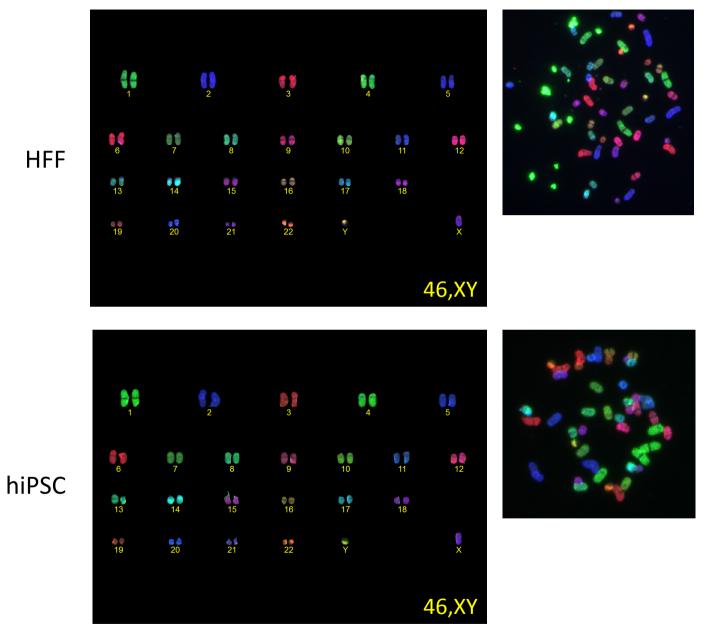
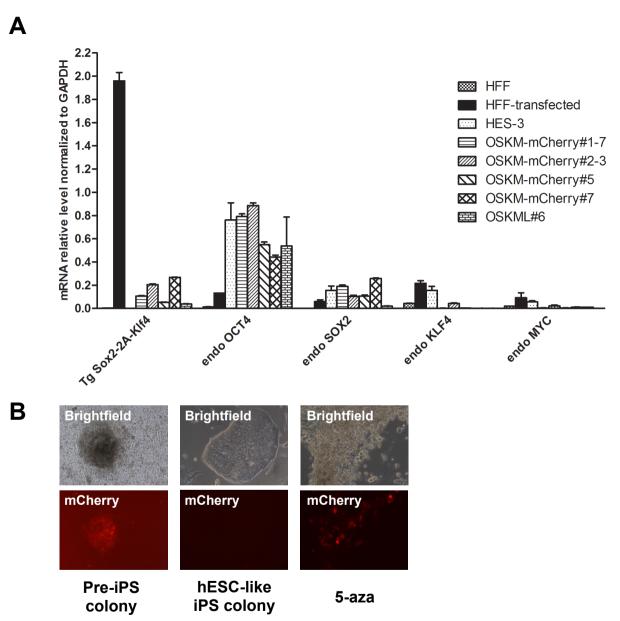
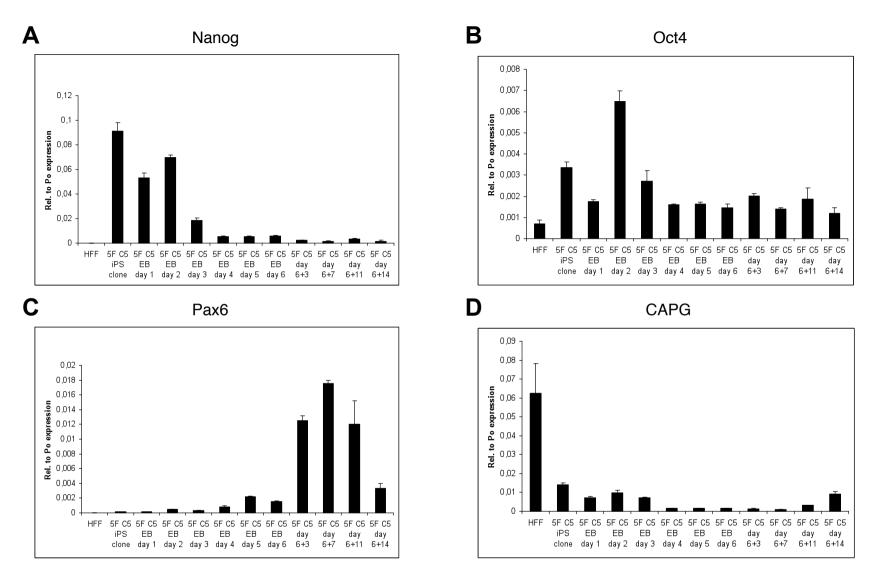


