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Abstract. Membrane waves propagating along the cell circumference in a
top down view have been observed with several eukaryotic cells (Döbereiner
et al 2006 Phys. Rev. Lett. 97 10; Machacek and Danuser 2006 Biophys. J.
90 1439–52). We present a mathematical model reproducing these traveling
membrane undulations during lamellipodial motility of cells on flat substrates.
The model describes the interplay of pushing forces exerted by actin
polymerization on the membrane, pulling forces of attached actin filaments
on the cell edge, contractile forces powered by molecular motors across
the actin gel and resisting membrane tension. The actin filament network in the
bulk of lamellipodia obeys gel flow equations. We investigated in particular the
dependence of wave properties on gel parameters and found that inhibition of
myosin motors abolishes waves in some cells but not in others in agreement
with experimental observations. The model provides a unifying mechanism
explaining the dynamics of actin-based motility in a variety of systems.
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1. Introduction

Experiments have shown traveling membrane protrusions or retractions in many cell types
such as mouse embryonic fibroblasts, fly wing disc cells, mouse T cells and Dictyostelium
discoideum [1, 3, 6–8]. These waves can be identified as the dynamics of the cell contour in
a top down view of the cell on the substrate. The contour dynamics consists sometimes of
homogeneous oscillations rather than propagating structures [8]. Membrane waves are believed
to play a central role in cell motility, endocytosis and probing the extracellular matrix [9]. In the
damped liquid environment of the cell, these propagating waves are maintained by active forces
from the cytoskeleton. Actin polymerization produces most of the driving force for membrane
protrusion [10]. Polymerization also creates a network of actin filaments providing support for
the forces acting on the membrane. The network of actin filaments is cross-linked by various
proteins. Among them, myosin II molecular motors not only cross-link but can also contract
the network. Some of the membrane waves disappear upon inhibition of contraction of the actin
gel [1, 3, 4, 7, 11], and others exist without myosin activity [1–6, 8]. This suggests that the
membrane waves are driven by the protrusive force of actin polymerization and the contractile
stress produced by myosin II molecular motors contributes in some cases only.

Several theoretical approaches have been introduced to explain the mechanism responsible
for membrane wave propagation. In the approach of [12–14], membrane waves are driven
by curvature-mediated activation of actin polymerization. A non-decaying membrane wave
was produced by the coupling between membrane shape and protrusive–contractive forces
of actin–myosin and the addition of only convex actin activators in this model [13]. The
intrinsic curvature values that can be induced or are preferred by membrane proteins suggest
that the mechanism applies to ruffle-like waves [14]. The observation of a transition between
homogeneous oscillations with vanishing curvature and waves of the cell contour induced
by signaling mechanisms suggests that different dynamic regimes of one system defined by
different parameter values produce both the phenomena. The homogeneous oscillations are
unlikely to be produced by a mechanism relying on curvature.

Here we propose a mechanism for membrane wave generation that does not require any
spontaneous curvature of actin polymerization activators. The dynamics of the cell boundary,
and therefore cell shape, are determined by the interaction of actin filaments with cell
membrane, cross-linking of actin filaments, polymerization- and myosin-driven retrograde flow
of the actin gel and load due to membrane tension. In our model, while transiently membrane-
bound filaments are pulling back the membrane, the polymerizing actin network pushes on the
cell membrane from within (see figure 1). Membrane tension equilibrates spatially very fast,
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Figure 1. Schematic illustration of the interaction between the membrane and
the actin cortex in a cell. (A) The actin network consists of two parts: a highly
cross-linked actin meshwork (actin gel) and free actin filaments (semiflexible
region (SR)). The membrane and the gel boundary are characterized in Cartesian
coordinates by (x(s), y(s)) and (xg(s), yg(s)), respectively, with s being the
contour length of the membrane or actin gel boundary. In the SR, filaments
undergo cycles of attachment (ka) and detachment (kd): while detached filaments
with contour length ld polymerize and push against the membrane ( fd), attached
filaments with contour length la can either pull or push the membrane ( fa). Both
pushing and pulling forces depend on the contour length of the filaments as well
as the orientation of the filaments (θ ) and the normal distance to the membrane
(z). R‖ ≈ la[1 − la/4`p] cos θ is the projected equilibrium end-to-end distance of
the polymer onto the membrane normal.

but temporarily varies with the cell’s projected area. This introduces a global spatiotemporal
coupling in the dynamics of distant regions on the cell boundary.

