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Stomatin proteins oligomerize at membranes and have

been implicated in ion channel regulation and membrane

trafficking. To obtain mechanistic insights into their func-

tion, we determined three crystal structures of the con-

served stomatin domain of mouse stomatin that assembles

into a banana-shaped dimer. We show that dimerization is

crucial for the repression of acid-sensing ion channel 3

(ASIC3) activity. A hydrophobic pocket at the inside of

the concave surface is open in the presence of an internal

peptide ligand and closes in the absence of this ligand, and

we demonstrate a function of this pocket in the inhibition

of ASIC3 activity. In one crystal form, stomatin assembles

via two conserved surfaces into a cylindrical oligomer,

and these oligomerization surfaces are also essential for

the inhibition of ASIC3-mediated currents. The assembly

mode of stomatin uncovered in this study might serve

as a model to understand oligomerization processes of

related membrane-remodelling proteins, such as flotillin

and prohibitin.
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Introduction

The 32-kDa peripheral membrane protein stomatin is the

founding member of the stomatin family, which in mammals

includes stomatin-like proteins (STOMLs) 1–3 and the kid-

ney-specific podocin (reviewed in Lapatsina et al, 2012a).

These proteins are characterized by a conserved domain of

B120 residues, the stomatin domain, which is a member of

the SPFH (Stomatin, Prohibitin, Flotillin, HflK/C) domain

family found in many proteins throughout all kingdoms of

life. Membrane targeting of stomatins is mediated by a 20

amino-acid amino (N)-terminal membrane insertion domain

featuring a conserved proline (Kadurin et al, 2009). An

exception is STOML-2, which lacks this hairpin anchor.

The N- and carboxy (C)-terminal regions of stomatins are

cytoplasmic and unique for each family member (Salzer

qet al, 1993; Seidel and Prohaska, 1998; Boute et al, 2000;

Owczarek et al, 2001). Stomatin has been found to be

phosphorylated (Salzer et al, 1993), palmitoylated (Snyers

et al, 1999b) and to associate with lipid rafts (Snyers et al,

1999a) where it forms higher-order oligomers (Snyers et al,

1998). Furthermore, STOML-1 was shown to form hetero-

oligomers with stomatin at endosomal membranes

(Mairhofer et al, 2009). Stomatin can also form hetero-

oligomers with STOML-3 in sensory neurons and this

interaction requires the presence of the N-terminal

membrane anchoring domain (Lapatsina et al, 2012b).

Stomatin is absent in the erythrocyte membrane of patients

suffering from a specific form of haemolytic anaemia

(Stewart et al, 1992). Since the erythrocyte membrane of

affected individuals is leaky to monovalent cations, it was

proposed that stomatin regulates the activity of ion channels

(Gallagher and Forget, 1995; Unfried et al, 1995). Subsequent

studies, however, showed that loss of stomatin is not

directly responsible for the observed membrane leakiness

(Zhu et al, 1999; Fricke et al, 2003). A central function for

the Caenorhabditis elegans stomatin homologue MEC-2 in

touch sensation has been convincingly demonstrated (Huang

et al, 1995). MEC-2 is present in a complex with the acid-

sensing ion channel (ASIC)-related, Naþ selective, MEC-4/

MEC-10 ion channel complex (Goodman et al, 2002; Cueva

et al, 2007), and all three subunits of this complex are

required to transduce mechanical signals in C. elegans

(O’Hagan et al, 2005). When co-expressed with MEC-4/

MEC-10, MEC-2 increases the amplitude of amiloride-

sensitive currents 40-fold, suggesting a positive regulation

(Goodman et al, 2002). Strikingly, mouse models lacking

STOML-3 also show complete loss of mechanosensitivity in

40% of cutaneous mechanoreceptors (Wetzel et al, 2007),

indicating a conserved function of stomatin family members

in mammalian mechanosensation. In contrast, over-

expression of mouse stomatin inhibits the amplitude of

proton-gated currents in cells overexpressing mouse ASIC3

and increases the speed at which ASIC2a channels inactivate

(Price et al, 2004).

No high-resolution structural data are available for the

mammalian stomatin family, but the crystal structure of a

homologue from Pyrococcus horikoshii (ph) has recently been

determined (Yokoyama et al, 2008). The analysis of ph

stomatin has revealed a crucial role for the stomatin

domain in the formation of trimers and possibly higher-

order oligomers. Interestingly, ASICs were also shown to

have a trimeric channel architecture (Jasti et al, 2007;
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Gonzales et al, 2009), suggesting a symmetric interaction

with a putative stomatin trimer. To understand the role of

oligomerization in ion channel regulation, we have used

X-ray crystallography to characterize mammalian stomatin

and performed a structure-based analysis of its modulation of

ASIC family members. Here, we demonstrate that, unlike in

ph stomatin, mammalian stomatin forms a banana-shaped

dimer and higher-order oligomers that are crucial for its

regulation of ion channel function.

Results

Structure of the stomatin dimer

A construct comprising the mouse stomatin domain (amino

acids 86–213, stomatin86–213; Figure 1A) was expressed in

bacteria and purified to homogeneity. Crystals of this con-

struct diffracted up to 2.4 Å. The phase problem was solved

by molecular replacement using the ph stomatin domain as a

search model, and the model was refined to an Rwork/Rfree of

21.7/26.8% (Table I).

