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ABSTRACT

The yeast two-hybrid (Y2H) system is the most
widely applied methodology for systematic
protein–protein interaction (PPI) screening and the
generation of comprehensive interaction networks.
We developed a novel Y2H interaction screening
procedure using DNA microarrays for high-
throughput quantitative PPI detection. Applying a
global pooling and selection scheme to a large col-
lection of human open reading frames, proof-of-
principle Y2H interaction screens were performed
for the human neurodegenerative disease proteins
huntingtin and ataxin-1. Using systematic controls
for unspecific Y2H results and quantitative bench-
marking, we identified and scored a large number of
known and novel partner proteins for both
huntingtin and ataxin-1. Moreover, we show that
this parallelized screening procedure and the
global inspection of Y2H interaction data are
uniquely suited to define specific PPI patterns and
their alteration by disease-causing mutations in
huntingtin and ataxin-1. This approach takes advan-
tage of the specificity and flexibility of DNA micro-
arrays and of the existence of solid-related
statistical methods for the analysis of DNA micro-
array data, and allows a quantitative approach
toward interaction screens in human and in model
organisms.

INTRODUCTION

Networks of protein–protein interactions (PPIs) underlie
all cellular processes and are highly predictive for func-
tional relationships among gene products. Consequently,
one of the principal goals in modern systems biology is the
generation of comprehensive maps for PPIs in human and
model organisms (1). The most important tool for system-
atic mapping of binary PPIs is the well-established yeast
two-hybrid (Y2H) methodology (2). In the classical imple-
mentation of the Y2H system, a split transcription factor,
consisting of activation and DNA-binding domains, is
functionally reconstituted via the physical interaction of
bait and prey proteins (3). The reconstituted hybrid tran-
scription factor drives the expression of reporter genes
that are scored by growth and color phenotypes (typically
HIS3 and lacZ). Traditionally, a specific bait protein is
combined with a cDNA library encoding prey fusion
proteins, and interacting bait–prey combinations are
identified from yeast colonies that are grown on selective
agar plates. Crucial for the generation of entire protein
interactome networks have been matrix-based Y2H
screening procedures using libraries of annotated open
reading frames (ORFs). These have been applied for the
exploration of PPI networks in eukaryotic model organ-
isms, such as Saccharomyces cerevisiae (4,5), Drosophila
melanogaster (6), Caenorhabditis elegans (7), and also for
a first overview of the human interactome (8,9). Moreover,
a number of other screens focused on specific
disease-causing proteins, and signaling pathways were per-
formed to obtain increased depth and coverage of relevant
PPI networks (10–13).
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So far, Y2H data have been reported as reproducible
outcomes from repeated interaction screens and are not
based on quantitative measurements, which contrasts with
gene expression and protein–DNA interaction data that
have been extensively addressed with DNA microarrays
(14). The DNA microarray technology has also been in-
strumental in other applications, such as the high-
throughput screening and quantitative measuring of
drug sensitivity and resistance of yeast deletion strains
(15,16). For these experiments, large populations of
yeast strains comprising thousands of barcoded deletions
are grown in the presence of diverse chemical compounds.
The barcodes from compound-treated pools and un-
treated control pools are amplified by polymerase chain
reaction (PCR) and hybridized to DNA microarrays to
score deletion strains that are under- or overrepresented
after selection. The same strategy is followed with pools of
yeast cells that overexpress large collections of ORFs (17).
A large number of template ORFs of different sizes can be
PCR amplified in one pooled reaction when using a primer
set that anneals to adjacent vector sequences.

Here, we apply a novel Y2H screening scheme that is
based on pooling and competitive growth on selective
plates. For proof-of-principle experiments, we explored
PPI networks for the neurodegenerative disease proteins
huntingtin (HTT) and ataxin-1 (ATXN1), which, as
mutant variants, cause Huntington’s disease (HD) and
spinocerebellar ataxia type 1 (SCA1), respectively
(18,19). Both proteins contain polyglutamine tracts that,
on expansion to a pathological length, cause protein
misfolding and aggregation in neuronal cells. PPI
networks for HTT and ATXN1 have already been
generated previously with high-throughput Y2H screens
(11–13). It was suggested previously that the underlying
function of polyQ tracts in proteins is to mediate PPIs and
that alterations in PPI patterns due to polyQ expansions
are important for disease pathogenesis (20,21).

By screening the bait proteins HTT and ATXN1 against
a large preassembled library of ORFs, we achieved an
unprecedented throughput and parallelization of the
Y2H procedure. Quantitative benchmarking and receiver
operation characteristics (ROC) via repeated sampling
revealed the distribution of known PPIs among the micro-
array scores and determined the empirical cutoffs for high-
confidence PPIs. For HTT, a larger number of PPIs
identified by microarray Y2H screening were further con-
firmed by LUminescence-based Mammalian intERactome
mapping (LUMIER) co-immunoprecipitation assays.
Importantly, the interpretation of Y2H interaction
results as large sets of numerical scores not only allowed
a systematic sampling for true positive results but also the
exclusion of false positives. In addition, gene ontology
(GO) term enrichment analysis predicted the functional
involvement of HTT and ATXN1 in different cellular
compartments and molecular functions, such as the in-
volvement in cellular signaling pathways and protein
binding. The screening approach presented here could be
applied more broadly for the systematic mapping of
human PPIs and to examine the effects of disease-specific
mutations on PPI networks.