2. The model

The model is schematically represented in figure 1. The cell is characterized in Cartesian
coordinates by x(s) and y(s) with s measuring the cell’s contour length. The membrane at
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each small interval (s, s + ds) is pushed or pulled by actin filaments which are anchored in a
highly cross-linked actin gel with a linear density nl. The gel forms due to cross-linking of actin
filaments. The newly polymerized filaments are not yet cross-linked and therefore behave like
an ensemble of individual filaments. We call the filamentous range a semiflexible region (SR)
since its properties are dominated by the semiflexible filament behavior. It takes some time
till that critical degree of cross-linking is reached, which turns the network into a gel. Newly
polymerized filament parts move backwards during that time owing to retrograde flow. That
turns the temporal transient into a spatial gradient of the degree of cross-linking. We define
the location of the critical concentration of bound cross-linkers as the gel boundary. The gel
boundary advances with a rate set by cross-linking and effectively shortens the free length of
filaments in the SR. Since polymerization occurs at the leading edge membrane only, we obtain
the lamellipodium structure shown in figure 1 with an SR at the leading edge and a gel further in
the bulk. The complete protrusion is often described as consisting of the posterior lamellum with
highly cross-linked and bundled actin filaments and the anterior lamellipodium, which is much
less bundled. We do not identify the gel with the lamellum and the SR with the lamellipodium.
However, we assume the gel boundary to be in the lamellipodium.

Cross-linkers dissociate from filaments deep in the bulk of the gel and diffuse back to
the lamellipodium leading edge, where they can bind again. Solving the equations for this
reaction–diffusion process explains the dependence of the gel boundary velocity on system
parameters and variables [24]. The velocity increases with the free length of actin filaments
with a characteristic length scale l̄ and saturates at the maximum value vmax

g , which depends on
the concentration of available cross-linkers [24]:

vg = vmax
g tanh(l/l̄). (1)

The SR at each interval (s, s + ds) is formed by populations of attached and detached filaments
with linear densities na(s) and nd(s) and average contour lengths la and ld, respectively.
Filaments bind transiently via linker proteins to the membrane. The filament’s attachment
rate to the linker protein on the membrane is ka. The filament–linker complex exerts force
fa normal to the membrane during attachment. The linker proteins are modeled as springs
with spring constant kl and zero equilibrium length. The force fa depends on kl, the filament’s
contour length la as well as on the distance between gel and membrane z. The filament–linker
complex has a nonlinear force–extension relation which we approximate by a piece-wise linear
function [20]. Let R‖ ≈ la[1 − la/4`p] cos θ be the projected equilibrium end-to-end distance of
the polymer onto the membrane normal. The elastic response of filaments experiencing small
compressional forces (z 6 R‖) is approximated by a spring constant k‖ = 12kBT `2

p/ l4
a [21]. For

small pulling forces (z > R‖), the linker–filament complex acts as a spring with an effective
constant keff = klk‖/(kl + k‖). In the strong force regime, the force–extension relation of the
filament is highly nonlinear and diverges close to full stretching [22]. Therefore, only the linker
will stretch out. The complete force–extension relation is captured by

fa =


−k‖(z − R‖), z 6 R‖,

−keff(z − R‖), R‖ < z < la cos θ,

−kl(z − la cos θ) − keff(la cos θ − R‖), z > la cos θ.

(2)
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Attached filaments are usually under tension and detach with a force-dependent rate
kd [23]

kd = k0
d exp(−δ fa/kBT ). (3)

Here, k0
d is the spontaneous detachment rate and δ ∼ 2.7 nm is one-half of the actin monomer

size.
The pushing force due to actin polymerization near the edge is the main type of active

force at the membrane. Detached filaments polymerize at subsecond timescales and exert normal
protrusive force fd on the membrane. The membrane hinders the polymerization. The higher the
filament pushing against the membrane is, the lower the polymerization velocity is. According
to [43], vp decreases exponentially with fd:

vp = vmax
p exp(−δ fd/kBT ), (4)

with vmax
p = konδG the saturation polymerization velocity in the absence of any obstacle. kon is

the monomer assembly rate and G is the actin monomer concentration. The pushing force fd

of semiflexible polymers in the presence of an obstacle has been extensively studied in [19].
For a stiff polymer such as actin with persistence length `p = 15 µm and contour length
ld � `p, the pushing force can be approximated by fd = fc f̃d(ζ ), in which fc = kBT `p/ l2

d is
the Euler buckling force and the scaling parameter ζ is given by ζ = `p(ld − z)/ l2

d . For a small
compression (ζ 6 0.2), the dimensionless force f̃ reads

f̃d(ζ ) =

4 exp
(

−1
4ζ

)
π 5/2ζ 3/2[1 − 2erfc( 1

2
√

ζ
)]