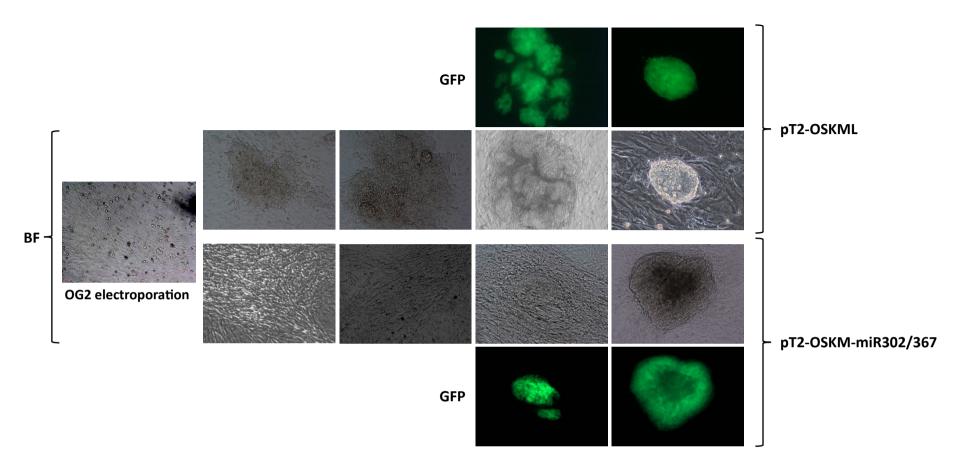
Supplementary Figure 1. Mouse iPS cell colonies generated in the absence of VPA before (left) and after (right) trypsinization and replating the cells. Top, brightfield; bottom, GFP fluorescence.

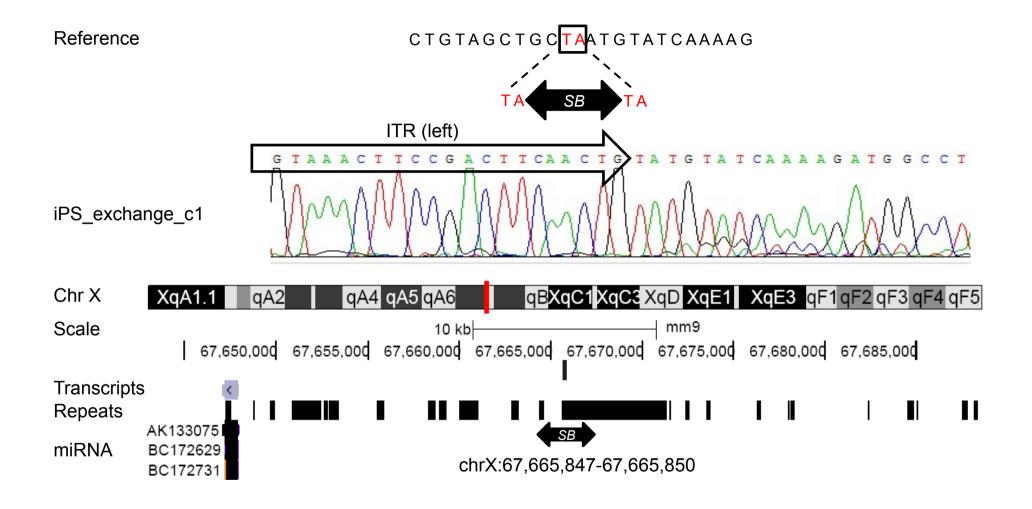

Supplementary Figure 2. Immunocytochemical characterization of human iPS cells generated by *Sleeping Beauty* transposon-mediated reprogramming. A typical iPS clump was examined by confocal microscopy after staining with antibodies against pluriopotency markers: Oct4 and Nanog (DAPI- blue, Oct4- green, Nanog- red) (A), SSEA4 (B) and podocalyxin (C). FACS analyses showed that iPS cells are positive for SSEA4 (D) and podocalyxin (E). For FACS images, median values and gated percentages are presented. IK in parantheses stands for the median isotype control.