MATERIALS AND METHODS

Yeast strains and Y2H matrix

Individual bait strains were constructed by cloning DNA
sequences encoding the huntingtin fragments HD506-Q23,
ATXN1-Q32 and ATXN1-Q79 into Y2H plasmid
pBTM116-D9, derived from pBTM116 (Clontech). Baits
selected to perform the Y2H screens are the N-terminal
fragment of the HD protein with a short polyglutamine
tract (HD506-Q23), wild-type ataxin-1 (ATXN1-Q32),
and mutant ataxin-1 that has an elongated polyglutamine
tract (ATXN1-Q79). The bait constructs were trans-
formed into yeast strain L40ccua (Mata). Identity of the
individual bait clones was confirmed by PCR. The prey
ORFs are in vector pACT4-DM (derived from pACT2,
Clontech) and grown in strain L40cca (MATa). Plasmid
constructs and shuttling procedures are described else-
where (22).

Composition of the ActMat v3 matrix

A large matrix of prey strains (ActMat collection, version
3) containing full-length ORFs was constructed by
recombinational cloning using the Gateway system
(Invitrogen). The ActMat v.3 is an expanded version of a
prey matrix described earlier (8), containing a total of
14 119 full-length ORF clones from four different re-
sources. The full MGC3 collection (23) comprises ca.
80% of all clones, and additional clones are from
Harvard, SMP and RZPD clone repositories, as well as a
collection of ORFs that were assembled in our lab (1–22
collection) (Supplementary Table S1). From the assembled
clones, 13 405 ORFs are Entry clones that were transferred
into pACT4-DM via Gateway LR-reactions. These entry
clones in turn correspond to 11 083 unique Entrez GeneIDs
according to NCBI annotations, and 11 685 unique gene
annotations in the Ensembl v.58 release. Comparing the
annotations in the ActMat v.3 collection with the probesets
on the ST1.0 array that weremapped with the Ensembl v.58
release, we identified 10 929 corresponding Ensembl gene
IDs (10 500 Entrez GeneIDs).

Pooling and selective growth

The ActMat v.3 strains were arrayed in 384-well microtiter
plates and stamped out onto seven minimal medium
Omnitrays. Arrayed strains were grown in 45 ml SD-Leu
(384-well plates) until saturation and stamped out on
Omnitrays containing SD-Leu agar medium using a KBio
Systems K4 robot and grown for 2 days at 30�C. Freshly
grown yeast strains were then washed off with SD-Trp
medium (containing 10% glycerol), pooled and
concentrated to 50 or 100 optical densities at 600 nm
(OD600) per ml to generate pool aliquots. For each
mating reaction, 20 ml of the concentrated stock, roughly
corresponding to one OD600 (1�2� 107 cells), were used.
The amount of 1�2� 107 cells per OD600 covers the com-
plexity of the library (ca. 14 000 ORFs in the pools) several
100-fold.
For the bait screening procedure, freshly grown cul-

tures (5ml) of the bait strain were concentrated in
a small volume to a maximum density of 50ODs/ml.
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The concentrated bait strain was then combined with a
prey pool aliquot in a 1:1 to 2:1 ratio and thoroughly
mixed. Then, 10–20 ml of the mix was spotted on yeast
extract peptone glucose (YPD) agar medium and
incubated for 24 h at 30�C to allow for sufficient mating.
To control mating efficiency, a small amount of cell
material was diluted 1:20 000 in liquid SDIV (SD-His-
Leu-Trp-Ura), and plated on SDII (SD-Leu-Trp),
SD-Leu and SD-Trp plates for mating control. Because
mating efficiency of the prey strains is generally dimin-
ished with every freeze-thaw cycle, prey pools were
stored in 1ml aliquots for single use. For the preselection
of diploids, the mated cells were transferred onto
SDII-agar medium using an incubation loop and
incubated for 24 h at 30�C. Pools enriched for diploid
cells were diluted to an OD600 of 0.05 in 5ml SDIV
medium and grown at 30�C with 250 rpm. For four of
the screens (with HTT and pBTM), inoculation and
culture volumes were 5 times the inoculation
(OD600=0.25) and/or 10 times the volume (50ml).
After reaching an OD600 of 2–3 (ca. 48 h), cells were
diluted back into a fresh culture to OD600=0.05 for a
second round of selection (ca. 24 h). Considering the
total incubation in SDIV medium and an average gener-
ation time of �3.5 h, the selection of the HIS3 reporter
activation was expected to last for ca. 20–24 generations.

