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Abstract

The transcriptome, as the pool of all transcribed elements in a given cell, is regulated by the interaction between different
molecular levels, involving epigenetic, transcriptional, and post-transcriptional mechanisms. However, many previous
studies investigated each of these levels individually, and little is known about their interdependency. We present a systems
biology study integrating mRNA profiles with DNA–binding events of key cardiac transcription factors (Gata4, Mef2a,
Nkx2.5, and Srf), activating histone modifications (H3ac, H4ac, H3K4me2, and H3K4me3), and microRNA profiles obtained in
wild-type and RNAi–mediated knockdown. Finally, we confirmed conclusions primarily obtained in cardiomyocyte cell
culture in a time-course of cardiac maturation in mouse around birth. We provide insights into the combinatorial regulation
by cardiac transcription factors and show that they can partially compensate each other’s function. Genes regulated by
multiple transcription factors are less likely differentially expressed in RNAi knockdown of one respective factor. In addition
to the analysis of the individual transcription factors, we found that histone 3 acetylation correlates with Srf- and Gata4-
dependent gene expression and is complementarily reduced in cardiac Srf knockdown. Further, we found that altered
microRNA expression in Srf knockdown potentially explains up to 45% of indirect mRNA targets. Considering all three levels
of regulation, we present an Srf-centered transcription network providing on a single-gene level insights into the regulatory
circuits establishing respective mRNA profiles. In summary, we show the combinatorial contribution of four DNA–binding
transcription factors in regulating the cardiac transcriptome and provide evidence that histone modifications and
microRNAs modulate their functional consequence. This opens a new perspective to understand heart development and
the complexity cardiovascular disorders.
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Introduction

It is long known that an evolutionary conserved orchestra of

transcription factors controls cardiac development and function.

More recently the contribution of epigenetic and post-transcrip-

tional mechanisms has been identified. Many successful studies

have focused on these different aspects independently, but it is still

an open question, how these molecular regulatory mechanisms

interact. The ability of transcription factor binding to DNA is

highly influenced by the chromatin status and epigenetic

mechanisms play an important role in establishing and maintain-

ing transcriptional programs. This layer of control comprises

posttranslational modification of histones, DNA methylation and

chromatin remodeling. To understand networks directing gene

expression, the interplay between different transcription and

epigenetic factors has to be considered. Furthermore, recent

studies have started to unveil powerful roles for microRNAs

(miRNAs) in regulating and fine-tuning mRNA profiles via either

translational repression or mRNA degradation. It should be noted

that gene expression profiles as obtained by standard microarrays

or next-generation sequencing reflect mRNA profiles, which

depend on the gene transcription as well as the decay of mRNA.

In line with this, we present a study integrating mRNA profiles

with transcription factor-DNA interaction data, histone modifica-

tion marks and posttranscriptional regulation by miRNAs.

The DNA-binding transcription factors Gata4, Mef2a, Nkx2.5

and Srf play pivotal roles for the differentiation, maturation and

homeostasis of cardiomyocytes. Mice lacking Gata4 die at E8.5

with failure of ventral morphogenesis and heart tube formation

[1,2]. Targeted disruption of Nkx2.5 leads to abnormal heart

morphogenesis with lethality at E9.5 [3]. Mef2a knockout mice die

within the first postnatal week and exhibit myofibril fragmentation
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and impaired myocyte differentiation [4]. Srf-null mice show severe

defects in the contractile apparatus of cardiomyocytes and die at

the gastrulation stage [5,6]. However, Gata4, Mef2a, Nkx2.5 and

Srf not only display independently a central role for cardiac

development and function, they also regulate each other’s

expression [7–10]. Despite their impact, we still have limited

understanding of the global cardiac transcription networks driven

by these factors in a direct and indirect manner.