. (5)

We now write the set of equations for the dynamics of the coupled system consisting
of attached and detached filaments in the SR, the boundary of the cross-linked actin gel and
the membrane [16]. The average lengths of attached and detached filaments in the interval
(s, s + ds) are denoted by la and ld, respectively. The filament lengths shrink with velocity vg

and grow only in the detached state by polymerization with velocity vp. The time evolution of
the average number of attached filaments na is described by a constant attachment rate ka and a
stress-dependent detachment rate kd. The gel boundary characterized by (xg, yg) advances with
velocity vg and moves backward due to retrograde flow vr. Furthermore, the membrane resists
motion with a drag force (coefficient η), and resists bending deformations defined by the local
membrane curvature κ(s) due to membrane tension S. All these dynamic processes are captured
by the following set of equations:

∂tld(s, t) = vp(ld, z) − v̄g(ld) + kd
na

nd
(la − ld), (6a)

∂tla(s, t) = −v̄g(la) + ka
nd

na
(ld − la), (6b)

∂tna(s, t) = −kd(la, z) na(s, t) + ka nd(s, t), (6c)

∂t xg(s, t) = −y′

g(s)[(vg(la) na(s, t) + vg(ld) nd(s, t))/nl(s) − vr], (6d)

∂t yg(s, t) = +x ′

g(s)[(vg(la) na(s, t) + vg(ld) nd(s, t))/nl(s) − vr], (6e)
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∂t x(s, t) =
−y′

g(s)

x ′(s)x ′
g(s) + y′(s)y′

g(s)

×
[
na(t) fa(la, x, y, xg, yg) + nd(t) fd(ld, x, y, xg, yg) + Sκ(s)

]
/η, (6 f )

∂t y(s, t) =
x ′

g(s)

x ′(s)x ′
g(s) + y′(s)y′

g(s)

×
[
na(t) fa(la, x, y, xg, yg) + nd(t) fd(ld, x, y, xg, yg) + Sκ(s)

]
/η. (6g)

Here primed quantities indicate derivative with respect to contour length s and the pre-
factors in equations (6d)–(6g) are geometrical factors explained in the supplementary data
(available from stacks.iop.org/NJP/14/115002/mmedia). We assume that capping of existing
filaments and nucleation of new filaments balance, and the total number of attached and
detached filaments nl(s) at the interval (s, s + ds) is conserved. Consequently, the average
number of detached filaments is given by nd(s, t) = nl(s) − na(s, t). In addition, v̄g =

vg max[1, l/
√

(x − xg)2 + (y − yg)2] defines the local velocity of gelation and points in the
direction normal to the gel boundary.

Membrane tension imposes an opposing force on growing actin filaments at the cell’s
leading edge. Tension gradients in the membrane at any point equilibrate within milliseconds in
a fluid membrane such as lipid membranes. Hence, on the scale of seconds and minutes relevant
to cell motility, tension is constant along the cell boundary but can change with time [27, 28].
We hypothesize that membrane tension changes linearly with the cell’s projected area:

S(t) =

{
S0 + S1 (A(t) − A0), A > A0 − S0/S1,

0 otherwise,
(7)

in which S0 and S1 are constants and A0 is the cell’s preferred area and deviations from this
area produce an effective extra membrane tension. This implies a spatial long-range coupling
of distant points on the membrane and may lead to different morphodynamic patterns on the
membrane. We choose A0 = 60 µm2, which gives a cell radius of the order of 4.4 µm. This is
the typical size of a D. discoideum cell. In addition, κ(s) is the signed local membrane curvature
defined as