Mouse stomatin86–213 has a mixed a/b-fold (Figure 1B;

Supplementary Figure 1A). The N-terminal b-strand 1 is

subdivided into b1a and b1b by a short loop and together

with b2 and b3 forms an anti-parallel, curved b-sheet. Helices

a2 and a4 extend in parallel and occupy the groove of the

sheet, whereas the short a1 and a3 helices are oriented

perpendicularly at both ends of the sheet. N- and C-termini

are located at opposing sides of the molecule. The core of the

mouse stomatin domain is very similar to that of ph stomatin

(root mean square deviation (r.m.s.d.) of 1.5 Å along 107

aligned residues), with only minor deviations in a1, a2 and

b1a (Figure 1B). Ph stomatin harbours an additional unique

b-strand (b0) at the N-terminus (Figure 1B). The correspond-

ing region in stomatin86–213 forms a loop. b0 mediates trimer-

ization of ph stomatin by forming an interstrand contact to

the neighbouring molecule (Supplementary Figure 1B)

(Yokoyama et al, 2008). Also, flotillin2 (pdb 1WIN) and the

SPFH domain of the major vault protein (Tanaka et al, 2009)

share a similar fold to the mouse stomatin domain (r.m.s.d. of

2 Å along 106 amino acids and of 2.6 Å along 109 aligned

residues, respectively, Figure 1B, Supplementary Figure 1C).

The mouse stomatin domain dimerized in the crystal via

the C-terminal four residues of b3 (amino acids 196–199),

which form a symmetric intermolecular b-sheet with the

opposing molecule burying 600 Å2 surface area per molecule

(Figure 2A and B). The interaction between the monomers

features only main chain, no side chain interactions. The

resulting stomatin dimer has a banana-shape, where a2–a4

form the outer and the b-sheet the inner surface of the

banana. The N-termini are located at opposite ends of the

dimerization interface.

To analyse the relevance of the stomatin dimer for assem-

bly in solution, analytical ultracentrifugation (AUC) experi-

ments were carried out (Figure 2C). In these experiments,

stomatin86–213 was observed in a monomer–dimer equili-

brium with a dissociation constant (KD) of 37 mM. Also in

analytical gel filtration experiments, coupled to a right-angle

light scattering device, stomatin86–213 showed a monomer–

dimer equilibrium (Figure 2D). To exclude the possibility that

the C-terminal truncation of the crystallized construct caused

artificial dimer formation, we analysed a C-terminal extended

construct, stomatin86–255, which corresponds in length to the

crystallized trimeric ph stomatin construct. Stomatin86–255

also eluted in a monomer–dimer equilibrium in analytical

gel filtration (Figure 2D), indicating that residues 214–255 of

mouse stomatin do not influence oligomerization.

To test whether the dimer interface in the crystal corre-

sponds to the observed dimer in solution, a mutagenesis

approach was applied. Since the intermolecular b-sheet inter-

face employed only main chain contacts, we initially sought
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Figure 1 Structure of the mouse stomatin domain. (A) Structure-based domain architecture of mammalian stomatin. HP, hydrophobic hairpin;
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Table I Data collection and refinement statistics

Protein Stomatin86–213 Stomatin86–213 Stomatin86–213

LI91,92AA
Crystal form 1 2 3

Data collection
Space group P6522 C2 P6422
Molecules/asymmetric unit 2 8 1

Cell dimension
a, b, c/Å 55.5, 55.5, 343.4 179.5, 91.4, 86.1 84.5, 84.5, 69.9
a, b, g/(deg) 90, 90, 120 90, 111.9, 90 90, 90, 120

Wavelength/Å 0.9184 0.9184 0.9184
Resolution/Åa 50 (2.61)–2.46 50 (2.74)–2.69 73 (1.91)–1.8
Rsym/%a 7.5 (60.6) 10.8 (32.8) 3.8 (48.4)
(I/s � I) 22.67 (4.12) 6.8 (2.7) 38.43 (5.47)
Completeness/%a 99.3 (95.8) 91.3 (76.2) 99.7 (98.9)
Redundancy 10.8 (10.7) 3.4 (2.3) 11.6 (11.8)

Refinement
Resolution/Å 50–2.46 50–2.69 73–1.8
No. reflections 11 753 30 899 13259
Rwork/Rfree/% 21.7/26.8 24.4/29.0 19.4/24.5
No. atoms

Protein 1811 6765 851
Ligand/ion 14 — 2
Water 77 19 96

B-factors/Å2

Protein 51 53 37
Ligand/ion 57 — 35
Water 49 34 22

R.m.s. deviations
Bond lengths/Å 0.006 0.005 0.025
Bond angles/(deg) 0.954 0.918 1.319

a

Numbers in brackets correspond to the highest resolution shell.
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Figure 2 The stomatin dimer. (A) Cartoon representation of the stomatin dimer, with the N- and C-termini indicated. Residues mutated in this
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to disrupt the interface by electrostatic repulsion, using the

V197D mutation, where the two negatively charged aspartate

side chains from different monomers would directly oppose

each other. However, this variant was insoluble. To disrupt b3

locally, we then introduced the V197P mutation into the

stomatin86–213 construct. In circular dichroism (CD) measure-

ments, this mutant showed a very similar spectrum as

stomatin86–213, indicating that the mutation did not grossly

disturb the fold of the stomatin domain (Figure 2E). In

analytical ultracentrifugation, however, the V197P mutation

completely prevented dimerization (Figure 2C). Also in

analytical gel filtration experiments, stomatin86–213 V197P

was mostly monomeric (Figure 2D).