Moreover, we lack knowledge to which extent epigenetic marks

such as histone modifications interfere with the regulation of

downstream targets. The N-terminal histone tails serve as targets

for a variety of reversible posttranslational modifications including

acetylations or methylations. Both have a main impact on

chromatin structure and represent binding sites for transcriptional

regulators [11–13], thus promoting or inhibiting transcription.

They are put in place by specific enzyme families and are removed

by others [14,15]. Hence histone acetylation is a dynamic process

and for instance, mice lacking histone deacetylases 5 and 9

(HDAC5 and 9) show cardiac defects typical for abnormalities in

growth and maturation of cardiomyocytes [16]. A superactivation

of Mef2 based on its interaction with HDACs is proposed [17].

However, our understanding of the underlying molecular

mechanisms is still premature.

It was reported that only 5–15% of differentially expressed

genes in short interference RNA (siRNA) knockdown experiments

are also direct transcription factor targets identified by chromatin

immunoprecipitation (ChIP) and vice versa [18–23]. There is

considerable evidence, that cascades of transcriptional regulators

form networks. Loss of one factor will directly affect a few genes,

but among those genes are other transcriptional regulators whose

function is now altered, affecting a further set of downstream

genes. In addition, it has to be considered that a significant

proportion of downstream effects mediated by DNA-binding

transcription factors is promoted via downstream miRNAs or

other regulators. For example Srf regulates the transcription of

miRNAs such as the smooth muscle relevant miR-143 and miR-

145 [24]. Feedback loops between Srf/Mef2 and muscle-specific

miR-133/miR-1 have been described, and both miRNAs are

expressed throughout heart development and play important roles

in muscle proliferation and differentiation [25–28]. Furthermore,

miR-1 promotes myogenesis by targeting HDAC4 [26], a

transcriptional repressor of muscle gene expression, and thus

represents an interface to histone acetylation.

Taken the above, we investigated the transcription network

driven by Gata4, Mef2a, Nkx2.5 and Srf in cardiomyocytes in a

genome-wide approach. First, we focused on the direct down-

stream targets by evaluating in-vivo DNA-binding sites of the

respective factors and correlated these binding events with the

expression level of related genes. Second, we investigated the

functional consequence of the proposed regulation in knockdown

experiments and built respective transcription networks. Third, we

analyzed if co-occurrence with activating histone modifications

could impact on gene expression levels of direct targets. Fourth, we

studied the modulation of mRNA levels by miRNA alterations

seen in knockdown experiments. Finally, we integrated the three

levels regulating mRNA profiles and generated a comprehensive

transcription network centered on Srf. Based on our analysis we

argue that transcription networks have a comparable dependency

on transcription factor binding, modulation by histone modifica-

tions as well as regulation by miRNAs. In addition to the global

perspective, our networks provide distinct information on the

regulation of individual genes especially with regard to cardiac

function.

Results

We used the cardiomyocyte cell line HL-1 to study the global

transcription network driven by the DNA-binding transcription

factors Gata4, Mef2a, Nkx2.5 and Srf. The mRNA as well as

miRNA expression profiles of beating HL-1 cells are highly

comparable to the one observed in mouse hearts at P0.5 (Pearson

correlation coefficient of 0.95, Figure 1A left) and human right

ventricle (Pearson correlation coefficient of 0.90, Figure 1A right;

data unpublished). The use of a cell line enabled us to cope with

the technical limitations of our different approaches (ChIP-chip/

seq, miRNA-seq, siRNA knockdown, microarrays) and supported

a single cell-type specific study. We validated the key findings in a

time-course of mouse hearts during the cardiac adaptation and

maturation period around birth at E18.5, P0.5 and P4.5.

Cardiac Transcription Regulated by Gata4, Mef2a, Nkx2.5,
and Srf

We developed a custom two-array set (26385K) with Nimble-

Gen using a tilling approach for promoter and enhancer regions

(10kb upstream), and first exon and intron sequences of 12,625

transcripts (65% of all RefSeq promoters). This enabled the

analysis of sequence regions beyond standard promoter arrays. We

selected 89Mbp of the mouse genome related to transcripts of 13

data sources (Table S1), which included all known expressed

skeletal, smooth and cardiac muscle genes in human and mouse.

