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Despite the current wealth of sequencing data, one-third of all biochemically characterized
metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered
orphan enzymes. They represent a major gap between our molecular and biochemical knowledge,
and consequently are not amenable to modern systemic analyses. As 555 of these orphan enzymes
have metabolic pathway neighbours, we developed a global framework that utilizes the pathway
and (meta)genomic neighbour information to assign candidate sequences to orphan enzymes.
For 131 orphan enzymes (37% of those for which (meta)genomic neighbours are available), we
associate sequences to them using scoring parameters with an estimated accuracy of 70%, implying
functional annotation of 16 345 gene sequences in numerous (meta)genomes. As a case in point, two
of these candidate sequences were experimentally validated to encode the predicted activity. In
addition, we augmented the currently available genome-scale metabolic models with these new
sequence–function associations and were able to expand the models by on average 8%, with a
considerable change in the flux connectivity patterns and improved essentiality prediction.
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Introduction

Enzymes are the catalysts that fuel almost all of the chemical
reactions necessary for life in the biological cell. Currently,
more than 5000 unique enzymes have been sufficiently
biochemically characterized that an Enzyme Commission
(EC) number could be assigned; however, more than one-
third of these lack a corresponding gene or protein sequence,
and as such can be considered ‘orphan enzymes’ (Lespinet
and Labedan, 2005; Pouliot and Karp, 2007). Even in this age of
genome sequencing, the fraction of newly reported enzymes
that are orphan has remained relatively stable with about 40%
of the enzymes reported in the past decade being orphan
(Supplementary Figure 1). These orphan enzymes participate
in central metabolic pathways as well as peripheral ones, and
cover all six enzymes classes. The fact that these enzymatic
functions are not linked to their cognate sequences means that
important biological functions are inaccessible through
molecular data-driven studies. Orphan enzymes also render

many approaches for functional characterization such as
genome or proteome annotation, metabolic modelling, meta-
bolic engineering and drug design incomplete and inaccurate.
Closing this gap between biochemical and molecular knowl-
edge will considerably improve the characterization of
biological systems at the molecular level.

Many computational approaches have been developed to
predict functional annotations for protein sequences. In
addition to transferring annotations from homologous pro-
teins, many genome-context methods exist (Huynen et al,
2003). Genome-context methods are based on the fact that
in prokaryote genomes genes involved in the same metabolic
pathway often co-occur in the same genome (Dandekar et al,
1998; Pellegrini et al, 1999; Yamada et al, 2006), are located
in proximity to each other or occasionally fused together
(Dandekar et al, 1998; Enright et al, 1999; Huynen et al, 2003)
or share regulatory sites (Gelfand et al, 2000). In addition,
information based on post-genomic associations such as
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gene-expression profiles, protein–protein interaction data,
phenotypic data, or three-dimensional (3D) structure predic-
tions can also be combined with genome-context information
to assign a function to a sequence (Hanson et al, 2010; Letunic
et al, 2012). However, linking orphan enzymes to genomic
information represents the reverse problem, which is, assign-
ing a sequence to a function.

Several methods have already been developed to assign
gene sequences to specific EC numbers for a particular species
for which a genome exists and metabolic pathways have been
reconstructed. During pathway reconstruction, ‘gaps’ occur
when certain reactions must take place, but none of the genes
in the genome are annotated to perform the reaction. The
respective gaps are filled using a variety of homology and
genome-context methods such as analysis of chromosomal
clustering, protein fusion events, co-occurrence profiles,
shared regulatory sites and co-expression profiles (Osterman
and Overbeek, 2003; Green and Karp, 2004; Chen and Vitkup,
2006; Kharchenko et al, 2006). This species-centric approach is
limited to the set of candidate genes in a given organism and
requires the manual annotation of pathways ‘gaps’. Here, we
introduce a global search strategy for candidate sequences that
encode orphan enzymes operating in known metabolic path-
ways. It utilizes genomic neighbourhood in genomes and
metagenomes and reconciles it with pathway neighbourhood
deduced from the KEGG database. Of the ca. 1700 orphan
enzymes, 555 are known to operate in pathways and 350 have
pathway neighbours that can be connected to genomic
information (Figure 1). Here, we integrate genomic-context
information (Huynen et al, 2003; Harrington et al, 2007)
derived from 338 completely sequenced genomes and 63
metagenomes, with pathway adjacency to reliably predict
candidate sequences for 131 orphan enzymes, more than a
third of the tractable ones; as a proof of principle, two of these
predictions were functionally validated. Applied to metabolic
modelling, these novel gene–enzyme relationships lead to an
on average 8% (up to 15%) increase in the enzymatic reaction
content of all 120 genome-scale metabolic models probed in
our study. The relevance of the addition of the novel orphan
enzyme reactions to the metabolic models was attested by
improved gene-essentiality predictions for the updated models
and altered topology of the flux connectivity within these
networks.