To analyse whether the V197P mutation can disrupt self-

association of full-length stomatin (from here on described as

stomatin) in living cells, we used Bimolecular Fluorescence

Complementation (BiFC) (Hu et al, 2002). In this assay,

protein–protein interactions are detected by monitoring the

development of a fluorescent complex comprising the N- and

C-terminal fragments of YFP (each fused to the C-terminal

end of stomatin or a stomatin variant; Supplementary

Figure 2). For stomatin, we previously showed a robust

fluorescence signal development at the plasma membrane

and in intracellular structures (Lapatsina et al, 2012b). BiFC

stomatin constructs carrying the V197P mutation showed a

substantially reduced fluorescence signal consistent with the

idea that the protein does not efficiently oligomerize in cells

(Supplementary Figure 2).

To determine the function of the stomatin dimer in the

modulation of ASICs, electrophysiological recordings were

performed. For this purpose, Chinese hamster ovary (CHO)

cells were used because they are devoid of endogenous

proton-gated ASIC-like currents (Garcia-Anoveros et al,

2001; Cadiou et al, 2007; Smith et al, 2007) and are easier

to handle than other cells such as primary mouse fibroblasts

(Supplementary Figure 3). In CHO cells overexpressing

ASIC3, application of a low pH solution immediately evokes

an inward current, which rapidly inactivates and is followed

by a smaller, sustained current throughout the period of low

pH stimulation (Figure 3A). In agreement with previous data

(Price et al, 2004), co-expression of stomatin with ASIC3 was

associated with a large inhibition of ASIC3 peak current

amplitude. Accordingly, we observed that at both pH 6 and

pH 4, CHO cells co-expressing ASIC3 and stomatin had

significantly smaller currents compared with ASIC3 alone

(Figure 3A). In contrast, stomatin V197P showed no inhibi-

tory action on ASIC3 proton-gated currents. This effect was

not caused by different expression levels, since stomatin

and stomatin V197P were expressed at similar levels

(Supplementary Figure 4A).

Using mCherry-tagged stomatin and eGFP-tagged ASIC3

constructs, stomatin appeared to co-localize with ASIC3 in

intracellular structures and, to a lesser extent, at the plasma

membrane (Supplementary Figure 4B) (Price et al, 2004). The

V197P mutant showed a similar distribution (Supplementary

Figure 4B). Also in BiFC assays, stomatin and the V197P

mutant co-localized with ASIC3 at intracellular structures and

at the plasma membrane (Supplementary Figure 5).

To unequivocally show a physical interaction between

ASIC3 and stomatin, pull-down studies were performed

(Figure 3B). In agreement with previous data (Price et al,

2004; Lapatsina et al, 2012b), ASIC3 was co-immuno-

precipitated with Myc-tagged stomatin and, to a similar

extent, with the V197P mutant. These results indicate that

dimerization of stomatin is not a prerequisite for a physical

interaction with ASICs.

Stomatin is also known to accelerate the inactivation of

ASIC2a proton-gated currents (Price et al, 2004), a

phenomenon that we also observed using a shift to pH 5

(Figure 3C), but not to pH 4 (Supplementary Figure 6). Unlike

current amplitude, which is dependent on the amount of

functional ion channels present in the plasma membrane, the

inactivation time of ASIC2a-mediated currents is a mechan-

istic feature of ion channel gating. Therefore, faster ASIC2a

inactivation times in the presence of stomatin are likely

representative of a direct interaction between ASIC2a and

stomatin or a modulation of the local membrane environ-

ment.

Similarly to the loss of inhibitory action upon ASIC3,

stomatin V197P had no significant effect on the inactivation

time of ASIC2a proton-gated currents (Figure 3C;

Supplementary Figure 6). Taken together, these experiments

indicate that the functional minimal building block of eukar-

yotic stomatin involved in the modulation of ASIC2a and

ASIC3 currents is a banana-shaped dimer.

A hydrophobic pocket is important for stomatin

function

Analysis of the crystal packing revealed that Leu91 and Ile92

in the N-terminal loop preceding the stomatin domain pro-

trude into a hydrophobic pocket at the concave face of an

opposing stomatin86–213 dimer (Figure 4A). The hydrophobic

pocket had a volume of 350 Å3 and its inner surface was

formed by the partially conserved residues Phe101, Tyr124,

Val126, Ile136, Leu178 and Thr182 (Figure 4B). This assem-

bly resulted in a linear oligomeric structure, which was

further intertwined with an opposing oligomer resulting in

a double helical architecture (Supplementary Figure 7A). In a

second crystal form, a similar double helical structure con-

taining a stomatin86–213 dimer was observed (Table I;

Supplementary Figure 7B), and the hydrophobic pocket was

also occupied by Leu91 and Ile92 of a neighbouring molecule.

To analyse the architecture of the pocket in the absence of

Leu91 and Ile92, we mutated the two residues to alanine.

According to the structure, this mutation completely removes

the interaction site between the two dimers. Stomatin86–213

LI91,92AA was crystallized and the structure solved by

molecular replacement (Table I). Also in this crystal form 3,

a banana-shaped dimer built via b3 was found, but the

hydrophobic pocket was empty and greatly reduced in size

(volume of 150 Å3; Figure 4C). In particular, the binding site

for Leu91 was completely occupied by Tyr124 and Asp140,

whereas the cleft occupied by Ile92 in crystal form 1 and 2

was still present and even widened by a movement of Ile136

(Figure 4B and C). Pocket closure of the Leu91-binding site

was caused by rearrangements in a1, a2 and b2, which

moved towards the pocket (Figure 4B).

