.

Conclusion
The B1

+ mapping techniques examined here provided char-

acteristics which underline the capabilities of phase-based

methods, including the scan time advantage over conventional

magnitude-based B1
+ mapping methods. All presented methods

can be adjusted to provide enough B1
+ sensitivity without

exceeding the clinical SAR limits. However, some characteristics,

such as the sensitivity to B1
+ inhomogeneities and frequency offsets

and the consumption of longitudinal magnetization, are different

for each method. This has an impact on the performance,

depending on the specific experimental conditions.
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