Results

Predicting candidate sequences for orphan
enzymes based on (meta)genomic and metabolic
pathway neighbours

We first identified 555 orphan enzymes that operate in
metabolic pathways (i.e., connected to at least one other
enzyme by a common compound) by analysing the KEGG
database (Kanehisa et al, 2008) (Figure 1). After identifying
the EC numbers of the pathway neighbours of these orphan
ECs, we retrieved all genes with the same EC number from the
338 prokaryotic genomes of the STRING7 resource (von
Mering et al, 2007). For the genes in the 63 metagenomes,
EC numbers were assigned via a best BLAST match to
KEGG orthologous groups (see Materials and methods and

Supplementary Section 1). As neighbouring prokaryotic genes
are often involved in the same metabolic pathway, we
analysed the genomic neighbourhood and retrieved gene
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Figure 1 Schematic view of the sequence detection pipeline. A total of 555
enzymes without corresponding sequences were extracted as orphans in
metabolic pathways from the 4780 enzymes stored in KEGG (Panel 1). The
metabolic pathway neighbours of the orphan enzymes were extracted from
KEGG, and the pathway neighbours were then mapped to meta/genomes
through homology (Panel 2, Step 1). Genomic neighbours were obtained for 350
orphan enzymes. These genomic neighbours of the pathway neighbours were
obtained as possible candidate sequences for the orphan enzymes (Panel2, Step
2). To determine the likelihood that a candidate sequence indeed encodes the
orphan enzyme, a scoring scheme was developed involving four parameters
1: the intergenic distance between, and synteny of, genome neighbours, 2: the
number of pathway neighbours, 3: the co-occurrence of genes across species
and 4: the presence of enzyme class-specific signature domains. Benchmarking
of the scoring scheme indicated that some parameter combinations yielded
greater than 70% accuracy, resulting in a high-confidence set of predictions for
131 orphan enzymes (Panel 3). We manually confirmed the orphan status for all
of the high-confidence predictions by searching for sequences in literature and
other databases. About 105 out of the 131 orphans in the KEGG database were
verified to be orphans (Panel 4). Finally, we experimentally validated the function
of candidate sequences for two enzymatic reactions (Panel 5).
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sequences of relevant genome neighbours as candidate genes
for the orphan enzymes. Using genomic data, we extracted
400 320 candidate genes and 97 343 from metagenomic data
(Supplementary dataset 1).

To quantify the likelihood that a specific candidate gene
performs the function of the orphan enzyme, we developed a
scoring scheme based on four parameters: (1) The genome
neighbourhood score (NBH), which measures the distance
between two neighbouring genes as well as the evolutionary
conservation of the synteny. This metric captures the
biological phenomenon that functionally associated genes
are usually clustered in conserved operon structures, (2) The
co-occurrence score (COR), which measures how often two
genes occur within the same genome. This metric reflects the
tendency for members of the same pathway to appear in
genomes together, (3) The pathway neighbour score (PNE),
which normalizes for the varying numbers of pathway
neighbours of the orphan enzyme and (4) The signature
domain score (DOM), which indicates whether candidate
proteins contain domain(s) that are unique to enzymes

catalysing similar reactions to the orphan enzymes (having the
same first 3 EC numbers).

Benchmarking revealed that high-confidence
candidate sequences can be obtained for over
100 orphan enzymes

To assess the accuracy of our pipeline and to determine the
best combination of the four scoring parameters, we bench-
marked our predictions using 100 sets of 350 randomly
selected enzymes from the KEGG database (that have
corresponding sequences) (Figure 2). We considered each of
these to be orphan enzymes, applied the newly developed
pipeline and then assigned the candidate genes a set of four
scores for each of the parameters (NBH, COR, PNE and DOM).
We classified the predictions according to their four scores,
and then, to estimate the accuracy of each scoring parameter,
or combination of parameters, we calculated the proportion of
the predictions that were assigned to the correct EC number.
First, to understand the predictive power of each of the four
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Figure 2 Benchmarking of the scoring parameters. (A) Accuracy plot derived from genomic (red) and metagenomic data (blue) using the combination of
neighbourhood score (NBH), co-occurrence (COR), signature domains (DOM) and pathway neighbours (PNE). Each candidate gene/neighbouring gene pair was
assigned a score for NBH and COR. Each candidate gene was also assigned a PNE and DOM score. The predictions were classified according to their four scores: NBH
(40.4,40.5,40.6,40.7,40.8,40.9), COR (40.1,40.2,40.3,40.4,40.5,40.6), DOM (0 or 1) and PNE (1, 2 or more). Then for each combination of scoring
parameters, the number of correct and incorrect EC number assignments was calculated in order to determine the accuracy of each parameter combination. In total, 100
randomized datasets were generated to benchmark the prediction pipeline. Each point represents all predictions from a specific combination of the four parameters
(center). The horizontal axis indicates the positive predicted values (PPV), which is calculated as the number of true positives (TP) over the summation of TP and false
positives (FP). The vertical axis indicates the number of predictable enzymes. The yellow-shaded area represents the high-confidence set of predictions that was
assembled from the union of all points yielding greater than 70% accuracy. (B) Accuracy plot for each separate parameter calculated using genomic or metagenomic
data. The colour and size of the points represents the intensity of the scores. The grey dots indicate the combined plot in (A).
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scoring parameters, we benchmarked each parameter sepa-
rately, using the genomic and metagenomic data (Figure 2B).
Predictions from the genome data illustrate that the co-
occurrence score is the best predictor and correlates most
strongly with the overall accuracy. The parameter COR in
metagenomic data also works well, but for more than 30% of
the metagenomic sequences, phylogenetic profiles could
not be constructed due to a lack of sequence similarity to
currently available data. Here, the signature domains allowed
many predictions (Figure 2B). Second, we performed bench-
marking for each combination of the four scoring parameters.
Although each individual scoring parameter works to some
extent, benchmarking clearly shows that integration of the
four parameters is better than any one parameter used in
isolation (Figure 2A). Finally, we assembled a set of high-
confidence predictions from all of the parameter combinations
that yielded an accuracy greater than 70% (Figure 2A),
resulting in predicted sequences for 131 orphan enzymes
(Supplementary Table 2 and Supplementary datasets 2 and 3).
For some of the parameter combinations, even more than 90%
accuracy is expected.