Using ChIP-chip analyses we identified several hundreds of

transcription factor binding sites (TFBS) for Gata4 (447), Mef2a

(999), Nkx2.5 (383) and Srf (1,335) in mouse HL-1 cardiomyo-

cytes, which were related to 345 Gata4, 701 Mef2a, 276 Nkx2.5

and 1,150 Srf target genes (Table S15). Figure 1B shows the

distribution of observed binding sites relative to the transcriptional

start site (TSS). An average of 24% of TFBS were localized in

potential enhancer regions with a distance between 2.5kb to 10kb

upstream from any transcriptional start site.

Author Summary

An evolutionary conserved orchestra of transcription
factors controls cardiac development and function. More
recently the contributions of epigenetic and post-tran-
scriptional mechanisms like histone modifications and
microRNAs have been identified. The interplay between
these regulatory mechanisms is still an open question.
However, perturbations of the cardiac transcriptome,
triggered by all three levels of regulation, are underlying
cardiovascular disease such as congenital heart malforma-
tions. Here, we show the impact of the interdependencies
of four key transcription factors (Gata4, Mef2a, Nkx2.5, and
Srf) and the contribution of activating histone modifica-
tions and microRNAs on the cardiac transcriptome. We
found that even these non-paralogous transcription
factors can partially compensate each other’s function.
Our data show that histone 3 acetylation correlates with
Srf- and Gata4- dependent gene activation. Moreover, we
predict a large proportion of indirect Srf targets to be
regulated by Srf-dependent microRNAs, which thus might
represent an important intermediate layer of regulation.
Taken together, we suggest that the different levels
regulating cardiac mRNA profiles have a high degree of
interdependency and the potential to buffer each other,
which presents a starting point to understand the
phenotypic variability typically seen in complex cardiovas-
cular disorders.

Transcription Factor, Histone Acetylation, miRNA
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The respective target genes of the studied transcription factors

included 42 known targets (Table S2), substantiating the reliability

of the system. In addition, we found several genes previously

shown to be deregulated in mutants as direct targets of the

respective transcription factor. For example, Gata4 and Nkx2.5

levels are decreased in cells depleted of Mef2 [8] and both genes

show binding of Mef2a at their promoters in our data.

To gain further insights into the transcription factor function-

ality, we investigated which Gene Ontology (GO) terms were

significantly overrepresented among target genes of each factor

when compared to all genes represented on the array. The

significant GO terms (p,0.001) show a stronger than expected

association with heart development and function and are highly

related to the phenotypes reported for the respective transcription

factor (Tables S3, S4, S5, S6). For example, the GO terms ‘muscle

cell differentiation’ and ‘heart looping’ are significantly overrep-

resented among Mef2a and Nkx2.5 targets, respectively, and both

are key features of corresponding knockout mouse models [3,4].

We investigated the sequences underlying the transcription

factor binding sites in more detail and searched for TRANSFAC

[29] motifs within the presumably bound sequences. The

TRANSFAC matrices used for motif search are listed in Table

S7. For Gata4, Nkx2.5 and Mef2a 84–94% of all ChIP binding

events harbored respective binding motifs. For Srf, the fraction of

ChIP binding events with predicted motifs was very small (169 out

of 1,335 binding sites). However, Srf is well-known to bind the

CArG-box CC(A/T)6GG [30], which is only partially represented

by TRANSFAC motifs. Using a pattern matching approach we

found the CArG-box in 1,063 (approximately 80%) Srf binding

events. Furthermore, more than every second binding event of the

studied factors occurred at sequence sites containing at least two

times the respective transcription factor motif or pattern.