Preparation of DNA microarrays

DNA was extracted from 1ml of each final SDIV culture
using the Zymoprep II Yeast Plasmid Miniprep protocol
(Zymo Research). To measure the full representation of all
ORFs in ActMat v.3, an equivalent amount (�2� 107

cells) was extracted from the original pooled cells. To
increase the yield of plasmid DNA elution from the
column, 20 ml bdH2O was incubated in the column for
2min before spinning into a new Eppendorf tube. The
population of cloned ORFs in prey plasmid pACT4 was
selectively amplified with primers pACT4-5-P3 (50-TGC
GGG GTT TTT CAG TAT CTA-30) and pACT4-3-P4
(50-ATG ATG AAG ATA CCC CAC CAA A-30) using
the Expand High Fidelity PCR kit (Roche). The PCR
reaction (50 ml) contained one-tenth of the eluted DNA
(2ml), 300 nM of each primer, 200 mM of dNTP mix and
2.6 U/reaction Expand High Fidelity enzyme. Routine
PCR reaction was 10min initial denaturation, followed
by 35 cycles of amplification (30 s 95�C, 45 s 55�C and
5min 68�C), and 10min final elongation at 68�C. The
amplified DNA was measured with a NanoDrop spectro-
photometer and checked on 1% agarose gels
(Supplementary Figure S1).
PCR products were then purified with the PCR purifi-

cation kit (Invitrogen) according the instructions of the
manufacturer. Elution was done in 50 ml water after
1min incubation. Half of the amplified PCR product
(25ml) was biotin labeled with the BioPrime DNA
labeling system. Labeling was done according to the spe-
cifications of the manufacturer (Invitrogen). The total
volume of 50 ml from the labeling reaction was used for
microarray hybridization.

Affymetrix microarray processing

Hybridization to Affymetrix human gene ST1.0 arrays was
done according to the WT Sense Target Labeling Assay
Manual with minor modifications. Prehybridization was
done for 10 min at 45�C and 60 rpm in the hybridization
oven. The total hybridization mix (150 ml) contains �50 ml
total labeled DNA, 3 nM B2-Oligo, 1� control RNAs
(bioB, bioC, bioD, cre), 1� hybridization buffer and
7.5% dimethyl sulfoxide. The mix (150ml) was denatured
for 2min at 95�C and stored for 2min on ice to fill the array
chamber completely. Washing and staining was done ac-
cording to the Affymetrix Eukaryotic Antibody Staining
protocol (protocol FS450-0007), but without the signal
amplification using the biotinylated antibody. In the
modified protocol, stain 1 contained streptavidin
phycoerythrin (SAPE) solution [1� 2-(N-
morpholino)ethanesulfonic acid (MES) stain buffer,
2mg/ml acetylated bovine serum albumin and 10 mg/ml
streptavidin-phycoerythrin], stain 2 consisted only of 1�
MES stain and 2mg/ml bovine serum albumin and stain
3 was 800 ml array holding buffer. See Supplementary in-
formation for microarray analysis.

LUMIER assay

LUMIER was developed as a comprehensive mammalian
interactome screening strategy (24). Here we apply a
modified version as a validation assay for PPI results.
Protein A (PA)-Renilla luciferase (RL)-tagged fusion
proteins were co-expressed with firefly luciferase (FL)-
V5-tagged interactor proteins in HEK293 cells. After
48 h, protein complexes were co-immunoprecipitated
from 70 ml cell extracts in IgG coated beads and subse-
quently washed with 100 ml phosphate buffered saline;
interactions between bait (PA-RL) and prey proteins
(FL fusions) were monitored by quantification of FL
activities. Quantification of RL activity was used to
confirm that PA-RL-tagged bait protein is successfully
immunoprecipitated from cell extracts. To detect RL-
and FL-based luminescence, Dual-Glo Luciferase Kit
(Promega) was used. Bioluminescence was quantified in
a luminescence plate reader (TECAN Infinite M1000).

For each protein pair, three co-immunoprecipitation ex-
periments (Co-IPs) were performed in parallel (see
Supplementary Figure S4). PA-RL and FL without a
fusion protein were used as controls to examine back-
ground protein binding. After 48 h, protein complexes
were co-immunoprecipitated in IgG-coated beads. By
comparing the firefly luminescence activity measured in
the Co-IP with the two fusion proteins with the controls,
the R-op and R-ob binding ratios were obtained, which
are a measure for the protein interaction specificity. Based
on well-characterized interaction test pairs, an interaction
was defined as positive when the calculated R-op and
R-ob ratios were >1.25 and >2, respectively.

Bioinformatics

Quantitative scoring of the microarray data for known
positive sets (literature) was performed using the
QiSampler application (25). Literature interactions for

1498 Nucleic Acids Research, 2013, Vol. 41, No. 3

 at FA
K

/M
D

C
 on February 5, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1329/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1329/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1329/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1329/-/DC1
http://nar.oxfordjournals.org/


binary classification in the QiSampler procedure were
derived from the v1.2 release of the Human Integrated
Protein–Protein Interaction rEference (HIPPIE)
database (26), available at http://cbdm.mdc-berlin.de/
tools/hippie. Sets of geneIDs, associated with specific
GO-terms were downloaded from the Gene Ontology
browser AmiGo (http://amigo.geneontology.org).
Network graphs are drawn with Cytoscape 2.7.0. Venn
diagrams were constructed with BioVenn online tool
(http://www.cmbi.ru.nl/cdd/biovenn). GO-term enrich-
ment was determined using the human Consensus Path
Database (CPDB; http://cpdb.molgen.mpg.de) (27,28).
For CPDB analysis, P< 0.01 were considered significant
for the enrichment for a pathway or a functional group
defined by GO. The analysis of the microarray data is
described in the Supplementary information.