κ(s) = (−x ′′ y′ + y′′ x ′)/(x ′2 + y′2)3/2, (8)

where ′ and ′′ are the first and the second derivatives with respect to s.
In most motile cells, the actin network is simultaneously transported away from the leading

edge in a process known as retrograde flow [34]. The flow is driven by the net force exerted by
the SR on the leading edge membrane and contractile forces of myosin motors (µ). Friction of
the flowing actin gel against the intracellular interface of cell adhesion complexes (ξ ) and gel
viscosity ηg damp retrograde flow. A semi-analytical solution of the corresponding gel equations
in the radial direction provides the expression for retrograde flow vr as [24]

vr = a0
ret + b0

ret[na(t) fa + nd(t) fd], (9)
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with a0
ret and b0

ret written as

a0
ret =

µL

4ηg

1

2 + 0.12 ξ L2

4ηgh0

, (10a)

b0
ret =

(
1 + 0.92

ξ L2

4h0ηg

)1/2
(

1 + 0.03
µL

4ηgvmax
g

)/
Lξ. (10b)

Here, L is the gel depth and h0 is the lamellipodium height. The term a0
ret is the contribution of

gel contraction to retrograde flow. It increases with motor activity. Friction between the actin
gel and the adhesion complexes or stress fibers and gel viscosity slow it down. Myosin II is
found at lower levels throughout the lamellipodium than in the rear of polarized motile cells.
The high concentrations in the cell rear, equation (10a), cause higher flow at the cell near, which
is consistent with experiments.

We use this expression of retrograde flow calculated in a one-dimensional geometry as
an approximation for the radial flow in our model cell in order to simplify the model. Exact
calculation of retrograde flow would, of course, require the simulation of the two-dimensional
gel equations [29, 31].

3. Results

3.1. Lateral traveling waves

We integrate numerically the set of differential equations (6) and combine time behavior with
a stability analysis. The cell has a preferred radius R close to but larger than

√
A0/π . The cell

shape is a circle initially. The distribution of actin filaments (n0
l ) and saturation polymerization

speed (vmax
p ) over the cell boundary is assumed to be uniform. Linear stability analysis illustrates

that within certain ranges of polymerization, attachment, detachment and cross-linking, the
starting fixed point is unstable. We choose that unstable state as the initial condition for the
simulation. The cell contour reaches its asymptotic behavior after some transient (see, e.g.,
figure 3). The parameters µ and ξ are among important parameters governing the dynamic
modes of the model described by equation (6) as can be seen in figure 2 (see [15, 16, 24] for
bifurcation diagrams in dependence on SR parameters). The parameter µ corresponds to myosin
activity and the friction coefficient ξ is proportional to the cell–substrate adhesion site density.

In the regime with only unstable fixed points and a stable limit cycle, the membrane
position oscillates, spatially desynchronizes and the cell exhibits lateral wave patterns
propagating on the circumference. Since distribution of actin filaments is homogeneous on the
cell edge, there is no net cell locomotion. The cell is spread on the substrate, has a roughly
circular shape and the membrane periodically undergoes global shape changes.

Examples of the membrane normal velocity map and curvature map are shown in
figures 3(a) and (b). The wave pattern is also visible in the other dynamic variables, such as
polymerization velocity vp, radius of cell and gel boundaries, net normal velocity of the gel
boundary, average length of attached and detached filaments (la, ld) and total pulling/pushing
forces of bound/unbound filaments (na fa, nd fd) (see figures 3(c)–(j)). The cell and gel
boundaries are measured with respect to the fixed origin at (0, 0) (the laboratory frame of
reference). Interestingly, the wave propagation is also observed in the net velocity of the gel
boundary vg − vr as well as in the radius of the gel boundary (figures 3(c) and (j)). In this
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Figure 2. (a) Bifurcation diagram of the system described by equations (6) in
the parametric plane µ–ξ . Displayed are the number of stable steady states and
the total number of steady states (in parentheses). (b) Fixed points and linear
stability for µ = 0.2 nN µm−2. Black (red) lines correspond to stable (unstable)
states, respectively. The points mark saddle–node bifurcations (black) and Hopf
bifurcations (blue). z is defined in figure 1. ‘×’ in both figures denotes the
parameter values for which the simulations in figure 3 were performed. (c) Fixed
points and linear stability for ξ = 4.8 nN s µm−3. For the other parameters of the
model, see table 1.

example, lateral speeds of membrane waves are of the order of 82 µm min−1 and the amplitude
of the wave is about 100 nm. In order to understand the mechanism of wave propagation in
figure 3, the time evolution of propulsive and retractive forces and velocities at a single point on
the membrane (s = 0) are presented in figures 4(a) and (b).