Figure 1. Binding site location and co-occurrence of Gata4, Mef2a, Nkx2.5, and Srf. HL-1 mRNA and miRNA expression profiles are highly
comparable to the ones observed in human and mouse hearts. (left) Gene expression levels obtained from HL-1 cells and P0.5 of C57/BL6 mouse
heart. (right) Rank-transformed miRNA expression levels in HL-1 cells and human right ventricle. (B) Positional distribution of transcription factor
binding sites relative to the transcription start site (TSS). The y-axis shows the number of transcription factor binding sites per transcription factor as
bar plots in 2.5kb windows. Most binding sites (,75%) are located within close proximity to the TSS. (C) Gata4, Mef2a, Nkx2.5 and Srf frequently bind
together. Shown is the combinatorial binding of all four transcription factors to 498 common target genes. 91 target genes were bound by all four
factors (black), 121 target genes were bound by three (dark gray) and 286 target genes were bound by two transcription factors (gray). The total
number of genes solely bound by a single TF are indicated above the respective TF. (D) Odds ratios of pair-wise contingency tables of the occurrence
of transcription factor binding sites at one gene. Total numbers of pair-wise occurrences are given. The numbers in white boxes represent the total
number of bound genes for the respective transcription factor. Red indicates positive, blue negative correlation. Gata4 and Nkx2.5 had the lowest
number of targets (345 for Gata4, 276 for Nkx2.5) but we observed co-binding to 143 genes and their occurrence is therefore highly correlated.
Although Mef2a and Srf bind at 320 genes together, they each have a much higher number of target genes.
doi:10.1371/journal.pgen.1001313.g001

Transcription Factor, Histone Acetylation, miRNA
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We studied the cross-species conservation of binding motifs and

found in ,10% complete sequence conservation between human

and mouse. In 27% the binding sites were localized in regions

conserved across 18 vertebrate species based on PhastCons

elements [31]. Thus, by focusing only on conserved sequence

regions a priori more than two-third of the binding sites would be

missed.

Combinatorial Regulation by Multiple Transcription
Factors

The investigated transcription factors are known to co-regulate

targets and pairwise physical interaction has been described

between several of these factors [32,33]. Nevertheless, it is

unknown how frequently this co-binding occurs in-vivo. Conse-

quently, we investigated the assignment of Gata4, Nkx2.5, Mef2a

and Srf to the same gene. We observed frequent co-regulation by

more than one transcription factor, where Gata4 and Nkx2.5

shared 143 targets (41% and 52%, respectively) and Mef2a and Srf

shared 320 target genes (46% and 28%, respectively) (Figure 1C

and 1D). For 91 genes co-binding of all four transcription factors

was observed and in 85 cases the binding was observed at close

proximity within a 500bp window. These data underline the

complexity and cooperative regulation of gene regulation shown in

our model of four DNA-binding transcription factors.

Functional Consequences of Transcription Factor Binding
We investigated whether the transcription factors act mainly as

activators or repressors in a wildtype situation. We carried out

genome-wide expression array analysis of the contracting HL-1

cardiomyocytes and classified all transcripts as expressed or non-

expressed. We found that for each of the four transcription factors

approximately 80% of the target genes were expressed and their

expression levels were significantly enhanced compared to non-

targets (p,0.005).