RESULTS

To apply DNA microarrays as a quantitative readout for
PPI detection, we implemented a global mating and selec-
tion scheme for Y2H interaction screens (Figure 1). An
arrayed collection of �14 000 ORFs in Y2H prey vectors
(ActMat v.3; Supplementary Table S1) was pooled and
small aliquots were used for mating reactions with bait
constructs or the empty vector control (pBTM). As baits
for interaction screening, a wild-type N-terminal HTT
fragment (HD506-Q23) as well as both wild-type and
mutant elongated ATXN1 (ATXN1-Q32 and ATXN1-
Q79) were used. Mated diploid yeast cells were grown
under selective conditions for HIS3 reporter gene activa-
tion, and plasmid DNA was isolated from selected and
non-selected samples. Prey ORFs were amplified with a
primer pair in the prey vector that flanks the recombination
sites, yielding PCR products over the full range of expected
sizes (Supplementary Figure S1). PCR products were then
biotin labeled and hybridized to Affymetrix ST1.0 DNA
microarrays. The hybridization signals were characterized
with a number of parameters that measure the enrichment
of bait–prey combinations (ratios) and different statistical
tests (e.g. P-value and q-value Wilcoxon) to determine the
significance of results and the screen-to-screen variations
(Supplementary Tables S2 and S3). For any represented
geneID, the hybridization signals in the ‘bait’ screens, rep-
resenting the preys selected in combination with a defined
bait, were compared with two sets of ‘control’ samples: the
original unselected pooled prey collection (Pool), which
represents the background signal for a given library, and
the empty bait plasmid (pBTM) control, which reports
reporter activation in the absence of a functional bait.
Hence, whereas the ratiopool quantifies the (initial) Y2H
interaction selection, the ratiopBTM displays the difference
of the specific ‘bait’ selection to the unspecific self-activation
of preyORFs that interact with theDNAbinding domain of
the vector in the absence of a bait protein.

Quantitative benchmarking of Y2H screening results

Screening of the ActMat v.3 library with HD506-Q23 in
nine replicates revealed 9888 ORFs as ‘present’ on the
microarray via detection calls or background tags

(Supplementary Table S4). Moreover, the application of
background tags and median probeset signals displayed a
rather efficient amplification of ca. 90% of all ORFs and
the absence of major biases and PCR artefacts
(Supplementary Figure S2). In a second step, we found
that differential enrichment of 2638 ORFs in the pool
and pBTM comparisons was significant after multiple
testing (q-value Wilcoxon �0.05). Through the applica-
tion of this threshold, screen-to-screen variability is
taken into account to determine bait-specific enrichment
of ORFs compared with pool and pBTM controls
(Supplementary Figure S3). Third, for a primary
network analysis, low arbitrary cutoffs for bait-specific
activation were set at log2-ratio �0.6 (ratio �1.516),
which identified in total 224 preys in the pool and 111
preys in the pBTM comparison (Figure 2A). The restric-
tion to 88 ORFs in the overlap between ratiopool and
ratiopBTM scores excludes potential false positives, espe-
cially those from bait-independent reporter gene activa-
tion (see Materials and Methods section and
Supplementary information for all technical descriptions).
With the presumption that the occurrence of known

positives increases the confidence in the overall screening
results, Y2H interaction results are commonly bench-
marked against a dataset of known literature interactions.
We recently developed QiSampler, a statistical tool that
allows the comparison of numerical scores (such as the
ratios from Y2H microarrays obtained here) with binary
classifiers using a repetitive random and balanced
sampling strategy (25). The primary source of binary clas-
sifiers for the sampling analysis of Y2H interaction micro-
array data were known literature interactions in the
HIPPIE database, a comprehensive collection of human
PPIs with experiment-based quality scores (26). Control
samplings were done with random sets from all other
preys that are not contained in the HIPPIE dataset.
Because PPIs for HTT were previously explored, notably
also with Y2H and co-precipitation assays in
high-throughput experiments (11,12), a rather large collec-
tion of 289 HTT interactions is available in the HIPPIE
database, with 79 PPIs among the subset of filtered ORFs
(2638) that were significant after multiple testing. Using
the known PPIs as binary classifiers for the filtered HTT
dataset in the QiSampler procedure, a high precision and a
relatively low recall were found at increasing ratio cutoffs
(Figure 2C). Moreover, the ROC curves displayed a clear
discrimination for both ratiopool and ratiopBTM with
respect to the diagonal representing randomness (area
under the ROC curve equal 0.611 for ratiopool and 0.612
for ratiopBTM). The distinct quantitative effect with both
ratios reflected, therefore, a specific enrichment of known
HTT interactors with the HD506-Q23 bait protein.
Besides an overall characterization of the screening

outcome, we sought to use the quantitative benchmarking
procedures to estimate the ideal cutoff for high-confidence
PPIs, based on the distribution of known positives across
the entire range of ratiopool and ratiopBTM scores.
Estimations for an ideal cutoff aim at the inclusion of
the most possible true positives, while avoiding the inclu-
sion of false positives (see Supplementary information for
cutoff determination). Confronted with a high precision
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and low recall in sampling of Y2H interaction screening
data, we emphasized on precision as the major determin-
ant for the cutoff selection. A modified version of
QiSampler allowed automated cutoff computation based
on F-measurement (harmonic mean of the precision and
the recall), with adjustment through the alpha (a) coeffi-
cient. After testing various a coefficients, we settled for a
4-fold emphasis of precision over recall, corresponding to
a=0.94114. This resulted in cutoffs at log2-ratio-

pool=1.68 and ratiopBTM=1.578, roughly corresponding
to the log2-ratios at which 90% precision is reached
(Figure 2B). Using this approach, 44 prey ORFs were
found as interaction partners for HD506-Q23 in the
overlap between pool and pBTM comparisons, which is
a significant result (P=1.1� 10�42 for one-sided Fisher’s
exact test). Compared with the low arbitrary cutoff (see