The leading edge membrane velocity and gel boundary velocity are in antiphase during
the oscillations shown in figure 4. When the membrane is pushed forward, the opposite force
acts on the gel boundary, drives retrograde flow and tips the balance between flow and cross-
linking to net inward. When the membrane is pulled inward, the opposite force slows down
retrograde flow and the gel boundary moves outward. Oscillations and the alternating forces
arise from an interplay of free filament length dynamics and attachment and detachment of
filaments. The free filament length shortens during membrane retraction, since the gel boundary
advances and the membrane retracts. Filaments become stiffer due to this shortening, which
increases the force exerted by polymerizing filaments on the leading edge membrane. Attached
filaments can stand that force for a while, but when it reaches a critical strength, they are
ripped off the membrane. With little left holding it back, the membrane jerks forward and the
phase of membrane protrusion starts. The total force on the membrane is pushing, now. The
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Table 1. Table of parameters.

Parameter Symbol Value Remark

Actin monomer radius δ 2.7 nm [35]
Persistence length of the actin filament lp 15 µm [36]
Attachment rate ka 0.5 s−1 Assumed
Detachment constant k0

d 1 s−1 0.5 s−1 in [38]
Saturation value of cross-linking velocity vmax

g 30 nm s−1 Assumed
Saturation length of cross-linking velocity l̄ 100 nm Assumed
Saturation value of polymerization velocity vmax

p 140 nm s−1 [30, 42]
Total filament density n0

l 0.2 nm−1 [32, 33]
Spring constant of the linker kl 0.7 pN nm−1 [38, 39]
Effective drag coefficient η 4 pN s µm−2 [40, 41]
Membrane tension S0 10 pN Assumed
Membrane tension coefficient S1 10−2 pN nm−2 Assumed
Active contractile stress in the actin gel µ 8.33 pN µm−2 [25]
Friction coefficient modeling adhesion ξ 0.2–30 nN s µm−3 [44, 45]
Height of the lamellipodium at the leading edge h0 0.1 µm [42, 46, 47]
Length of the gel part of the lamellipodium L 10 µm [47, 48]
Viscosity of the actin gel ηg 270 nN s µm−2 [44]

filament lengths grow and forces decrease, since longer filaments are less stiff. Therefore also
the detachment rate decreases and filaments re-attach. That increases the pulling forces, which
after some time cause the transition back to the retraction phase. Not all of the inward forces
acting on the leading edge membrane are exerted by attached filaments. Membrane tension
contributes a substantial part. However, the switches in the balance between pushing and pulling
forces arise from the interaction between filament attachment and length dynamics.

Our model provides a unifying oscillation mechanism across different systems. The
mechanism has been most clearly shown experimentally with oil drops by Trichet et al [50].
Trichet et al describe filament detachment and re-attachment as the processes in the core of
the oscillation mechanism as in our model. A decrease of filament attachment by vasodilator-
stimulated phosphoprotein (VASP) can lead to an onset of oscillatory motion both in
experiments and in the model [50]. The amount of pushing and pulling forces acting on
the oil drop is indicated by its degree of deformation from the spherical force free shape
toward a kiwi shape [50]. The total force is proportional to the velocity. That allows us to
directly read the phase relation between forces and velocity from movies of oil shape and
motion such as supplementary movie 2 of [50]. Oil drops show increasing deformation in
the slow velocity phase [50], indicating the rise of both nd fd and na fa. The release of these
forces indicated by relaxation to a spherical shape coincides with an increase in velocity.
Later, onset of deformation coincides with a decrease in velocity. This phase relation between
forces and velocity agrees with our model results. The results of modeling the velocity time
course of drop motion are presented in [17]. We show the phase relation between forces
and velocities for drops in figure 5. As in the experiments, both nd fd and na fa increase
during the slow velocity phase, a fast increase of the velocity coincides with a drop in
the amount of forces and filament detachment. The high-velocity phase is terminated by
re-attachment of filaments and an increase in both nd fd and na fa. The same phase relation
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Figure 3. Color maps of the normal membrane velocity (a), curvature (b),
gel boundary (c), cell boundary (d), averaged length of attached and detached
filaments (e, f), total pulling and pushing forces per unit length (g, h),
polymerization velocity (i) and net velocity of the gel boundary (j) along the
contour over time of a cell exhibiting lateral membrane waves. Note the clear
bands of protrusions (positive velocity or curvature) and retractions (negative
velocity or curvature). The time between successive protrusions or retractions
is T = 12.64 ± 0.48 s and the wavelength λ = 21.78 ± 7.093 µm is of the order
of the cell’s total contour length. Here vmax

g = 30 nm s−1, µ = 0.2 nN µm−2, ξ =

2 nN s µm−3 and all the other parameters are listed in table 1. The dimensionless
position along the membrane is defined as s/ l (l is the cell circumference), and
all the color maps are plotted over two contour lengths to avoid loss of details.