Considering the cooperative co-binding of the investigated

transcription factors, we were interested in the functional

consequence of significantly reducing the quantity of each of the

factors. Therefore, we used siRNA technique to reduce the protein

levels of investigated transcription factors by more than 70% and

studied its consequence for gene transcription. The reduction at

mRNA and protein level was monitored by quantitative PCR and

Western Blot analysis (Figure S1 and Figure 2A) and the genome-

wide effects on transcript levels were measured by expression array

analysis (Table S17). All data were based on a total of 4 replicate

experiments using duplicates of two different siRNAs per

transcription factor. The majority of deregulated transcripts were

downregulated in the siRNA treated samples, confirming a

primarily activating function of the transcription factors. Perform-

ing Annexin assays and Tryptophan Blue staining, we observed an

Figure 2. RNAi–induced knockdown of Gata4, Mef2a, Nkx2.5, and Srf. (A) Knockdown efficiency of Gata4, Mef2a, Nkx2.5 and Srf in HL-1 cells
using two different siRNAs was analyzed on protein level by Western Blot 48h after transfection. Histone 3 (H3) served as loading control. In
independent experiments similar knockdown efficiencies were obtained. (B) Odds ratios of pair-wise contingency tables of differentially expressed
transcripts after RNAi knockdown of the respective transcription factor. Total numbers of pair-wise occurrences are given. The numbers in white
boxes represent the total number of deregulated transcripts. Red indicates positive, blue negative correlation. Mef2a shows the lowest number of
differentially expressed transcripts (119) probably due to buffering effects of the other Mef2 family members. Despite this fact, Mef2a shares a high
number of deregulated transcripts with the other transcription factors. Of note, transcription factors having a high number of common binding
targets (see Figure 1D) share only a small number of co-regulated genes in RNAi knockdown. (C) Transcription factor network showing a selection of
cardiac relevant genes bound in ChIP-chip and/or ChIP-seq, and significantly differentially expressed in RNAi knockdown experiments of the
respective factor. Up- and downregulation of genes is depicted and occurrence of ChIP binding marked by color-coded circles.
doi:10.1371/journal.pgen.1001313.g002

Transcription Factor, Histone Acetylation, miRNA
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increased apoptosis and cell death in particular when Gata4 or Srf

were knocked down (Figure S2), which is in line with previous data

[34–36].

Analogous to our analyses of common downstream targets based

on transcription factor binding events, we studied common

differentially expressed genes. The different factors share a compa-

rable proportion of differentially expressed genes when knocked down

(Figure 2B). An opposing effect for targets regulated by several

transcription factors was only observed in two cases: Myocd and Tpm1.

Figure 2C shows the combinatorial regulation of a selection of heart

and muscle relevant, directly bound and differentially expressed

genes. This includes genes coding for structural proteins like Actc1,

Actn2, Tnnt2, Mybpc3 or Myh6; growth factors like Igf1 or apoptosis

factors like Casp3. The transcription factor Tbx20 represents an

example for a gene that is bound and regulated by all four factors. A

broad panel of differentially expressed genes was further confirmed by

quantitative real-time PCR (Table S8).

Finally, we compared the differentially expressed genes in

siRNA knockdown experiments to the direct target genes

identified by ChIP. Analyzing the overlap focusing on the

functional role of the respective genes, we found that both datasets

share the Gene Ontology terms reflecting heart and muscle

development and function. For example, muscle cell differentia-

tion, muscle contraction and heart development are the main

functional roles for direct targets of Srf as well as the respective

differentially expressed genes. However, only a small fraction of

direct target genes (,10%) was also differentially expressed,

pointing to the combinatorial nature of gene regulation. In

accordance, we found that genes bound by multiple transcription

factors were significantly less likely differentially expressed (x2-test

p,0.001). Likewise transcription factors having a high number of

common binding targets share only a small number of co-

regulated genes in RNAi knockdown (correlation shown in

Figure 2B is inverse to the correlation in Figure 1D). In addition,

binding in a poised state or buffering by epigenetic mechanisms

such as histone modifications which interfere with the accessibility

of the DNA should be considered. It has to be kept in mind that

transcription factor binding depends on binding affinity and

accessibility of binding sites. The regulatory potential of several

factors has been reported to be strongly dosage dependent (e.g.

Tbx5 [37] and Gata4 [38]). Furthermore, a significant proportion

of differentially expressed genes in RNAi are likely to be regulated

in an indirect manner. Recent studies show the powerful roles for

miRNAs in controlling mRNA profiles largely by silencing target

genes, via either translational repression or mRNA degradation.