Figure 2A), 14 out of the 15 known positive PPIs were
retained, while the total overlap was narrowed by 50%.
Sampling also further eliminated 90% of potential false-
positive interactions (ratiopool only). Hence, repeat
sampling defined a set of 44 high-confidence PPIs for
HD506-Q23 that result from bait-specific Y2H interaction
selection.

A high-confidence microarray-Y2H interaction network
for HD506-Q23

For network representation, the PPIs with HTT were dis-
played according to ratio and q-value Wilcoxon param-
eters (Figure 3A and B). High ratios and low q-values in
the pool comparison reflected strong and reproducible
reporter gene activation, whereas the pBTM comparison

Figure 1. Pooling and selective growth strategy for microarray Y2H screening. All strains of the Y2H prey collection (ActMat v.3 in Mata) with
�14 000 full length ORF clones are combined into one large pool and aliquots are mated with Mata Y2H strains containing selected bait constructs
(HD506-Q23, ATXN-Q32/-Q79) or empty vector control (pBTM116-D9) in 1:1 ratio. Because only a few prey ORFs are enriched after the Y2H
procedure by HIS3 activation, the resulting pools differ in their composition from the original pool. Selection of preys is either bait-dependent (blue)
or unspecific (red). After plasmid extraction and PCR amplification of the prey inserts, biotin-labeled PCR products are hybridized to Affymetrix
ST1.0 microarrays. Using model-based analysis of tiling arrays (MAT), the hybridization results from the bait screens are compared with the pool
control (pooled preys without selection or bait; Pool) and with the screening control (a selection screen with empty vector; pBTM). The first
comparison shows the enrichment of interacting preys. The second comparison shows enrichment that is specific to the use of the bait.
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measured the specificity of the reporter activation with
respect to the empty vector control. Importantly, about
one-third of the high-confidence HTT interactions were
known HIPPIE positives (13 and HTT self-interaction),
which was also reflected in the high precision for the
QiSampler (see Figure 2C). Known positives among the
highest-scoring HD506-Q23-interacting proteins included
optineurin (OPTN), palmitoyltransfease ZDHHC17
(HIP14) and, importantly, also enzymes with roles in the
ubiquitin cycle, with activation (UBAC1), conjugation
(UBE2K) and ligation (RNF20) (11,12,29).

We applied a modified version of the LUMIER method
as an orthogonal PPI confirmation assay (Supplementary
Figure S4). Baits tagged with protein-A and RL were co-
expressed with FL-tagged prey proteins (30). To test for
interactions, 73 candidate proteins were chosen based on
the low arbitrary cutoff (not including 15 known positives)
and co-expressed as bait and/or preys in HEK293 cells.
Interactions were detected by quantification of FL lumi-
nescence from co-immunoprecipitated protein complexes.
In total, with HD506-Q23 either in bait or prey orienta-
tion, 31 of the tested Y2H interactions (42%) were