applies to the oscillation mechanism of the cell simulations reported here. Merely, all velocity
values are shifted toward negative velocities due to gel contraction and retrograde flow, and the
values of na fa are smaller than nd fd due to membrane tension.

An example of wave propagation with faster protrusion–retraction events as well as
larger wave amplitude is shown in figure 6. In this example, we determined the wave period
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Figure 4. (a) The protrusion events (positive velocity) of the cell boundary at
s = 0 are caused by a strong propulsive force of unbound actin filaments;
however, membrane retractions (negative velocity) are due to (together)
dominant pulling force of bound filaments and resisting membrane tension. (b)
The membrane’s retraction and protrusion velocities are almost of the same order
of magnitude as the gel edge velocity, although out of phase: as the membrane
retracts (v < 0), the gel boundary advances forward (vg − vr > 0) and vice versa.
The transition from retractive to a protrusive state is the consequence of a
significant increase in propulsive force (nd fd) and is associated with a sudden
drop in polymerization velocity vp. All the parameters are the same as in figure 3.

T = 21.79 ± 4.09 at a given point i on the cell membrane as the maximum of the Fourier
spectrum and subsequent averaging over all points. Similarly, we determined the spatial
wavelength as time average λ = 10.42 ± 6.62 µm. In contrast to previous patterns, the
wavelength is here much shorter than the cell circumference (about 1/3).

We see in figure 6 more clearly than before that protrusions and retraction events are
organized in lateral waves along the cell membrane. Notably, the bands of positive (protrusion)
or negative velocity (retraction) make an angle with respect to the temporal axis. This indicates
that protrusion or retraction are not happening simultaneously, but rather local protrusion or
retraction activity propagates with a definite speed in either direction across the cell boundary.
Lateral waves propagating in opposite directions collide and annihilate each other. Interestingly,
membrane waves exist even in the absence of molecular motor contractile forces (µ = 0), as can
be seen in figure 2.
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Figure 5. (a) Simulation of the oscillatory motion of oil drops. The pushing force
nd fd rises slowly in the slow velocity phase. The pulling force na fa balances it
up to the point when the attached filaments cannot stand it anymore. They detach
avalanche-like and the oil drop jerks forward. The same phase relation applies to
oscillations of the cell membrane velocity (b). See the text for details.

We also looked at the dependence of wave period on myosin activity µ and adhesion
strength ξ . Although the dependence of wavelength on ξ as well as µ was not significant (data
not shown), reducing myosin contractile stress µ within the oscillatory regime increases the
wave period significantly (figures 7(a) and (b)).

The shape of protrusion or retraction events is sensitive to the attachment/detachment
rates of the filaments to the membrane. Increasing ka generates more regular wave patterns
on the membrane and increases the wavelength as well (see figure 8). The retraction velocity
of the membrane is faster at high values of ka due to the higher number of attached filaments.
On the other hand, fast membrane retraction buckles and shortens the unbound actin filaments
generating a strong propulsive force which quickly dominates the resisting membrane tension
and force of attached filaments and ultimately the membrane expands again (see figure 8(b)).
The type and amplitude of wave pattern depend also on the cell size and the saturation length
of the cross-linking velocity. In biological terms, that saturation length can be increased by
decreasing the cross-linker binding rate [24]. Increasing the cell size weakens global coupling
since relative area changes by protrusions are smaller. Simulations in figure 9 were carried
out with a cell with a ten times larger preferred area A0 = 600 µm2 (the typical size of a fish
keratocyte), l̄ increased to 400 nm and all the other parameters are the same as in figure 6. The
resulting wave pattern is completely different and the wave amplitude is larger (∼1 µm).