We then manually investigated the 131 orphan enzymes
with high-confidence predictions in more detail. Reconcilia-
tion with additional databases and literature searches revealed

that 26 out of these 131 already have a sequence deposited in
the curated Swissprot database or literature (Supplementary
Figure 4 and Supplementary Tables 3 and 4). For 17 of the 26
(65%) database sequences there was homology to sequences
from EC numbers that agreed up to at least the first digit
(Supplementary Figure 5). Our candidate sequences that have
no orthology to the sequences in the database may represent
alternative orthologous groups catalysing the same reaction,
as about 70% of the EC numbers in KEGG are encoded by more
than one orthologous group (Supplementary Figure 3A).
Therefore, we do not consider these as mispredictions, but
they can no longer be called orphan enzymes, although none
of these sequences are indicated in the enzyme-specific
databases ExPASy-ENZYME or KEGG. The activities of the
remaining 105 orphan enzymes range from core metabolism,
such as nucleotide metabolism, to peripheral pathway
(Figure 3A, Supplementary Figure 6) and we could assign
over 16 000 sequences to these.

Experimental confirmation of the predicted
enzymatic function for two candidate sequences

After determining that our pipeline can reveal high-confidence
predictions for candidate sequences for orphan enzymes, we
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performed experimental confirmations. We assessed the ease
of experimental validation for some of the high-confidence
predictions (e.g., access to gDNA); out of 45 corresponding EC
numbers, 15 sequences were amenable to cloning and 7 were
chosen for functional validation based on the commercial
availability of the reactants as well as the ability to monitor the
substrates and products using available analytical methods.
Of the six proteins that were successfully heterologously
expressed, the proposed function was verified for two
enzymes (Supplementary Section 5).

We succeeded in experimentally verifying the correct
function of candidate sequences for EC 2.6.1.14 (asparagine
oxo-acid transaminase, Figure 4A left) and EC 2.6.1.38
(histidine transaminase, Figure 4A right), showing the
reliability of this prediction pipeline. Using the prediction
pipeline, we retrieved candidate sequences for these two
enzymes using genomic (EC 2.6.1.14) or genomic and
metagenomic data (EC 2.6.1.38) (Figure 4B). Candidate
sequences were heterologously expressed, and in assays
containing the purified candidate proteins and the substrates,
the expected reaction products were unambiguously identified
using a combination of LC/MS and MS/MS (Figure 4C and
Supplementary Figures 11–17; see Supplementary Section 5 for
details). Concerning the four other candidate proteins (for EC
2.1.1.19, 2.1.1.68, 2.3.1.32 and 2.7.1.28), neither product
formation nor substrate consumption was detected in enzy-
matic assays through LC/MS. For EC 2.7.1.28, a peak of very
slight intensity with a m/z consistent with the one of the
products, D-glyceraldehyde-3-phosphate, could be detected.
Nevertheless, LC/MS analyses could not lead us to conclude
the predicted activity, as the substrate D-glyceraldehyde could
never be detected, and neither ATP consumption nor ADP
formation could be established. In addition, two different
continuous spectrophotometric assays were set up to try to
confirm the predicted activity. In the first one, the production
of ADP was coupled to the consumption of NADH, using
commercial pyruvate kinase and lactate dehydrogenase, along
with phosphoenolpyruvate. In the second one, the production
of glyceraldehyde-3-phosphate was coupled to the production
of NADH using commercial glyceraldehyde-3-phosphate
dehydrogenase. In both cases, the assays were inconclusive.
However, as detailed in the Discussion, there can be many
difficulties in the experimental process to validate an enzymes’
function therefore absence of evidence is not necessarily
evidence of absence.

Assessing functional novelty and
multifunctionality for the candidate sequences

After the benchmarking and experimental validations showed
the reliability of the pipeline, we examined the validated
orphan enzymes and their corresponding genes in more detail.
As expected from the benchmarking, the number of enzymes
for which candidate sequences can be predicted was greater
for genomic than for metagenomic data (Figure 3A). This is
due in part to the short length of contigs in metagenomic data,
as this reduces the number of genomic neighbours that are
available for the first screen of our pipeline. For 48 enzymes,
candidate sequences were predicted from both metagenomic

and genomic data. However, for 13 orphan enzymes we found
candidate sequences only in metagenomic data, exemplifying
the ability of this pipeline to detect sequences from bacteria in
environmental samples. One example is biotin CoA synthetase
(6.2.1.11) found in the gut metagenomes. This prediction is
supported by the fact that bacterial synthesis and degradation
of biotin is known to be important in the human large
intestines (Said, 2009; Arumugam et al, 2011).