To test the importance of this pocket for the inhibition of

ASICs, we introduced a mutation expected to close the pocket

(T182W). In density gradient centrifugation experiments, a

similar mutation, T182A, was shown not to alter oligomer-

ization of human stomatin (Umlauf et al, 2006). Stomatin86–213

T182W showed no apparent folding defect in CD

measurements (Figure 4D) and eluted as monomer/dimer

Structure of the stomatin dimer
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in analytical gel filtration experiments (Figure 4E), indicating

that dimer formation is not affected by this mutation. When

overexpressed in CHO cells, stomatin T182W showed similar

expression levels as stomatin and displayed a similar cellular

distribution when it was fluorescently tagged (Supplementary

Figures 4 and 5). Furthermore, stomatin T182W still inter-

acted with ASIC3 in pull-down experiments (Figure 3B).

However, in contrast to stomatin, stomatin T182W lost the

ability to modulate proton-gated ASIC3 as shown in whole-

cell recordings (Figure 4F). Furthermore, this T182W mutant

no longer caused a significant decrease in the inactivation

time of ASIC2a proton-gated currents at pH 5.0 (Figure 4G).

At pH 4.0, it even prolonged inactivation times (Supplement-

ary Figure 6).

As expected from the crystal structure, the fold and dimer

formation of stomatin86–213 LI91,92AA was not affected

(Figure 4D and E). Also the cellular localization of fluores-

cently tagged stomatin LI91,92AA was comparable to stoma-

tin (Supplementary Figures 4 and 5). Furthermore, we still

observed the typical modulation of ASIC3 and ASIC2a

currents for stomatin LI91,92AA (Figure 4F and G;

Supplementary Figure 6). These results indicate that the

hydrophobic pocket is crucial for the function of stomatin

in inhibiting ASIC2 and ASIC3. However, Leu91 and Ile92 in

the loop preceding the stomatin domain do not appear to be

the physiological targets of this pocket for inhibition of ASIC

function. Accordingly, the helical filaments observed in crys-

tal form 1 and 2 have no apparent functional relevance.

The C-terminus of ASIC3 contains a Leu488, Leu489 motif

resembling the N-terminal Leu91, Ile92 in stomatin

(Figure 5A). Assuming that these residues might interact

with the stomatin hydrophobic pocket, we mutated both to

aspartic acid (LL488,489DD) to disrupt such a putative inter-

action. The ASIC3 Leu488, Leu489 mutant still co-localized

with stomatin at internal membranes and the plasma mem-

brane (Supplementary Figures 4 and 5). It also interacted

with stomatin in pull-down assays (Supplementary

Figure 8A), indicating that these two amino acids are not

crucial for the interaction with stomatin. Interestingly, the

LL488,489DD mutant showed a substantial increase in pro-

ton-gated transient and sustained current amplitudes

(Figure 5B). The regulation of this mutant by stomatin was
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partially lost: Transient amplitudes of this mutant at pH 6.0

were still affected by the presence of stomatin (Figure 5C),

but stomatin did not cause an effect on sustained current

amplitudes at pH 6.0 or transient and sustained current

amplitudes at pH 4.0 (Figure 5C; Supplementary Figure 8).

These data suggest that the C-terminus of ASIC3 is important

for modulation by stomatin. Mutations in a second hydro-

phobic motif in the C-terminus of ASIC3 (VL470,471DD)

resulted in a non-functional ASIC3 channel (Figure 5B).

Higher-order oligomerization of stomatin

When analysing the crystal packing of crystal form 3

(Table I), we noticed that the stomatin86–213 LI91,92AA

dimers assembled in tubular structures via two conserved

symmetric interfaces (Figure 6A and B; Supplementary

Figure 7C). Interface-1 has a buried surface area per

molecule of 700 Å2 (Figure 6C). In particular, Trp185 and

Leu145 form a hydrophobic surface at the periphery of

interface-1, to which Leu109 of the opposing molecule

binds. In the centre of interface-1, Arg152 forms a hydrogen

bond with Thr149 of the opposing molecule. Interestingly,

Trp184 in human stomatin corresponding to Trp185 in mouse

stomatin has previously been shown to be important for

oligomerization of stomatin (Umlauf et al, 2006).

Interface-2 has a buried surface area of 300 Å2 and features

an interaction of the invariant Arg97 with a conserved

surface-exposed amino acid triplet formed by Tyr123,

Glu193 and Arg191 (Figure 6C).
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To test the relevance of these interfaces for the function of

stomatin, mutagenesis studies were performed. To disrupt

interface-1, we generated a stomatin86–213 L109D,L145D mu-

tant, which behaved like stomatin86–213 in CD spectroscopy

(Figure 6D) and eluted as stomatin86–213 in analytical gel

filtration experiments (Figure 6E). In CHO cells, stomatin

L109D,L145D also showed similar expression levels com-

pared with stomatin and localized similarly (Supplementary

Figures 4 and 5). However, in whole-cell recordings, stomatin

L109D,L145D failed to inhibit ASIC3 at pH 4.0 and peak

current density was significantly greater than in the presence

of stomatin (Figure 6F). At pH 6.0, stomatin L109D,L145D

had an intermediate inhibitory action; although peak current

density was not significantly lower than the peak current

density of ASIC3 expressed alone, it was also not significantly

greater than the peak current density of ASIC3 co-expressed

with stomatin (Figure 6F). Disruption of interface-2 with

stomatin R97D led to an intermediate phenotype so that

ASIC3 proton-gated current amplitudes at both pH 4.0 and

pH 6.0 were not significantly different from wild-type ASIC3

alone or ASIC3 co-expressed with stomatin (Figure 6F).