Because membrane tension is constant along the cell boundary, it effectively couples
protrusion and retraction events that take place in spatially distinct regions of the cell. Thus,
membrane tension provides for a global coupling in membrane dynamics. Figure 10 shows a
pattern typical of systems with global coupling [49]. It exhibits two different regions oscillating
in synchrony (phase clusters) but with a phase difference between the regions. Due to an analogy
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Figure 6. (a) The membrane’s normal velocity and wave amplitude grow as
the filament linear density n0

l increases to 0.5 nm−1 and the surrounding fluid
viscosity η decreases to 0.4 pN s µm−2. The other parameters are the same
as in table 1 except that ka = 0.2 s−1, kd = 0.1 s−1, a0

ret = 40 nm s−1 and b0
ret =

80 nm pN−1 s−1 and vmax
g = 50 nm s−1. The cell contour (black line) and gel

boundary (red line) motion are also illustrated by the supplementary movie 1
(available from stacks.iop.org/NJP/14/115002/mmedia).

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.48  0.5  0.52  0.54  0.56  0.58  0.6

w
av

e 
pe

rio
d 

(s
ec

)

µ (nN/µm2)

(a)

 10

 12

 14

 16

 18

 20

 1.4  1.6  1.8  2  2.2  2.4  2.6

w
av

e 
pe

rio
d 

(s
ec

)

 (nNs/µm3)

(b)

Figure 7. (a) Wave period T is plotted against the myosin activity parameter µ

as the cell–substrate adhesion strength ξ is kept constant at 4.8 nN s µm−3 (lower
red line in figure 2(c)). A small change in myosin activity has a significant effect
on the wave period. (b) The wave period shows a biphasic behavior when the
cell–substrate adhesion strength ξ is increased and the myosin activity parameter
µ is kept constant at 0.2 nN µm−2 (lower red line in figure 2(b)).
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Figure 8. (a) Wave pattern is sensitive to the attachment rate of filaments ka.
Increasing ka leads to a more regular wave pattern and increases the wavelength.
(b) Time evolution of membrane velocity and forces acting on the membrane at
the point s = 0. Here the wave period is T = 19.13 ± 2.09 s and the wavelength
is λ = 20.99 ± 7.6 µm. All the parameters are the same as in figure 6 except for
ka, which has increased to 0.5 s−1.

to phase clusters in systems of discrete coupled oscillators, these patterns are called cluster
patterns [49].

Experiments on fibroblast and keratocyte cells show that cells spreading on a highly
adhesive substrate exhibit traveling waves around the edge [26, 31], but a lack of cell–substrate
adhesion can lead to a ‘frustrated’ instability in which wave propagation is blocked along
the membrane but the cell edge oscillates [26]. Within our model parameters, in the limit of
weak cell–substrate adhesion strength (ξ → 0), the retrograde flow coefficient b0

ret increases
significantly although a0

ret approaches the constant value µL/8η (see equation (10)). To
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Figure 9. A cell with larger preferred area A0 = 600 µm2 and larger l̄ =

400 nm (saturation length of cross-linking velocity) has a completely different
wave pattern and a larger wave amplitude (∼1 µm). For other parameters
see figure 6. The cell contour (black line) and gel boundary (red line)
motion are also illustrated by the supplementary movie 2 (available from
stacks.iop.org/NJP/14/115002/mmedia).

Figure 10. The circumference of a cell with a larger preferred area A0 = 600 µm2

is long enough for establishing another pattern type. It consists of two large
synchronized regions oscillating with a constant phase difference. The pattern is
typical of systems with global coupling provided here by the membrane tension.
For the other parameter values see figure 3.

determine the effect of adhesion strength, we fixed the parameters as in figure 6, and selected b0
ret

to be a large value such as 800 nm pN−1 s−1, which corresponds to weak adhesion. In addition,
we also decreased S1 to the value S1 = 10−5 pN nm−2, which allows larger variations in the cell’s
area. We observed that, in agreement with experiment, the formation of protrusion and retraction
events is stopped and all the points along the membrane show synchronized oscillations (see
figure 11).