As many as 9884 of the individual candidate sequences
(about 60%) are annotated as ‘function unknown’, ‘hypothe-
tical’ or similar (Figure 3B), and assigning them to orphan
activities thus provides functional annotations that can be
further propagated into newly sequenced genomes through
the use of homology-based annotation methods. An even
higher fraction of unannotated sequences predicted to code
for orphan enzymes can be found in metagenomics data
(Figure 3B).

Overall, 40% of the candidate sequences are already
annotated with an EC number (Figure 3C). We believe that
the vast majority of these imply multifunctionality, as this is a
common attribute of enzymes (Nobeli et al, 2009). Indeed,
over 30% of the genes in the KEGG database are assigned to
more than one EC number (Supplementary Figure 3B). Of
these multifunctional enzymes in KEGG, about 30% are
assigned to EC numbers that agree up to 3 digits, while another
50% have no agreement between the different EC numbers.
Our candidate sequences that have a current annotation and
are potentially multifunctional have a similar trend in the level
of agreement between the assigned and predicted EC numbers
(Figure 3C). It is therefore plausible that these genes with
current annotations represent multifunctional enzymes,
although we cannot rule out either mispredictions from our
pipeline nor errors in the current annotations due to the
automatic nature of most genome annotations.

In addition to coupling unannotated sequences to specific
functions, our pedictions also provided putative functions for
certain Domains of Unknown Function (DUF domains). The
prediction pipeline led to the identification of five DUF
domains that are unique to candidates of orphan enzymes.
For example, DUF2254 is only present in genes predicted to
encode the orphan EC 2.4.2.15, guanosine phosphorylase
(Supplementary Table 5). As a byproduct of our pipeline, we
also identified 150 DUF domains that are unique to specific
non-orphan EC numbers yet had not been annotated so far
(Supplementary Table 6), and should improve various studies
that use domain databases like Pfam or SMART (Finn et al,
2010; Letunic et al, 2012).

High-confidence predictions yield putative
sequences for enzymes with commercial and
biotechnological applications

Some orphan enzymes from our high-confidence predictions
have potential commercial or medical applications, for
example EC 2.8.1.5, thiosulphate—dithiol sulphurtransferase,
involved in sulphur metabolic pathways that are essential in
many pathogenic bacteria, but not present in humans, and
could therefore provide drug targets. In addition, four of the
orphan enzymes with very high scores could be utilized for
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the synthesis of commercially available nutraceuticals, one
could be used in the food industry and another two have
applications in bioremediation (Supplementary Table 7).
Furthermore, candidate genes were predicted for phenyl-
pyruvate decarboxylase (EC 4.1.1.43), using a parameter

combination with 80% accuracy, that converts phenylpyr-
uvate to phenylacetaldehyde, which is the first and crucial step
in the synthesis of branched-chain higher alcohols as biofuels
(Atsumi et al, 2008). The genes that our analysis linked to
phenylpyruvate decarboxylase represent a valuable repertoire
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for efficient production of biofuels. All of the predictions and
sequences are available at our website (http://www.bork.
embl.de/Byamada/orphan_enzymes/).

Orphan enzyme reactions improve the accuracy of
genome-scale metabolic models

To measure the impact of our findings on genome-scale
metabolic models, we analysed reactions represented by the
120 metabolic models obtained from the Model SEED database
(Henry et al, 2010) (Supplementary Table 8) and determined if
any of them contained orphan enzymes for which we have
reliable predictions. For most of the metabolic models, the
reactions encoded by the orphan enzymes were not included,
and thereby represent novel reactions. For each model, there
were around 40 novel reactions averaging about 5–10% of
total reactions (Figure 5). Interestingly, this trend was
observed for manually reconstructed models as well as for
automatically reconstructed models. For example, in the most
recent reconstruction for Escherichia coli (Orth et al, 2011), 49
novel reactions (from parameter combinations with estimated
accuracy 470%) could be added to the model while only 1
reaction in the current model represents one of these orphan
enzymes (Supplementary Table 9). The fact that these orphan
enzymes are not represented in the metabolic models shows
that the completeness of these reconstructions is heavily
reliant on the current annotation quality, and thus consider-
ably affected by orphan enzymes.

To estimate the impact of the novel reactions on flux
simulations using these models, we performed flux coupling
analysis (FCA) (Burgard et al, 2004), before and after adding
the corresponding novel orphan enzyme reactions into the
models. Comparative FCA helped us to systematically
elucidate the effects of adding new reactions on the topology
of flux connectivity at the whole-network scale (see Materials

and methods). In the case of the latest (manually curated) E.
coli model (Orth et al, 2011), a large fraction (16%) of
dependency relationships between the fluxes were altered
following the addition of 49 novel reactions (Supplementary
Figure 9). In general, the addition of the new reactions led to a
decrease in the number of coupled reactions. For example,
changes were detected in vitamin biosynthesis pathways
where the addition of the orphan reactions led to a decrease
in the number of fully coupled reactions (reaction pairs for
which the corresponding fluxes are directly proportional to
each other). This trend shows that the new reactions are
relatively well embedded within the existing network and
provide additional branches for flux routing.