Supplementary Figure 3. Immunocytochemical characterization of human iPS cells generated by *Sleeping Beauty transposon-mediated reprogramming.* In comparison with HFF cells, human iPS cells showed decreased expression of CD44 and CD73 markers that are characteristic to more differentiated cellular phenotypes. Median values and gated percentages are presented. IK in parantheses stands for the median isotype control.

ĭ			0 0	, ,	0 10	11 12	10 14 10
VANOG_1	9.8	9.7	10.1	10.0	1.4	7.6	7.5
LEFTY1	7.8	2.8	7.8	9.5	1.9	10.3	10.0
PTPRZ1	8.0	6.5	8.3	7.7	1.8	8.6	8.6
SALL4	10.5	10.2	10.2	9.2	2.9	10.9	11.0
'OU5F1_2	9.2	8.7	9.0	9.0	1.6	10.0	10.0
NODAL	8.4	8.2	8.5	10.4	1.2	9.4	9.1
LRRN1	8.2	7.4	8.5	7.9	2.6	10.3	10.3
HOOK1	6.7	6.8	6.6	6.4	1.9	7.8	7.5
ZSCAN10	10.2	10.3	10.4	10.4	1.9	9.9	9.8
LIN28	12.1	12.1	12.1	11.8	1.8	12.9	12.9
ZFP42	7.8	8.9	8.4	9.4	3.0	10.9	11.1
DPPA4	12.6	12.5	12.4	12.6	1.8	11.3	11.3
L1TD1	11.1	10.7	11.2	11.2	3.1	12.2	12.1
SOX2_1	8.0	6.7	7.7	4.8	2.5	11.1	11.0
DPPA2	7.4	8.2	7.6	8.5	1.2	4.1	4.8
LEFTY2	9.3	8.1	10.7	11.5	3.4	12.3	12.4
SOX21	7.7	6.6	8.8	6.4	2.2	10.6	10.6
NMT3B_3	10.4	10.6	11.1	9.9	4.0	11.4	11.5
CXADR	10.0	10.0	9.7	9.9	1.9	11.1	11.1
CLDN6	6.9	6.7	5.5	6.5	2.0	8.5	8.3
RDM14_1	7.0	3.9	7.0	6.2	1.8	9.4	9.0
SOX2_2	10.5	8.9	10.1	7.3	1.4	11.3	11.2
GDF3	8.8	9.0	9.9	9.7	1.7	7.3	7.2
NMT3B_4	11.3	11.3	11.8	10.6	4.0	12.4	12.4
NMT3B_5	10.3	10.3	11.0	10.3	4.1	10.5	10.4
TERF1_3	6.0	6.2	6.7	5.3	2.9	9.0	8.7
	1-7	2-3	5	6	HFF1	HU	ES6


Supplementary Figure 4. Heatmap of expression profiles of pluripotency-associated genes in four different human iPS cell clones, in the human ES cell line HUES6 and in HFFs.


Supplementary Figure 5. COBRA-FISH analysis of human iPS and parental HFF cells. Slides with metaphase chromosomes were hybridized using multicolor COBRA-FISH. 48-color FISH staining every chromosome arm in a different color combination, digital imaging and analysis was performed as previously described (Szuhai & Tanke, Nature Protocols, 2006).


Supplementary Figure 6. Silencing of transgenes in stable human iPS cells. (A) Transgene-specific PCR primers permit determination of relative expression levels between endogenous (endo) OCT4, SOX2, MYC and KLF4 genes and SB-expressed (Tg Sox2-2A-Klf4) transgenes via qRT-PCR. HFF cells transfected with the SB-based reprogramming vector (HFF-transfected) served as an early time-point sample. (B) The SB integration locus is transcriptionally active in pre-iPS colonies, and express mCherry. In stable human iPS cell lines, mCherry is silenced, but can be reactivated by 5-Aza-2'-Deoxycytidine (5-Aza).