Figure 2. Quantitative benchmarking and cutoffs for HD506-Q23 screens. (A) Venn diagram for overlap of log2-ratio scores at arbitrary cutoff
(log2-ratio �0.6), ratiopool (blue), ratiopBTM (red) and literature data (HIPPIE, green). (B) Venn diagram for overlap of log2-ratio scores at auto-
mated cutoffs based on repeat sampling with HIPPIE classifiers, log2-ratiopool (1.68) and ratiopBTM (1.578). Evaluations are based on 2638
high-confidence results (GeneIDs) after multiple testing (q-value Wilcoxon �0.05), including 79 known positives from the HIPPIE database.
(C) Quantitative benchmarking and determination of automated cutoffs using QiSampler. Log2-ratios are the numerical scores and HIPPIE positives
as binary classifiers. Precision, recall, F-measurements and ROC are displayed as repeat sampling curves. F-measurement is adjusted (b=0.25,
a=0.94114). For ROC, area under the ROC curve (ROC AUC) is calculated. Sampling with HIPPIE positive set: log2-ratiopool (closed blue line),
log2-ratiopBTM (closed red line). Control sampling with random set (no discrimination): log2-ratiopool (dashed blue line), log2-ratiopBTM (dashed red
line). Positives correspond to HIPPIE and negatives to non-HIPPIE PPIs. Sampling is done in 1000 repetitions, with a rate of 0.5 (50% of classifiers
sampled per run).
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Figure 3. Analysis of high-confidence Y2H interactions for HD506-Q23. (A) Display of the ‘pool’ comparison, and (B) display of the ‘pBTM’
comparison above sampling cutoffs: log2-ratiopool �1.68 and log2-ratiopBTM �1.578 (34 overlapping scores). Edge line width: ratiopool and ratiopBTM
(linear scale). Edge color: q-value Wilcoxon, with high confidence q-values <0.05 (blue, red). Nodes: baits in diamonds, preys in circles, HIPPIE
(green), LUMIER confirmed novel interactions (purple). (C) Validation of HTT Y2H data by LUMIER (description in Supplementary Figure S5).
LUMIER results are shown from selected positives with HD506-Q23 in the prey and bait orientation. Binding ratios R-op (deep purple) and R-ob
(light purple) measure firefly (FL) signal with bait and prey combinations compared with bait- and prey-only controls. Asterisks (*) show FL-baits
with positive LUMIER in two repeat screen sets. Positive controls are BCL2L1-firefly with BAD-renilla, and S100B-firefly with S100A1. (D) Indirect
evidence for novel Y2H PPIs by HIPPIE comparison. Representation of shared PPIs between HTT and EVL, ERCC6L, HMG20A, PIAS1, ZNF451
according to HIPPIE. Nodes: microarray Y2H (yellow), HIPPIE (white), Edges: microarray Y2H (red lines), HIPPIE (grey, closed for HTT
interactions), Edge line width: HIPPE evidence score (0.5–1).
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confirmed by LUMIER assays (Supplementary Table S5,
Figure 3C). Among the high-confidence interactions, 27
out of the 44 PPIs (61%) were either confirmed with
LUMIER or were HIPPIE positives (Figure 3A and B).
If the cutoffs were further raised (log2-ratios �3), the
overall precision is even higher with 14 out of 18 Y2H
PPIs (78%) confirmed by LUMIER or HIPPIE. Hence,
in general, the significance and enrichment of the micro-
array signals correlate well with confidence for genuine
PPIs.

We further inspected five intriguing novel HTT inter-
actions among the highest ratio scores (all ratios �15) in
more detail: ERCC6L, EVL, HMG20A, PIAS1 and
ZNF451. HMG20A is part of the high-mobility group
proteins, EVL is an Ena/VASP family protein that
links cell signaling to remodeling of the actin cytoskel-
eton (31) and ERCC6L is a member of the SNF2/
RAD54 helicase family with a role in DNA repair (32).
The other two proteins have roles in protein sumoylation;
PIAS1 (Protein inhibitor of STAT) is a Sumo ligase and
ZNF451 a transcriptional co-regulator associated with
PML bodies and Sumo (33). The associations of
ERCC6L, EVL and HMG20A with HTT were confirmed
in LUMIER assays, whereas those with PIAS1 and
ZNF451 were not. We used the HIPPIE database for
further evaluation of these five proteins, looking for
co-complex formation with previously identified HTT
interactors as an indirect evidence for association
(Figure 3D). We found that EVL shares four partners
out of 22 with HTT, including the actin monomer-
binding protein profilin-2 (PFN2), and a spectrin
protein involved in actin crosslinking (SPTAN1), which
is consistent with a functional involvement of HTT in
actin remodeling (34). ZNF451 shares 3 out of its 13
known partners with HTT. These include also a
shared interactor with EVL, the pre-mRNA processing
factor 40 (PRPF40A), which was originally discovered as
an HTT interacting protein (HIP10) (35). In addition,
ZNF451 is linked to PIAS1 (33), which also shares
20% of its known partners with HTT, further
corroborating the association of HTT with the
sumoylation machinery. This is consistent with the
observed regulation of HTT stability by sumoylation
and ubiquitination (36).

For a functional analysis of PPI networks, we relied
on a dual strategy: hypergeometric testing for
overrepresentation of pathways and GO above
determined cutoffs, and deep sampling of selected
gene associations for true enrichment over the entire
range of scores. For a global overview and functional
enrichment analysis, it is preferable to increase the sen-
sitivity using less stringent cutoffs, expanding also to
less significant results (q-value Wilcoxon >0.05).
When doing cutoff sampling and gene overrepre-
sentation analysis for the total HD506-Q23 screening
data (Supplementary Figure S5 and Table S6), the
results are consistent with the multiple roles for HTT
as a hub for PPIs and diverse functions such DNA
binding, signaling and binding to ubiquitin-proteasome
components (11,12,21).