Then to establish if adding the orphan enzyme reactions to
the current models improves their accuracy, we determined if
the updated models were better in predicting gene essentiality.
ForB80% of the 72 SEED models tested, there was at least one
gene for which the prediction changed from essential to non-
essential, with the largest change being 26 genes in the case of
Salmonella typhimurium. For the rest B20% of the models, no
change in essentiality predictions was observed following the
addition of the orphan enzyme reactions (Supplementary
Figure 10). Addition of new reactions to a model can change
the existing predictions in two different ways; (i) false essential
predictions can then be correctly predicted as non-essential,
and/or, (ii) some of the true essential predictions are later
wrongly predicted as non-essential. To determine if the
observed changes in essentiality predictions were biologically
meaningful, we compared the experimentally determined
essentiality status of the genes to the essentiality status
predicted from the models with and without the orphan
enzyme reactions. Four of the species probed in our study had
genome-wide gene-essentiality data available. For the Bacillus
subtilis model, no changes were predicted for gene essentiality
following the addition of the corresponding orphan enzyme
reactions. However, for the other three species, E. coli K-12,
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Campylobacter jejuni subsp. Jejuni NCTC 11168 and Helico-
bacter pylori J99, predictions for a total of 15 genes changed to
non-essential due to addition of the orphan enzyme reactions.
All of these changes to non-essential were then found to be
consistent with the results from experimental genome-wide
knock-out data, illustrating that the addition of the orphan
enzyme reactions to the metabolic models made them more
accurate for gene knock-out analyses (Figure 6B).

Discussion

Here we have described a global strategy to predict candidate
sequences for orphan enzymes. Candidate sequences were
obtained using a combination of metabolic pathway adjacency
and genomic neighbourhood information. Overall, a lower
proportion of candidate sequences were obtained using
metagenomic data, than genomic data, but this might only
be due to the restrictions we had to impose: Sanger and 454
samples that have a low coverage of the respective genomes.
Although many novel enzymes and organisms may be
represented in metagenomic samples, the human gut and
marine metagenomes that we used are complex communities
with hundreds of species (Qin et al, 2010), and a long tail of
low-abundance organisms (Arumugam et al, 2011), thereby
limiting the coverage of each individual genome and thus the
extent of assembly. Consequently, the majority of the contigs
that we analysed only contained two genes, thus limiting the
number of neighbour gene pairs that can be detected
(Supplementary Figures 7 and 8). Although some available
metagenomic datasets have a large number of long contigs,
these are usually dominated by a few genomes and thus would
not offer access to an increased number of genomes (Tyson
et al, 2004; Garcia Martin et al, 2006). In the future, contigs will
become longer, due to increases in read lengths and improve-
ments in assembly algorithms, therefore enhancing the ability
of this pipeline to make predictions from metagenomic
data allowing greater access to novel activities of hidden
environmental samples.

In addition to the benchmarking, we supported our predic-
tions with the experimental validation of the proposed
enzymatic function for two out of six heterologously expressed
candidate proteins. The ratio of experimental successes is lower
than the 70% expected accuracy. However, we would not expect
the ratio of experimental successes to be equivalent to the
theoretical prediction accuracy. The experimental process to
validate a specific enzymatic function is a very complex process
involving many variables. First, an enzyme can be purified in a
soluble form but will become inactive during the purification
process due to improper handling or exposure to unfavourable
conditions such as oxygen. In addition, the proteins purified in
this study were tagged with a histidine (his-tagged), as many
heterologously expressed proteins are. The addition of a
terminal his-tag can dramatically decrease the activity of a
protein (Kadas et al, 2008) or render it totally inactive
(Albermann et al, 2000; Halliwell et al, 2001). Moreover, there
are many variables to optimize for the enzymatic activity tests.
Only by adjusting the buffer type, buffer pH, cofactors, time of
incubation, temperature of incubation or the analytical methods
used might a certain assay become successful. For example, in
assay optimization trials for EC 2.6.1.38 we changed the mobile
phase for the LC/MS from 10 mM ammonium acetate to water
and the peak area of the product glutamate was increased more
than 11 times (Supplementary Figure 16). However, there is a
practical limit to how many permutations of experimental
conditions can be attempted, and only if the initial screening
assay is close to the optimal conditions further optimization is
feasible. Yet, the two validations in hand are a proof of principle
for our approach and even without further experimental
validation the benchmarks indicated high-accuracy candidate
sequences for 131 orphan enzymes, more than a third of the
tractable enzymes stored in pathway databases.

Then to assess the impact of this expanded enzyme
knowledge on systems biology, we compared the currently
available genome-scale metabolic models with and without
the addition of the orphan enzymes with high-confidence
predictions. Subsequently, gene-knockout simulations
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showed that some genes considered to be essential in the
current models became non-essential after the addition of the
orphan enzymes. The addition of these orphan enzymes
increased the accuracy of the models as all genes for which
gene essentiality changed now agree with the experimentally
determined essentiality status of the gene. Interestingly,
several of the reactions for which the essential to non-essential
predictions changed were reactions introduced by the auto-
mated gap-filling procedure during the reconstruction process.
This observation suggests that the orphan enzyme reactions
will not only influence the model simulations but also likely
affect the gap-filling procedure, and thereby the reaction
content of the final model, beyond simple addition of few new
reactions. Taken together, the percentage of novel reactions,
FCA and improved gene-essentiality predictions mean that our
findings will improve the automatic as well as the manual
reconstruction process for genome-scale metabolic models
and applications thereof (Oberhardt et al, 2009).