Interestingly, the R184C mutation in MEC-2 corresponding

to Arg97 in mouse stomatin leads to reduced touch sensitivity

(Chalfie and Sulston, 1981).

A combined triple mutant in both interfaces, stomatin86–213

R97D, L109D, L145D, showed a similar CD spectrum com-

pared with stomatin86–213 (Figure 6D) and a similar gel

filtration profile (Figure 6E). Stomatin R97D, L109D, L145D

also co-localized with ASIC3 in CHO cells (Supplementary

Figures 4 and 5) and could be co-immunoprecipitated with

ASIC3 (Figure 3B). However, this triple mutant failed to

inhibit ASIC3 currents at both pH 4.0 and pH 6.0, suggesting

a synergistic action of these two interfaces in the inhibition of

ASIC currents. These data are consistent with a model where-

by both interface-1 and interface-2 participate in higher-order

stomatin oligomer formation in cells that can regulate ion

channel activity.

Discussion

Stomatin-domain proteins exert powerful physiological ef-

fects on ion channels (Goodman et al, 2002; Price et al,

2004; Martinez-Salgado et al, 2007; Wetzel et al, 2007;

Lapatsina et al, 2012a, b). Proton-gated ASIC3-mediated

current amplitude is suppressed and ASIC2a current

inactivation time is accelerated in the presence of stomatin

(Price et al, 2004), and we have used this as an assay of

stomatin function. By solving the core structure of the

eukaryotic stomatin domain and performing a structure–

function analysis, we were able to define three key regions

of the stomatin molecule necessary for its ability to modulate

ASIC2a and 3. First, we show that the basic building block of

stomatin is a banana-shaped dimer, which is formed by an

intermolecular b-sheet at the C-terminus of the stomatin

domain and is necessary for the modulation of ASICs.

Second, we have identified a dynamic hydrophobic pocket

in the stomatin domain, the closure of which prevents

modulation of ASICs without affecting dimerization. This

pocket can accommodate a dipeptide of two amino acids

with branched aliphatic side chains (Leu, Ile). We have also
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provided evidence that a leucine–leucine dipeptide in the

C-terminus of ASIC3 could contribute to channel modulation

by stomatin. Finally, we found two conserved surfaces in the

stomatin domain, which could be involved in the formation

of ring-like structures. Disruption of the potential interaction

sites in this oligomer rendered the stomatin molecule ineffec-

tive in modulating ASICs. This finding raises the interesting

possibility that these two interfaces are used in plasma

membrane-associated stomatin oligomers.

There is plentiful evidence that stomatin and other

stomatin domain containing proteins can form higher-order

oligomers (Snyers et al, 1998; Umlauf et al, 2006). These

oligomers are thought to create microenvironments at

membranes required for specific cellular functions, for

example, the control of ion channels (Huber et al, 2006;

Lapatsina et al, 2012b). In our crystal form 3, we observed

ring-like stomatin oligomers with an outer diameter of 8 nm.

Slight alterations in the assembly interfaces might lead to

oligomers of different diameter in the cell. Furthermore, the

C-terminal region of stomatin was shown to contribute to

oligomerization (Umlauf et al, 2006). For cyanobacterial

stomatin (Boehm et al, 2009) and yeast prohibitin (Tatsuta

et al, 2005), ring-like oligomers were identified by single-

particle electron microscopy analysis, supporting the idea

that stomatin-domain proteins may assemble at the

membrane in ring-like structures with a banana-shaped

dimer as the building block. Also most of the other SPFH-

domain proteins, such as prohibitin, erlins and podocin

localize to distinct membrane microdomains in the cell

(Browman et al, 2007). Thus, our model of stomatin

oligomerization might be relevant for many other SPFH

domain containing proteins, although the SPFH domain

can also be engaged in different oligomerization modes

(Supplementary Figure 1B and C).

Striking parallels to the well-known membrane scaffolds of

the BAR (Bin/Amphiphysin/Rvs) family are apparent. BAR-

domain also assemble into banana-shaped dimers with simi-

lar mM affinities to that shown for the stomatin dimer here

(Peter et al, 2004; Frost et al, 2009). Furthermore, BAR-

domain dimers assemble via low affinity interactions into

helical structures involving interactions at the tip and the

lateral side of the dimer and may thus exert changes in

membrane curvature, which often is supported by the

insertion of N-terminal amphipathic helices (Shimada et al,

2007; Frost et al, 2008). The membrane insertion domain of

stomatins might exert a similar function in targeting and

concentrating stomatin at cellular membranes and creating

membrane curvature. In the absence of this hydrophobic

hairpin, the affinity for membranes and lipid droplets

appears to be low and stomatin is cytoplasmic (Umlauf

et al, 2004; Lapatsina et al, 2012b). Accordingly, the

stomatin construct used in this study did not contain

the membrane anchor and also did not bind to liposomes

in vitro.