Supplementary Figure 7. mRNA expression analysis of specific differentiation markers. Differentiation assays were carried out by generating EBs for 6 days (EB day 1-6). Six days later EBs were placed onto gelatin-coated plates. The attached cells differentiated spontaneously, the differentiation process being followed for up to 14 additional days, with mRNA harvests at days 3, 7, 11, 14 (day 6+3, day 6+7, day 6+11, day 6+14). For gene expression analysis quantitative real-time PCR was carried out on cDNAs obtained after total RNA extraction and reverse transcription. HFFs were negative for Nanog (A), Oct4 (B) and Pax6 (C) and positive for CAPG (D). After reprogramming, iPS cells (clone 5, obtained with 5 factors, 5F C5) expressed Oct4 and Nanog, whose expression declined during differentiation. Differentiating cells acquired Pax6 expression during the late stages of differentiation, probably in parallel with the appearance of neuron-like cells. CAPG expression characteristic to skin cells showed a high expression level in the initial HFFs, and its expression declined in iPS or differentiated cells.

Supplementary Figure 8. Generation of mouse iPS cells with pT2-OSKML and pT2-OSKM-mir302/367 vectors. 5X10⁵ mouse OG2 cells were electroporated with 500ng of either pT2-OSKML or pT2-OSKM-miR302/367 transposon- and 50ng of SB100X transposase vectors. After electroporation, cells were seeded to one geltrex-coated well of a 6-well plate and grown in mouse iPS medium in the absence of valproic acid. OG2 cells electroporated with the pT2-OSKML vector formed typical pre-iPS colonies described before and, at a later stage, typical mouse ES-like iPS colonies, which started to express GFP fluorescence together with the appearence of clump-like patches in the pre-iPS colonies. In contrast, OG2 cells electroporated with pT2-OSKM-miR302/367 retained a "flat" morphology all the way through the reprogramming process, generating distinctive iPS "nests" and pre-iPS colonies, which at a later stage formed GFP positive clones with a "flat" morphology reminescent of epiblast-derived stem cells (EpiSCs).

Supplementary Figure 9. Chromosomal mapping of *Sleeping Beauty* transposon insertion in the mouse genome. The SB transposon was integrated into a TA site on chromosome X, and there are no known protein coding and miRNA genes in a window of ± 20 kb around the transposon insertion site.

Supplementary Methods

Primers used in this study

	Gene	Primer	Sequence	Amplico	
	333			length	
	Splinkerette	Bfal linker GTAATACGACTCACTATAGGGCTCCGCTTAAGGGAC			
liı		(+)			
	linker	Mbol linker	p-GATCGTCCCTTAAGCGGAG-amino		
		(-)			
	Nested PCR	linker	GTAATACGACTCACTATAGGGC		
		Tbal rev3	CATGACATCATTTCTGGA ATT		
		Tbal	CTTGTGTCATGCACAAAGTAGATGTCC		
		nested	AGGGCTCCGCTTAAGGGAC		
	Sox2-Klf4	forward	GCA ACGGCAGCTACAGCATGATGCAG	800 bp	
	junction	reverse	CAGGAGGTCGTTGAACTCCTCGGTCTC	000 55	
	SB-mCherry	forward	TGACTGTGCCTTTAAACAGCTTGGA	080 bp	
	junction	reverse	GCGTGGTGACCCAG	980 bp	
	Sox2-2A-Klf4	forward	CCCGCTGCGCCCAGTAGAC	202 bp	
	Sox2-2A-Klf4	reverse	AGAAGGACGGAGCAGAGCGT		
	Oct4	forward	GGATGCTGTGAGCCAAGG	175 bp	
7	Oct4	reverse	GAACAAAATGATGAGTGACAGACAG	175 bp	
Mouse iPS cells	Nanog	forward	TTCTTGCTTACAAGGGTCTGC	95 bp	
		reverse	CAGGGCTGCCTTGAAGAG		
	Sox2	forward	GGCAGAGAGAGAGTGTTTGC	76 bp	
		reverse	TCTTCTTCCCAGCCCTA		
	Rex1	forward	TCTTCTCAATAGAGTGAGTGTGC	60 bp	
		reverse	GCTTTCTTGTGTGCAGGA		
	Dnmt3b	forward	TCGACTTGGTGGTGGAA	62 bp	
		reverse	TTTGCGGGCAGGATTGAC		
	Gdf3	forward	GGGTGTTCGTGGGAACCT	78 bp	
		reverse	CCATCTTGGAAAGGTTTCTGTG		
	Fgf4	forward	CCAACAACTACAACGCCTACGA	04 5	
		reverse	TTCTTACTGAGGGCCATGAACA	64 bp	
	Ncam1	forward	CACTTTGTGTTCAGGACCTCAG	92 bp	
		reverse	AAAAGCAATGAGACCAAGGTG		
	Sox1	forward	TTTCTTTCCTGTGGTTCTGC	227 bp	
		reverse	GACTCTGTGGTGGTGAGGTC		
	Pax6	forward	ACAGAGTTCTTCGCAACCTG	236 bp	
		reverse	CATCTGAGCTTCATCCGAGT		
		forward	AGCACAGTCTCTCGCTGCT	96 bp	
	Zic1	reverse	GCTCGTGAAGCCCAGAAA		