About 70% of the orphan enzymes in KEGG do not have
pathway neighbours and are thus not amenable to our current
pipeline (Figure 1). However, in the future, our candidate gene
identification pipeline could be modified to identify other
genes that might be functionally related to the orphan
enzymes through the integration of genome-scale functional
data, such as gene lethality screens (Nichols et al, 2011),
genetic interactions (Costanzo et al, 2010) or gene-expression
profiles. This should enable one to retrieve candidate genes by
searching the gene neighbourhood of the orthologs of these
genes that are functionally related to the orphan enzymes.
Furthermore, the current pipeline is only applicable to
prokaryotic genomes. However, it could be extended to
partially analyse fungal genomes as certain secondary
metabolite pathways are known to be organized in gene
clusters (Regueira et al, 2011).

The linkage of sequences to these orphan functions implies
that these functions can be utilized in genome-, transcriptome-
and proteome-based methods. Here we illustrated the impact
on genome-scale metabolic models. This benefit will be
propagated into many different biological systems as these
sequences will act as bait so that the newly sequenced
genomes can be ascribed these functions through homology-
based annotation methods. This is the first systematic
approach to retrieve sequences for many orphan enzymes,
and the developed computational framework can be applied to
additional genomes and metagenomes as they get sequenced.

Materials and methods

Construction of genomic and metagenomic
datasets

For genome data, the 338 fully sequenced prokaryote genomes stored
in the STRING v7 database (von Mering et al, 2007) were used. For
metagenomic data, we obtained sequencing data from 37 metagen-
omes from the human gut and 26 metagenomes from the ocean
(Supplementary Table 1). The human gut metagenomes were
sequenced by Sanger sequencing, and assembled with the Arachne
assembler using SMASHcommunity (Arumugam et al, 2010). The
specific samples consist of samples from 22 Europeans (Arumugam
et al, 2011), 13 Japanese (Kurokawa et al, 2007) and 2 Americans (Gill
et al, 2006). The majority of the ocean metagenomes were from the
Global Ocean Sampling Expeditions (Venter et al, 2004; Rusch et al,

2007). Specifically, sequences were obtained for 18 stations:
GOS_GS000c, GOS_GS001c, GOS_GS004, GOS_GS007, GOS_GS008,
GOS_GS009, GOS_GS010, GOS_GS013, GOS_GS015, GOS_GS016,
GOS_GS019, GOS_GS022, GOS_GS023, GOS_GS049, GOS_GS112a,
GOS_GS116, GOS_GS121 and GOS_GS122a. Additional polar meta-
genomes were added one from an Arctic sample (pyrosequencing (Alonso-
Saez et al, submitted—sequences will be available upon request)), and
four from the Antarctic (NCBI project IDs 30009, 30011). The reads from
these metagenomes were assembled with the Celera assembler using
SMASHcommunity default settings (Arumugam et al, 2010).

Enzyme data and candidate sequence extraction

The KEGG pathway database (v57) was queried and all EC numbers
without any associated sequence were identified as orphan EC numbers.
Next, pathway information about adjacent enzymes was extracted from
XML/KGML data and parsed by in-house ruby scripts. Pathway
neighbours were defined as enzymes that are connected to each other
through a common substrate. After identifying the EC numbers of the
pathway neighbours of the orphan ECs, we retrieved all genes with the
same EC number from the 338 prokaryotic genomes of the STRING7
resource (von Mering et al, 2007). In order to map the pathway neighbours
to genes in the 63 metagenomes, we first assigned the metagenomic genes
to KOs using the best hit from a BlastP against the KEGG proteins (460
bits), using the SMASHcommunity pipeline (Arumugam et al, 2010).
Finally, genes adjacent to the genes for the pathway neighbours of the
orphan enzymes were then extracted as candidate genes for orphan ECs.
Only genes closer than 300bps were considered genomic neighbours.

Neighbourhood score (NBH)

The neighbourhood score indicates the probability that neighbouring
genes participate in the same metabolic pathway, it is based on the
intergenic distance as well as the conservation of synteny across
species. For genomic data, we utilized the neighbourhood score from
the STRING database (v7) (von Mering et al, 2007). For metagenomic
data, the probability was derived from 2D histograms of gene distance
and conservation rate of the synteny (Harrington et al, 2007). As such,
pairs of genes are assigned a neighbourhood score between 0 and 1.

Co-occurrence score (COR)

For genomic data, co-occurrence scores were taken from the STRING
database (v7) (von Mering et al, 2007). For metagenomic data,
phylogenetic profiles for each gene (vectors composed of 1 and 0
representing presence and absence of genes) were constructed by
blasting against 338 fully sequenced prokaryotic genomes (blast bit
score X60). Then for each pair of genes, the pearson correlation
coefficient was calculated between each pair of phylogenetic profiles
and used as the co-occurence score. As such, pairs of genes are
assigned a co-occurrence score between 0 and 1.