The activity of ASICs can be modulated by phosphoryla-

tion, and an interaction of their C-termini with the PDZ

(PSD95, Dlg1 and zo-1)- and BAR-domain containing protein

PICK1 (protein interacting with C-kinase1) is required for this

modulation (Baron et al, 2002; Duggan et al, 2002; Leonard

et al, 2003; Deval et al, 2004). Other PDZ-domain containing

proteins, like PSD95 and Lin-7b, have also been shown to

interact with the C-terminus of ASICs and can exert either

positive or negative modulation of pH-gated currents

(Hruska-Hageman et al, 2004). In these cases, it is thought

that channel activity is primarily modulated by regulating the

number of channels on the plasma membrane. In the present

study, we have identified a C-terminal di-leucine motif in

ASIC3, which appears to be involved in stomatin modulation

without affecting ASIC3 membrane targeting. Mutation of the

di-leucine motif to aspartic acid greatly increased current

amplitudes without affecting the physical interaction with

stomatin (Figure 5). This suggests that stomatin primarily

regulates functional properties of the ASIC3 channel via this

di-leucine motif. Conversely, closure of the hydrophobic

pocket in stomatin with the T182W mutation abolished

stomatin’s ability to negatively regulate ASIC3 (Figure 4).

MEC-2 is a positive regulator of mechanosensitive ion

channels such as MEC-4 and MEC-10 (O’Hagan et al, 2005;

Lapatsina et al, 2012a). The mechanosensitive ion channel

targets of mammalian stomatin-domain containing proteins

are, however, still unknown (Smith and Lewin, 2009; Lumpkin

et al, 2010; Poole et al, 2011; Lapatsina et al, 2012a). The

functional domains of the stomatin molecule identified here

as essential for the negative regulation of ASICs may be

equally important for the regulation of mechanotransduction.

Interestingly, the conserved surface-exposed Arg97 at

interface-2, is at an identical position to a mutant allele u64

of mec-2 that produces some touch insensitivity in worms

(Chalfie and Sulston, 1981). Finally, hetero-dimerization of

flotillins, and, possibly, higher-order oligomerization, induces

membrane curvature and vesicle budding at the plasma

membrane during clathrin-independent endocytosis (Frick

et al, 2007). Thus, it is conceivable that the architecture of

the ring-like stomatin oligomers is fundamental for an

understanding of a wide range of different cellular functions

involving SPFH-domain proteins.

Materials and methods

Protein expression and purification
Constructs of mouse stomatin (amino acids 86–213, stomatin86–213,
and amino acids 86–255, stomatin86–255) and the indicated point
mutants were expressed as N-terminal GST–fusion proteins in
Escherichia coli BL21 DE3 phage resistant Rosetta (Novagen),
including a PreScission protease cleavage site between the GST
and stomatin constructs. In all constructs, Cys87 was mutated to
serine to prevent oxidative cross-linking. Bacteria were grown to an
OD600 of 0.4 in TB medium when protein expression was induced
with 80mM IPTG, followed by overnight expression at 181C. Cells
were resuspended in ice-cold lysis buffer (50 mM HEPES/NaOH,
pH 7.5, 500 mM NaCl, 0.1 mM Pefabloc SC (Roth), 1 mM DNAse
(Roth)) and lyzed using a microfluidizer (Microfluidics, Newton,
USA). After centrifugation at 100 000 g for 45 min at 41C, the super-
natant was applied on a GSH-column pre-equilibrated with lysis
buffer and extensively washed with 50 mM HEPES/NaOH, pH 7.5,
500 mM NaCl. In the same buffer, overnight cleavage of the GST
tag was performed at 41C in the presence of 250mg PreScission
protease which was directly added to the GSH beads. The protein
was eluted, concentrated and further purified by size exclusion
chromatography on a Superdex75 26/60 column pre-equilibrated
with 10 mM HEPES/NaOH, pH 7.5, 150 mM NaCl. Peak fractions of
the protein were pooled and concentrated to B30 mg/ml. The
protein was flash-frozen in liquid nitrogen and stored at � 801C.
For all constructs, the yield of purified protein was B1.5 mg/l
bacteria culture.

Crystallization and structure determination
Before crystallization, proteins were diluted with 10 mM HEPES/
NaOH, pH 7.5, 150 mM NaCl. All crystallization trials were
performed at 201C.
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The sitting-drop vapour diffusion method in 96-well plate format
was used to crystallize stomatin86–213. In all, 300 nl protein at
6 mg/ml was mixed with an equal volume of reservoir solution
containing 50 mM cadmium sulphate, 1 M sodium acetate and
100 mM HEPES/NaOH, pH 7.5. After 6 days, hexagonal crystals
appeared. Crystals were transferred in a cryo-solution containing
100 mM HEPES/NaOH pH 7.5, 150 mM NaCl, 50 mM cadmium
sulphate, 1 M sodium acetate and 25% glycerol. All crystals were
cryo-cooled by plunging them in liquid nitrogen.

For crystal form 2 of stomatin86–213, the hanging-drop vapour
diffusion method was used in 24-well plates containing 0.7 ml
reservoir solution. Crystallization drops were composed of 1ml
protein and 1ml reservoir solution containing 100 mM HEPES/
NaOH, pH 7.5, 7% ethanol, 5% glycerol, 800 mM sodium acetate.
Rhombohedral crystals appeared after 6 days. The cryo-solution
contained 200 mM HEPES/NaOH, pH 7.5, 100 mM NaCl, 800 mM
sodium acetate, 25% glycerol.

Stomatin86–213 LI91,92AA was crystallized using the hanging-drop
vapour diffusion method in 24-well plates. Crystallization drops
were composed of 1ml protein and 1ml reservoir solution containing
100 mM HEPES/NaOH, pH 7.5, 5% ethanol, 20 mM cadmium
sulphate. Hexagonal crystals appeared after 7 days. The cryo-
solution contained 100 mM HEPES/NaOH, pH 7.5, 150 mM NaCl,
20 mM cadmium sulphate and 25% glycerol.