4. Discussion

The protrusions of cells spreading and resting or motile with well-developed lamellipodia
consist of the posterior lamellum with highly cross-linked and bundled actin filaments and
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Figure 11. The adhesiveness of the substrate has an impact on the membrane
instability. When there is a lack of cell–substrate adhesion (small ξ or large
b0

ret), traveling waves along the cell boundary disappear, but the cell radius and
area show regular oscillations. Parameters are the same as in figure 6 except for
b0

ret = 800 nm pN−1 s−1 and S1 = 10−5 pN nm−2.

the anterior lamellipodium with a network of individual filaments polymerizing against the
leading edge membrane. The circumference of the protrusions exhibits a variety of wave
patterns. Alternating retractions and protrusions comprise in some cases the whole depth of the
lamellipodium (see [1, 3] and possibly also [7]) and have in other cases an amplitude smaller
than this depth [6–8]. The large-amplitude oscillations may involve cyclic (partial) loss of the
lamellipodium and regeneration by nucleation of filaments and are therefore not covered by
this study. They will be discussed in a future publication [52]. Our simulations here apply to
depth oscillations of existing lamellipodia. We have previously shown [16] that the oscillation
mechanism described above and the excitability linked to it describe the experimental results
reported by Machacek et al quantitatively [8], including the bifurcations between different
wave regimes. There is also qualitative agreement between simulations and waves reported by
Döbereiner et al [6] and Enculescu and Falcke [18]. Here, we implemented the model into
a two-dimensional cell geometry, coupled it to actin gel dynamics with retrograde flow and
added dynamic membrane tension as new features. We find that wave patterns also exist under
these conditions. They exist for a wide range of gel parameter values (figure 2). The bifurcation
diagram also suggests an explanation for the observation that in some cell types waves disappear
upon inhibition of myosin and in others they are not affected. If myosin contraction is large
and waves are observed (large ξ range in figure 2(a)), inhibition of myosin will terminate
waves. However, if myosin contraction is small and waves are observed (intermediate ξ range
in figure 2(a)), they exist for µ = 0 also.
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There have been alternative explanations for cell contour wave patterns, e.g. by
autocatalytic nucleation [2] or polymerization waves traveling through the bulk of the cell [51].
Membrane waves and velocity oscillations have been observed in many other cells and
systems to which these two mechanisms were not applied. The similarity in molecular
constituents across these different systems and cell types (at the least in function) strongly
suggests that it should be possible to define a unifying concept. The mathematical model
we suggest is our proposition for such a unifying concept, since it explains a large variety
of experimental observations: the hopping motion of Listeria bacteria [20], the oscillatory
motion of oil drops (figure 5 and [15]), the oscillatory motion of protein-coated beads [18],
waves in the cell contour [16, 18] and the force–velocity relation of fish keratocytes [25]
in a quantitative way. The crucial ingredients are the attachment/detachment dynamics of
filaments and the dynamics of the free filament length in combination with the semiflexibility of
F-actin. Attachment/detachment explains why we can observe resistance from the filaments
to substantial pulling loads in some reconstituted systems such as beads and oil drops and at
the same time actin polymerization-driven propulsion and velocity oscillations by the interplay
of forces and attachment/detachment of filaments to/from the pushed surface [15, 18]. These
processes are also the core of the oscillation mechanism reported by Dickinson and Purich [53].
A simple change in the binding parameters explains the completely different force balance at
the leading edge of fish keratocytes [25]. The inclusion of filaments bound to the propelled
surface explains why often the net force of propulsion is much smaller than the pushing force
to be expected from the observed number of filaments: some are pushing, some are holding
back. The filament free length dynamics arise from the simple fact that it takes some time for
newly polymerized filaments to become cross-linked into a gel. The sensitive dependence of
mechanical properties of filaments on their free length [19, 21] is a type of feedback to forces
and detachment rates able to produce robustly all the nonlinear dynamic regimes observed
in actin-based propulsion and morphodynamics [15]. Its relevance is strongly confirmed by
the force velocity measurements and the elastic properties of the SR [25], as well as recent
direct measurements of the free length close to the leading edge of lamellipodia by electron
tomography [54–57].

In addition, the model explains qualitative experimental observations, which we have not
linked in a quantitative way in explicit studies to specific experiments. In some cells exhibiting
alternations between protrusion and retraction, the retrograde flow oscillates also [1]; in others it
does not [1, 2]. Similarly, the model may exhibit oscillations with constant retrograde flow [15]
or an oscillating one (figure 3). In this study we explain in a qualitative way the different
responses of wave patterns to myosin inhibition.

We think that the very mathematical realization of the model is not its most important
aspect. It is rather the spectrum of biological processes and interactions defining it that has the
explanatory and predictive power discussed here.
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