Functional analysis of wild-type and mutant ATXN1 PPI
networks

A major strength of the microarray-based Y2H method is
the comprehensive readout of the total screening results,
which allows the side-by-side comparison of PPI profiles
for mutant and wild-type bait proteins. We compared the
PPI patterns for the bait proteins ATXN1-Q32 and
ATXN1-Q79 containing a non-pathogenic and a patho-
genic polyQ tract, respectively (Figure 4). Inspecting the
PPI data obtained for the two bait proteins revealed that
ATXN1-Q79 interacts with two to three times more prey
proteins than ATXN1-Q32 (Supplementary Table S7).
Applying quantitative benchmarking for all 9941
ATXN1-Q79 scores with 109 known HIPPIE positives,
we found a relatively stronger performance for the
expanded ATXN1-Q79 protein (ROC-values: 0.596 and
0.585), whereas the performance for the short
ATXN1-Q32 form was closer to random (ROC-values:
0.554 and 0.520) (Supplementary Figure S6).
Considering the bias of known positives, automated
cutoffs were generated only from the ATXN1-Q79 PPI
data (log2-ratiopool=1.728, log2-ratiopBTM=1.329;
a=0.99) (Figure 4A), but then were also applied to the
ATXN1-Q32 screen set (Figure 4B). We found that eight
known positive interactions were among the ATXN1-Q79
PPIs, whereas for ATXN1-Q32, only one known prey
protein (ARID5A) was selected. In total, 64 PPIs were
found for the expanded ATXN1-Q79 and 24 for the
short -Q32 form with a significant overlap of 7 inter-
actions (P-value Fisher exact test: 1.5� 10�9)
(Figures 4B and C). Hence, the results for ATXN1-Q32
and -Q79 differ in respect with the overall yield of scores
and the enrichment of known literature positives. A
possible explanation for the increased number of inter-
action partners observed with mutant ATXN1 is
provided by the notion that the expanded glutamine
tract alters the conformation of ATXN1 and may
promote the formation of abnormal PPIs with multiple
cellular proteins (20,37). But it also might enhance the
strength of interaction with partners of the wild-type
form, leading to an increased detection of true biological
positives.
In the functional enrichment analysis for ATXN1-Q32

and ATXN1-Q79, we found overrepresentations of differ-
ent signaling pathways and several interesting targets
(Supplementary Table S6). Indeed, at least 10 out of 81
proteins detected in the ATXN1 screens take part in one
or several signaling pathways, such as Lkb1, IFNy, IGF1,
mTOR and more others (enrichment for Lkb1 pathway:
P=4.6� 104 for –Q79 and P=2.6� 105 for –Q32).
Examples for signaling proteins that were found with
both isoforms include the signal transducing adaptor
molecule 2 (STAM2), the mTOR associated protein
LST8 homolog (MLST8) and the hamartin protein
TSC1 (Figure 4C). We also found association with
14–3–3 proteins (YWHAE, YWHAZ and YWHAQ
above or slightly below the chosen cutoffs), which are
known modulators of ATXN1-mediated neuro-
degeneration (38), confirming previously published
results (see Supplementary Table S7). For both wild-type
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Figure 4. Benchmarking and network display for ATXN1 interaction partners. Results are from ATXN1-Q32 and ATXN1-Q79 Y2H screens. (A)
Quantitative benchmarking and determination of automated cutoffs for the ATXN1-Q79 screen set. Evaluations are based on 9941 comparisons
including 109 and 110 known positives from the HIPPIE database. Log2-ratios represented as numerical scores and HIPPIE positives as binary
classifiers. F-measurements (b=0.1, a=0.99) and precision are displayed as repeat sampling curves: sampling with HIPPIE positives: log2-ratiopool
(closed blue line), log2-ratiopBTM (closed red line); control sampling with random set: log2-ratiopool (dashed blue line), log2-ratiopBTM (dashed red
line). Positives correspond to HIPPIE and negatives to non-HIPPIE PPIs. Sampling is done in 100 repetitions, with a rate of 0.5 (50% of classifiers
sampled per run). (B) Venn diagram for overlap of log2-ratio scores for ATXN1-Q79 and ATXN1-Q32. Cutoff is based on repeat sampling of the
ATXN1-Q79 screen set, log2-ratiopool (1.728) and ratiopBTM (1.349). (C) Network display of the ‘pool’ comparison above sampling cutoffs: edge line
width: ratiopool (linear scale). Edge color: q-value Wilcoxon, with high confidence q-values <0.05 (blue). Node and node border colors for pathway
and GO-term associations: baits (diamonds), preys (circles), HIPPIE (green labels), enriched CPDB pathway components (triangles), Lkb1 pathway
(yellow), growth cone (light blue), protein domain-specific binding (purple), phosphoprotein binding (light purple border), learning (green border).
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and mutant ATXN1 isoforms, we found GO-terms
enriched that are related to neuronal cell growth and
brain development, such as ‘growth cone’, ‘pallium devel-
opment’, and ‘neuron projection’, suggesting that ATXN1
function is critical for these processes. For example, genes
among the high confidence scores associated with ‘growth
cone’ included TSC1, orthodenticle homeobox 2 (OTX2),
brain acid soluble protein 1 (BASP1) and the neuronal
acetylcholine receptor subunit alpha-7 (CHRNA7)
(Figure 4C). Overall, the GO analysis suggests a role for
ATXN-1 in cell signaling and neuronal functions.

Sampling the distribution of gene sets with QiSampler
using GO-annotated genes instead of literature-positive
interactors allows a global comparison of quantitative
enrichments in PPI patterns for both ATXN1 isoforms
(Supplementary Figure S6). When sampling for the
Lkb1 signaling pathway and the GO-terms ‘growth
cone’ and ‘learning’, we found similar ROC performances
for both mutant and wild-type ATXN1 baits. For Lkb1
gene associations, for example, ratiopool ROC AUC values
were in the same range for ATXN1-Q32 and ATXN1-Q79
(0.626 and 0.64). Likewise, for most other GO-terms
investigated (not shown), sampling reflects a similar
distribution of classifiers among the scores. In a further
attempt to quantify the enrichments, we sampled the Y2H
scores with two ‘molecular function’ GO-associations,
‘protein domain specific binding’ and ‘phosphoprotein
binding’ (Supplementary Table S6). Here, ROC perform-
ances show a selective association of ‘phosphoprotein
binding’ with the expanded ATXN1-Q79 form, while for
‘protein domain specific binding’, a similar result for
wild-type and mutant ATXN1 proteins was obtained. In
conclusion, GO term enrichments and individual
samplings revealed that the overall PPI pattern of
ATXN1 is similar for the Q32 and Q79 forms. This indi-
cates that enhancement of wild-type protein binding de-
termines pathogenesis of ATXN1 on polyglutamine
expansion, as opposed to pathogenesis being due to
binding the wrong partners.