Data sets of single crystals were recorded at beamline 14.1,
BESSY II, Berlin, Germany with a Rayonics MX-225 CCD detector
or at the microfocus setup at Swiss Light Source PX06SA beamline,
equipped with a PILATUS M6 detector. Initial indexing and deter-
mination of an optimal data collection strategy was done using
Mosflm (Leslie, 2006). Recorded intensities were integrated with
the programme XDS (Kabsch, 2010) or HKL-2000 (Otwinowski
and Minor, 1997). Molecular replacement was carried out using
the programs MOLREP (Vagin and Teplyakov, 1997) via the
CCP4 graphical interface version 6.0.2 (COLLABORATIVE
COMPUTATIONAL PROJECT, 1994), using the ph stomatin
domain as a search model. Figures were prepared using PyMOL
(Schrödinger LLC, 2003). The plugin VASCo (Steinkellner et al,
2009) was used to illustrate the hydrophobic surfaces. The cavity
was analysed using the CASTp server (Dundas et al, 2006). The size
of the interfaces was calculated with the help of the PISA server
(Krissinel and Henrick, 2007). The 3D figure was prepared with
pymol and Adobe Acrobat 9 Pro Extended (Kumar et al, 2010). Use
of Adobe Acrobat Reader 9.0 (or a higher version) is required to
activate the 3D figure.

Circular dichroism
Protein samples were diluted to 0.2 g/l in a buffer containing
150 mM NaF and 10 mM Na2HPO4, pH7.4. CD measurements with
three replicates were performed using a Chirascan spectrometer
(Applied Photophysics) in the wavelength spectrum of 190240 nm.
For data analysis, the web DICHROWEB server (Whitmore and
Wallace, 2004) with the CDSSTR algorithm was used.

Right-angle light scattering
A coupled RALS-refractive index detector (Malvern) was connected
in line to an analytical gel filtration column Superdex75 10/300 to
determine absolute molecular masses of the applied proteins. Data
were analysed with the provided OmniSec software. The running
buffer contained 100 mM HEPES/NaOH, pH 7.5, 150 mM NaCl. For
each protein sample, 100 ml of a 1.5 mg/ml protein solution was
applied.

Analytical ultracentrifugation
Molecular mass studies of stomatin variants in 10 mM HEPES/
NaOH, pH 7.5, 150 mM NaCl were performed in an XL-A type
analytical ultracentrifuge (Beckman) equipped with UV absorbance
optics. Sedimentation equilibrium experiments were carried out
using six-channel cells with 12 mm optical path length and the
capacity to handle three solvent–solution pairs of about 70ml liquid.
Sedimentation equilibrium was reached after an equilibrium speed
of 24 000 r.p.m. for about 30 h at 101C. The radial absorbance in
each compartment was recorded at three different wavelengths
between 270 and 290 nm, depending on the concentration used in
the experiments. Molecular mass determinations employed the
global fit of the three radial distributions using the programs
POLYMOLE or POLYMOLA (Behlke et al, 1997). When proteins

adopt a monomer–dimer equilibrium, the molecular mass, M, can
be treated approximately as a weight average parameter (Mw). This
value is a composite of the monomer molecular mass (Mm) and that
of the dimer (Md) and the partial concentrations of monomers, cm,
and dimers, cd.

Mw¼ðcm�Mmþ cd�MdÞ/ cm þ cdð Þ

Therefore, the equilibrium constant, Kd, can be derived with

Kd¼ c2
m/cd:

Cellular localization
CHO cells were grown to a density of 60% in Dulbecco’s Modified
Eagle’s Medium supplemented with 10% bovine serum albumin,
100 units/ml penicillin, 100mg/ml streptomycin (Roth) and 4.5 mM
glucose as supplement. Transfections with plasmids encoding
mouse stomatin–mCherry and rat eGFP–ASIC3 were performed
using Fugene (Roche). At 24 h post-transfection, cells were fixed
with 5% paraformaldehyde at room temperature, washed with PBS,
water and mounted on cover slides using Mowiol (Roth). Images
were acquired using Leica SP5 confocal microscope and analysed
using the ImageJ software.

Immunoprecipitation and immunoblotting
CHO cells were co-transfected with plasmids encoding Myc-His-
tagged stomatin or of the indicated stomatin variants and plasmids
encoding FLAG-tagged ASIC3. After 24 h, cells were solubilized with
lysis buffer containing 1% TritonX-100, 0.1% SDS, 10 mM Tris–HCl,
pH 7.6, 150 mM NaCl, 100 mM 0.1 mM Pefabloc SC (Roth).
Following ultracentrifugation at 100 000 g for 20 min at 41C, 500 mg
of detergent-soluble protein was subjected to immunoprecipitation
using anti-c-Myc (Millipore catalogue # 06-340) and protein
A-Sepharose and then washed three times in lysis buffer. Proteins
were eluted from the beads with SDS sample buffer (4% SDS, 0.4%
Bromphenol blue, 40% glycerol, 200 mM Tris–HCl, pH 6.8) by
incubation for 5 min at 601C and separated on SDS–PAGE. The
proteins were transferred to nitrocellulose membrane and blocked
by incubation in 5% milk powder in TBST (50 mM TRIS, pH 7.4,
150 mM NaCl, 0.1% Tween 20) for 1 h. Immunoblots were incu-
bated with anti-polyhistidin-peroxidase conjugate (Sigma Aldrich
Catalogue # A7058) or anti-FLAG (Sigma Aldrich Catalogue #
F3165) antibodies o/n at 41C. The blots were washed three times
with TBST in 5% milk powder in TBST and incubated with horse-
radish-peroxidase conjugate anti-mouse antibody and washed three
times with TBST. Bound antibodies were detected using the en-
hanced chemiluminescence kit (Amersham). For expression tests, a
monoclonal mouse antibody directed against the c-Myc tag (sc-40
9E10 Santa Cruz, California), or a-Tubulin (T 6793, Sigma-Aldrich,
Munich) was used.