	Afp	forward	TGCTGCAAATTACCCATGAT	192 bp	
	Aib	reverse	AAGGTTGGGGTGAGTTCTTG	192 00	
	Gata6	forward	rward GGTCTCTACAGCAAGATGAATGG		
	Galao	reverse	TGGCACAGGACAGTCCAAG	94 bp	
	Foxa2 for Eomes	forward	CACAACGCAGAGCTAAGCAA	65 bp	
		reverse	CGCTTCTCTGCCAAGGTC	05 бр	
		forward	ard AAATAATGTAAGAGTCTGGTGTACCG		
		reverse	CCATGTCCAGAATGGGATGT	68 bp	
		forward	ACCGGCACCAAACTGAGAT	64 bp	
		reverse	se AAGCTCAAGAAAGGAAACATGC		
	Lman	forward	rward CGAAAGGAAGACCTGGAC		
	Cd34	reverse	AGCGGTCCCCTATGTTCTG	107 bp	
		forward	AAGGCTGGGTGAAGACCCTTA	4F7 L	
		reverse	TGAATGGCCGTTTCTGGAAGT	157 bp	
		forward	CAGCCCACCTACTGGCTCTA	70 h =	
		reverse	GAGCCTGGGGTGATGGTA	72 bp	
		forward	GTGTTCCTACCCCCAATGTGT	240 ha	
	Gapdh	reverse	ATTGTCATACCAGGAAATGAGCTT	248 bp	
	OCT4	forward	CGACCATCTGCCGCTTTG	60 hn	
	OCT4	reverse	GCCGCAGCTTACACATGTTCT	60 bp	
	SOX2	forward	ACAGCA AATGACAGCTGCAAA	68 bp	
		reverse	TCGGCATCGCGGTTTTT	66 bb	
	NANOG	forward	CCA AAGGCA AACAACCCACTT	62 bp	
	INAINUG	reverse	CGGGACCTTGTCTTCCTTTTT	62 υρ	
	FGF4	forward	AGTACCCCGGCATGTTCATC	58 bp	
Hu	FGF4	reverse	CGGTTCCCCTTCTTGGTCTT	56 bp	
	KLF4	forward	GGGAGAAGACACTGCGTCA	88 bp	
		reverse	GGAAGCACTGGGGGAAGT	оо Бр	
nan	MYC	forward	CACCAGCAGCGACTCTGA	102 bp	
iPS	IVIII	reverse	GATCCAGACTCTGACCTTTTGC	102 υρ	
Human iPS cells	TERT	forward	CGGAGACCACGTTTCAAA AGA	66 bp	
		reverse	TTTGCAACTTGCTCCAGACAC T	00 00	
	REX1	forward	TCGCTGAGCTGAAACAAATG	170 bp	
		reverse	CCCTTCTTGAAGGTTTACAC	170 Sp	
	DNMT3B	forward	CGGTGTTTCTGTGTGGAGTG	146 bp	
	DIMINITOD	reverse	CGCACGTTCCAGTCCTTC	140 56	
	DPPA2	forward	GGTGCCAGTTAAAGATGACGC	188 bp	
	DEFAL	reverse	GAGGCAAAATGGTCGGCAAG	100 υρ	
	DPPA4	forward	GACCTCCACAGAGAAGTCGAG	145 bp	
	DI FA	reverse	TGCCTTTTCTTAGGGCAGAG		