DISCUSSION

We describe a novel approach for the detection of high
quality Y2H PPIs using DNA microarrays and quantita-
tive statistics. The concept study presented here takes full
advantage of the established tools for the analysis of DNA
microarray data and could have important implications
on how future research on protein interactomes is being
conducted.

We concentrated our proof-of-principle experiments on
the HTT and ATXN1 proteins, which are both neurotoxic
on polyglutamine repeat expansion (18). The approach
was validated by the generation of a set of high-confidence
PPIs for the HTT protein, which were based on micro-
array data after multiple testing for significance. These
results were benchmarked against sets of known positive
PPIs using a quantitative sampling strategy. F-statistics
based on precision-recall distributions was used to deter-
mine automated cutoffs for high-confidence interactions.
PPIs were further restricted by applying two distinct

background controls (pool and vector), which allows the
simultaneous selection of Y2H positives and the filtering
of unspecific autoactivators. Notably, almost two-thirds
of the final high-confidence PPIs for a HTT bait protein
were known positives or validated by a modified
LUMIER assay. Hence, by using quantitative benchmark-
ing and F-statistics, we established a microarray-based
Y2H screening method for the high-confidence mapping
of PPI networks. However, we also advocate that results
may be interpreted with different procedures, depending
on the overall screening performance, the availability of
sets of known positives and also on the specific aims
intended by individual researchers (see Supplementary
information).
Besides the mapping of individual high-confidence

PPIs, microarray Y2H screening data can be more
broadly interpreted for enrichments of pathways and
functional associations. This may be important when ad-
dressing biological consequences of mutations that alter
structural properties in proteins and thus underlie global
perturbations in PPI networks and potentially influence
the outcome of disease (39). Specifically, we addressed
here potential differences in PPI patterns between
protein isoforms (ATXN1-Q32 and ATXN1-Q79, con-
taining short and expanded polyQ tracts). In this assay,
ATXN1-Q79 exhibits more and stronger Y2H interactions
than ATXN1-Q32. On the other hand, our data analysis
also shows that the overall PPI patterns of wild-type and
mutant ATXN1 are not radically different, suggesting that
ATXN1 pathology results from abnormally strong inter-
actions with its biological partners. Although resulting
from a screening effort in a heterologous system (yeast),
this finding is consistent with previously observed effects
of expanded polyQ tracts in ATXN1 and other polyQ
disease proteins (20,21,37). This example demonstrates
how microarray-based Y2H procedures can be used in
conjunction with extensive data-mining strategies to
predict the biological consequences of altered proteins.
While DNA microarrays were used to address Y2H

results in an earlier study (40), a quantitative procedure,
such as the one presented here with large-scale pooling of
a prey library, unbiased selection by competitive growth
and systematic control measurements, was not attempted
before. This approach has two major advantages over
matrix-based Y2H screenings. First, PPIs are
characterized as scores with different parameters (ratios,
P-values, etc.) over a wide dynamic range, instead of being
simple counts from identifications in replicate screens.
Repetitive sampling strategies and the application of two
background controls (pool and pBTM comparisons) have
the important consequence that potential false-positive
interactions can be addressed and eliminated (see
Supplementary information for discussion of false
positive interactions). Because false positives are some-
times estimated up to 50% of all reported interactions
(41,42), their minimization would constitute a major ad-
vantage for mapping of high-confidence PPIs, reducing
also the need for confirmation with orthogonal assays.
Second, smaller volumes of medium for yeast mating
and selection as well as the efficient readout provided by
DNA microarrays greatly reduce labor and material costs.
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Simplifying the screening procedure increases potential
throughput, and therefore larger numbers of Y2H
screens can be performed in parallel. However, while our
system is superior over the ‘classical’ Y2H method with
respect of quantitative measurements, it has also some
limitations. First, ‘color’-based scoring of interactions
via lacZ activation is not possible for the pool-based
screening scheme. Second, some ORFs may not undergo
proper PCR amplification, which could lead to a fraction
of putative PPIs that are undetectable in microarray-Y2H
assays. Indeed, a bias against longer DNA sequences is
evidenced by the lesser representation of ORFs >2 kb in
sizes on the microarray (Supplementary Figure S2). Third,
prey proteins in the complex pool that occur as different
isoforms or with individual mutations may be indistin-
guishable on the DNA microarray. Hence, for optimal
coverage of potential PPIs, DNA microarray and
matrix-based robotic Y2H procedures should be envi-
sioned as complementary approaches.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Information and Methods, Supplementary
Tables 1–7, Supplementary Figures 1–6 and Supplementary
References [43–50].
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