Signature domain score (DOM)

Signature domains represent unique domains for each EC sub-subclass
(all ECs having the same first 3 digits). Domain information for
enzyme genes was derived from the KEGG ENZYME database (v57).
This domain list was then clustered to identify domain(s) that were
unique for each EC sub-subclass (Supplementary datasets 4 and 5). For
the candidate sequences, domains were identified by HMMER3 search
(Eddy, 2009) against PFAM database (Finn et al, 2010). The domains in
the candidate sequences were then checked against the list of sub-
subclass-specific domains. The DOM score thus represents a binary
score indicating if the candidate sequence contains the domain(s) that
are unique to the EC sub-subclass.

Pathway neighbour score (PNE)

The pathway neighbour score indicates the number of adjacent
enzyme genes on the pathway. After MCL clustering of candidate
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genes using their homology (bit score460, l¼ 1.1) (Enright et al,
2002), we counted the number of adjacent genes encoding pathway
neighbours of the orphan enzyme. Candidate sequences were thus
assigned a PNE score of one, two or three or more.

Benchmarking with randomized data

In order to estimate the predictive power of the four scoring
parameters, we benchmarked our prediction pipeline using data from
enzymes with assigned sequences in KEGG pathways. About 350 non-
orphan enzymes were randomly extracted from the KEGG pathway
database v. 57. This number is the same as that of orphan enzymes in
KEGG pathway. In addition, these enzymes were chosen so that the
distribution of node degree (network structure) was the same as for the
orphan enzymes. These enzymes were then treated as orphan
enzymes and candidate sequences were generated using the computa-
tional pipeline described above, and each prediction was assigned a set
of four scores (NBH, COR, DOM and PNE). The predictions were
classified according to their four scores. For genomic data: NBH
(40.4,40.5,40.6,40.7,40.8,40.9), COR (40.1,40.2,40.3,40.4,
40.5,40.6), DOM (0 or 1) and PNE (1, 2 or more). Due to the different
distribution of the COR score in metagenomic data, the COR score was
classified as COR (40.2,40.4,40.6, or not determined). Due to the
lack of sequence homology with current genomes, co-occurrence
scores could not be determined for more than 30% of the genes. To
estimate the accuracy for each combination of scoring parameters (120
parameter combinations in total for metagenomic data and 144
parameter combinations for genomic data), the number of correct and
incorrect EC number assignments was calculated. In total, 100
randomized datasets were generated to benchmark the scoring
parameters. Then to obtain a high-confidence set of candidate
sequences, we took the union from all of the parameter combinations
that yielded an accuracy of 470%. Finally, to estimate the overall
accuracy of the high-confidence set we made a non-redundant set of
predictions from the union (accuracy 470%), and then calculated the
number of correct and incorrect predictions in this set for each
randomized set. For genomic data the mean accuracy was above
85% and for metagenomic data the mean accuracy was above 70%
(Supplementary Figure 2). In addition, to examine the predictive
power of the individual scoring parameters, we performed a similar
benchmarking protocol except that the predictions were only classified
according to a single scoring parameter, each in turn, and the binning
was more fine-grained than for the combination of the scoring
parameters.

Genome-scale metabolic models

About 120 publically available metabolic models were downloaded
from Model Seed (Overbeek et al, 2005) (Supplementary Table 8) as
SBML files. In the case where sequence candidates for orphan enzymes
were identified in a species, chemical reactions corresponding to them
were compared with reaction list from the model for the same
organism in order to identify novel reactions.

Flux coupling analysis

FCA was performed by using the algorithm proposed by Burgard et al
(2004). The algorithm was implemented in Cþ þ with IBM ILOG
CPLEX Optimizer. FCA categorizes relationships between two reac-
tions into three categories, according to the nature of dependency
between the fluxes through these reactions. That is, (1) fully coupled,
(2) directionally coupled and (3) partially coupled. Two fluxes are fully
coupled if the activity of one fully determines the activity of the other
and vice versa. A reaction pair is directionally coupled if flux activity of
one implies that of the other but not the other way around. A reaction
pair is partially coupled if each flux implies activity of the other,
however, still allowing a certain degree of flexibility in their flux
values. FCA for the E. coli model iJO1366 was performed under glucose
minimal medium conditions as stated in the original publication (Orth
et al, 2011), following a preprocessing step to remove blocked
reactions. For the novel metabolites introduced in the model, a drain

reaction to the extracellular environment was also added. The number
of coupled reaction pairs in the E. coli model considerably reduced
after adding novel reactions, suggesting that these additional reactions
provide alternative routes for supplying substrates and for consuming
products of the existing reactions.

Prediction of gene essentiality

Each model obtained from Model SEED database (http://seed-
viewer.theseed.org) (Henry et al, 2010) was constrained for LB-rich
medium with glucose (Oh et al, 2007) (Supplementary Table 9). Some
of the SEED models were unable to have a non-zero biomass flux under
these conditions and required the presence of specific ions/vitamins in
the environment. To account for these special requirements, we
determined the minimum number of additional media components
required for each model by using a Mixed Integer Linear programming
(MLP) (Klitgord and Segre, 2010) (Supplementary Table 10). To avoid
LP artifacts, upper bounds for the additional media compounds were
constrained to 100 mmol gDW-1h-1. A fraction of the models were
subsequently excluded and the remaining models that were able to
have non-zero biomass flux were used for gene-essentiality predictions
(Supplementary Table 8). Simulations for the E.coli K-12 MG1655
model (iJR1366) were carried out as described in the original
publication (Orth et al, 2011) under glucose minimal medium
conditions. Simulations for B. subtilis subsp. subtilis str. 168
(Seed224308.1) were performed under rich medium conditions
(Oh et al, 2007).