	SALL4	forward	AGCACATCAACTCGGAGGAG	129 bp	
		reverse	CATTCCCTGGGTGGTTCACTG		
	NCAM	forward	ATGGAAACTCTATTAAAGTGAACCTG	178 bp	
		reverse	TAGACCTCATACTCAGCATTCCAGT		
	PAX6	forward	GTCCATCTTTGCTTGGGAAA	110 bp	
		reverse	TAGCCAGGTTGCGAAGAACT	r	
	SOX1	forward	CTGGCTGTGGCAAGGTCTTC	97 bp	
		reverse	CAGCCCTCAAACTCGCACTT		
	TUBB3	forward	GGCCAAGTTCTGGGAAGTCA	70 bp	
		reverse	CGAGTCGCCCACGTAGTTG		
	ZIC1	forward	CTGGCTGTGGCAAGGTCTTC	07 hp	
	ZIUI	reverse	CAGCCCTCAAACTCGCACTT	97 bp	
	AFP	forward	AGCTTGGTGGTGGATGAAAC	182 bp	
	AFF	reverse	TCTGCAATGACAGCCTCAAG		
	CATAA	forward	CGAGGAGATGCGTCCCATCAAGAC	0001	
	GATA4	reverse	AGTCCTGCTTGGAGCTGGTCTGTG	203 bp	
	CATAC	forward	GAGGGTGAACCCGTGTGCAATG	178 bp	
	GATA6	reverse	TGGAAGTTGGAGTCATGGGAATGG		
	FOYAG	forward	TGGGAGCGGTGAAGATGGAAGG	201 bp	
	FOXA2	reverse	CGTACGACGACATGTTCATGGAGC		
	0004	forward	GCGCTTTGCTGAGT	67 bp	
	CD34 EOMES	reverse	GGGTAGCAGTACCGTTGTTGT		
		forward	AGAGGCTGTGCCTTCCGTTTC	213 bp	
		reverse	AGCACACAGCAGAGGCCTAGCAAG		
		forward	ACTTCCTGAAGGCCATCGACCAG		
	LMO2	reverse	CACCCGCATTGTCATCTCATAGGC	209 bp	
	_	forward	ACCCAGTTCATAGCGGTGAC	40=1	
	T	reverse	CCATTGGGAGTACCCAGGTT	165 bp	
		forward	ATGGACGTGCTGGCCAAGGATG	6	
	HAND1	reverse	TTAACTCCAGCGCCCAGACTTGC	202 bp	
		forward	ATGGAA ATCCCATCACCATCTT		
G/	GAPDH	reverse	CGCCCACTTGATTTTGG	60 bp	
bisulfite sequencing	Nanog_meth	forward	GATTTTGTAGGTGGGATTAATTGTGAATTT	367 bp	
		reverse	ACCAAAAAACCCACACTCATATCAATATA		
	007:	forward	GGATGTTATTAAGATGAAGATAGTTGG	406 bp	
	OCT4_meth	reverse	CCTAAACTCCCCTTCAAAATCTATT		
Jenc	NANOG_meth	forward	TTATATTTTTGATTTAAAAGTTGGAAA		
jing N		reverse	TAACATAAAACAACCAACTCAATCC	306 bp	

Determination of transgene silencing in stable human iPS cells. First, transgene-specific primers against mouse Sox2 and Klf4 were designed to determine the expression of reprogramming transgenes in human stable iPS cells by qRT-PCR as well as HFFs transfected with SB-based reprogramming vectors. Data was normalized to GAPDH expression. Secondly, stable human iPS cells was treated with 5-Aza-2'-Deoxycytidine (5-Aza) for two days followed by checking mCherry expression under fluorescence microscope.