Bimolecular fluorescence complementation assays
BiFC was used to determine the localization of interaction between
ASIC3 and stomatin variants in CHO cells. A construct of ASIC3
fused at its C-terminus to a C-terminal fragment of YFP was co-
expressed with a construct of stomatin fused at its C-terminus with
an N-terminal fragment of YFP according to Hu et al (2002). A
fluorescent signal develops if the N- and C-terminal fragments of
YFP come within 5 nm of each other. The BiFC signal was visualized
24 h after transfection in living cells using epifluorescent
microscopy (Olympus IX71, � 100 oil-immersion objective).

Self-association of stomatin was detected by monitoring BiFC
signal development over time. Human embryonic kidney (HEK)
cells were transfected with BiFC constructs of stomatin or stomatin
V197P fused at their C-termini with N- and C-terminal fragments of
YFP. Eight hours after transfection, cells were transferred into a 384-
well plate and fluorescence development was monitored every
30 min for 16 h at 371C using a TECAN M1000 plate reader (imaging
conditions: excitation: 515 nm, bandwidth 8 nm; emission: 535 nm,
bandwidth 8 nm). The slope was determined by a linear fit to the
increase in relative fluorescence intensity over time (excitation:
515 nm, bandwidth 8 nm; emission: 535 nm, bandwidth 8 nm).

Electrophysiological measurement and analysis
CHO cell transfections were conducted with Lipofectamine LTX
(Invitrogen) according to the manufacturer’s protocol. Briefly,
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plasmids were diluted into Opti-MEM (Gibco) at a ratio of 4:1
(stomatin:ASICx), with a DNA concentration of 2mg/40 mm dish
and Lipofectamine LTX was subsequently added. The ASIC cDNAs
encoded for rat ASIC2a and rat ASIC3. During the 30-min incuba-
tion period, the culture medium was replaced with Opti-MEM
followed by adding the transfection mixture by careful dropping.
After 4 h, the transfection medium was replaced and cells were used
24 h later for whole-cell electrophysiology. The following solutions
were used: extracellular (in mM) - NaCl (140), KCl (4), CaCl2 (2),
MgCl2 (1), glucose (4), HEPES (10), adjusted to pH 7.4 with NaOH
(for solutions below pH 6.0, MES was used in place of HEPES) and
intracellular - KCl (110), NaCl (10), MgCl2 (1), EGTA (1) and HEPES
(10), adjusted to pH 7.3 with KOH. Patch pipettes were pulled
(Flaming-Brown puller, Sutter Instruments) from borosilicate glass
capillaries (Hilgenberg) and had a resistance of 3–6 MO. Recordings
were made using an EPC-9 amplifier (HEKA) and Patchmasterr
software (HEKA). Whole-cell currents were recorded at 20 kHz,
pipette and membrane capacitance were compensated using
Patchmaster macros and series resistance was compensated by
70%. Cells were stimulated with a 5-s pulse of an acidic solution,
pH 4 and 6 for ASIC3 transfected cells (randomly applied, 2 min
wash between stimulations) and pH 4.0 and 5.0 for ASIC2a trans-
fected cells. Analysis was carried out using Fitmaster (HEKA) and
GraphPad Prizm (GraphPad Software, Inc.), current amplitudes
were normalized to cell capacitance and values expressed as pA/
pF. Stomatin displays dose-related effects upon ASICs (Price et al,
2004) and upon transfection of stomatin with ASIC3, we also
observed proton-gated currents of varying amplitudes. Differences
between peak current densities (ASIC3 experiments) and
inactivation times (ASIC2a experiments) were assessed using the
Kruskal–Wallis test followed by Dunn’s post test.

Tail-derived mouse adult fibroblast (MAF) cultures were prepared
from adult stomatin-/- mice and wild-type BL6 littermates. Tail tips,
0.5 cm in length, were cut into small pieces under sterile conditions
and incubated for 2 h in DPBS containing 0.2% collagenase and
2 U/ml dispase (Roche). Sedimented cells were cultured in DMEM
medium (Gibco) containing 10% FCS, 1% Pen/Strep and L-gluta-
mine. In all, 35 000 cells were plated on a 3.5-cm dish and

transfected on next day (30–40% confluence). In all, 29 ml of
FuGENE 6 (Promega) were added to 230 ml of OPTI-MEM (Gibco)
and incubated for 5 min. In all, 9mg of plasmid DNA
(ASIC3:GFP¼ 4:1) were added to the mixture and incubated for
additional 30 min before adding drop wise to the cells. Cells were
assayed 24–48 h after transfection. Electrophysiological recordings
were performed as described above.

Accession numbers
PDB coordinates of the three stomatin crystal forms have been
submitted to the PDB database (pdb codes 4FVF, 4FVG, 4FVJ).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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