To simulate the effects of gene knockouts, all genes were knocked
out one at a time and maximal growth was computed. Gene deletions
resulting in close to zero growth predictions (o10�7) were considered
as computationally essential. Experimental data for E. coli gene
essentiality was obtained from PEC database (http://www.
shigen.nig.ac.jp/ecoli/pecplus/index.jsp) (Kato and Hashimoto,
2007). Gene-essentiality data for B. subtilis subsp. subtilis str. 168,
C. jejuni subsp. Jejuni NCTC 11168 and H. pylori J99 were obtained from
genome-scale knockout studies (Chalker et al, 2001; Oh et al, 2007;
Stahl and Stintzi, 2011).

Heterologous expression of candidate genes

For EC 2.6.1.14, protein Q8DTM1 (STRING id) was PCR amplified from
Streptococcus mutans (DSM 20523) gDNA. For EC 2.6.1.38, protein
Q8R5Q4 (STRING id) was PCR amplified from Thermoanaerobacter
tengcongensis (DSM 15242) gDNA (see Supplemental Methods for PCR
primers and more details). The PCR-amplified genes were cloned into
pET22 modified for the purpose of ligation-independent cloning (LIC).
The modified expression vector was transformed into E. coli BL21 DE3.
Isopropyl beta-D-thiogalactopyranoside (IPTG) was added to induce
protein production, and the cells were further grown at 20 1C
overnight. After centrifugation, cells were washed and suspended in
lysis buffer and sonicated using an ultrasonic processor. After
centrifugation, the supernatant was loaded onto an 1-ml HisTrap FF
column (GE Healthcare) and the protein was eluted with the lysis
buffer containing 250 mM imidazole. Buffer exchange was performed
using a HiPrep 26/10 Desalting column (GE Healthcare) with a mobile
phase composed of 50 mM Tris/HCl, pH 8.0; 50 mM NaCl; 10%
glycerol; and 1 mM DTT. The protein for EC 2.6.1.38 was further
purified by ion exchange using a MonoQ 5/50 GL column (GE
Healthcare). The protein was eluted with a NaCl gradient ranging from
50 mM to 1 M over 100 column volumes. The purified protein was
stored at � 80 1C. The samples were analysed by SDS–PAGE using the
Invitrogen NuPAGE system. More detailed information is available in
Supplementary Methods.

Enzymatic assays

For EC 2.6.1.14, 3.5 mg of the candidate protein was incubated with
5 mM L-asparagine, 20 mM 2-oxoglutarate and 10 mM PLP in 50 mM
Tris/HCl pH 9.0, 25 mM KCl. The products of the reaction (L-glutamate
and oxoaloacetamid) were detected using high-resolution LC/MS/MS
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(LTQ-Orbitrap, Thermo Scientific). Oxaloacetamid was also detected
by UV spectrophotometry at 290 nm (Cooper, 1977).

For EC 2.6.1.38, 3mg of the candidate protein was incubated with
5 mM L-histidine, 10 mM 2-oxoglutarate and 5mM PLP in 50 mM Tris/
HCl pH 8.0. The products of the reaction (L-glutamate and (imidazol-5-
yl)-pyruvate) were detected using LC/MS/MS. (Imidazol-5-yl)-pyr-
uvate could also be detected by UV spectrophotometry at 284 nm
(Hacking and Hassall, 1975).

For EC 2.1.1.68, 3 mg of candidate protein was incubated for 30 min
at 301C in 20 mM Tris/HCl pH 8.0 containing 10 mM MgCl2 and 40 mM
sodium ascorbate, in the presence of 5 mM caffeate and 5 mM
S-adenosylmethionine (SAM), and the reaction was monitored using
LC/MS as described in Supplementary Materials.

For EC 2.3.1.32, 3 mg of candidate protein was incubated for 30 min
at 301C in 10 mM Tris/HCl pH 8.0 in the presence of 5 mM L-lysine and
10 mM acetyl phosphate, and the reaction was monitored using LC/MS
as described in Supplementary Materials.

For EC 2.1.1.19, 3mg of candidate protein was incubated for 60 min
at 301C in 20 mM Tris/HCl pH 8.0 containing 1 mM DTT and 30 mM
sodium ascorbate in the presence of 2 mM tetrahydrofolate and 2 mM
trimethylsulphonium, and the reaction was monitored using LC/MS as
described in Supplementary Materials.

For EC 2.7.1.28, 3 mg of candidate protein was incubated for 30 min
at 301C in 10 mM Tris/HCl pH 8.0 containing 10 mM MgCl2 in the
presence of 2 mM D-glyceraldehyde and 3 mM ATP, and the reaction
was monitored using LC/MS as described in Supplementary Materials.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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