Histone 3 Acetylation Correlates with the Activating
Potential of Transcription Factors

To explore the influence of histone modifications as an

epigenetic mechanism to modulate gene expression, we analyzed

our transcription factor binding data in the context of co-occurring

histone marks. In a previous study we investigated the localization

of four histone modifications, which are known to promote an

open chromatin state (H3K9K14ac, H4K5K8K12K16ac,

H3K4me2 and H3K4me3) [39]. We found that ,80% of the

respective transcription factor binding events are marked by one

or more of these histone modifications, whereas in a randomized

simulation only 23% are expected to co-occur (Figure S3). We

consequently investigated whether the presence of any of these

marks correlates with higher expression levels of direct target genes

and found a significant impact for histone 3 acetylation (H3ac)

only (Figure 3A and Figure S4). For Nkx2.5 and Mef2a the

expression levels of direct targets were significantly higher than the

reference group, independent of whether H3ac was present or not.

Genes showing neither transcription factor binding nor H3ac were

used as a reference. In case of Gata4 and Srf the expression levels

of direct targets were only significantly increased when binding

sites were additionally marked by H3ac. The enhanced expression

levels depending on H3ac co-occurrence is further depicted in

Figure 3B, which shows confirmation experiments of nine genes

using quantitative PCR. In conclusion, our data provide evidence

that acetylation of histone 3 supports the activating function of

Gata4 and Srf, which might be mediated via p300. The histone

acetyl transferase p300 not only acetylates lysine residues on

histone 3 but also on Gata4, thereby enhancing the DNA-binding

and activating potential of this transcription factor [40]. The Srf

cofactor Myocardin has been reported to recruit p300 to Srf

binding sites whereby histone 3 acetylation is induced and gene

expression enhanced [41]. Finally, we studied the change of H3ac

marks as a consequence of Srf knockdown using ChIP followed by

qPCR. Strikingly, we found complementary alterations of H3ac in

a panel of relevant promoter regions (Figure 3C and 3D).

Histone 3 Acetylation Correlates with Srf Target Gene
Activation

To validate and further investigate the correlation of H3ac with Srf

target gene expression, we performed genome-wide ChIP-seq

experiments in HL-1 cardiomyocytes (Table S16). We found a

synergistic effect of H3ac and Srf binding when compared to non-

bound genes or genes solely bound by either of both (Figure 3E). The

influence of H3 acetylation marks was further substantiated by RNAi

knockdown of Srf in HL-1 cells (Figure 3F). In accordance to its mainly

activating function, we found a significant decrease in expression levels

of genes bound by Srf. However, this decrease was significantly

reduced in genes additionally marked by H3ac in the wild-type.

In a further attempt to confirm our results gathered in cell

culture, we studied Srf and H3ac binding and their influence on

gene expression in mouse hearts in a time-series during cardiac

maturation at three developmental stages E18.5, P0.5 and P4.5

around birth. From the fetal to the postnatal stage, the heart

adapts to the body circulation and cardiomyocytes mature. During

this process the heart increases in size (Figure 4A), the cells

elongate, myofibrils align and cell-cell contacts become bipolar.

Immunostaining of a-Actinin-1 and Connexin 43 illustrates

hypertrophy of cardiomyocytes, assembly of the sarcomeric z-

discs and development of gap junction [42]. Based on ChIP-chip/

seq results for Srf and H3ac in HL-1 cells, we analyzed promoter

binding regions of genes and miRNAs relevant for this process

using ChIP followed by quantitative real-time PCR. The selection

comprises (Figure 4B): Dmpk (kinase of myogenin), Slmap

(sarcomeric protein), Picalm (clathrin assembly protein), miR-

133a (cardiac and muscle-specific miRNA), the growth factor Igf1

and its receptor Igf1r, Pitx2c (cardiac transcription factor), and Nrp2

(interactor of Vegf). We found a high correlation between the

changes of Srf and H3ac binding and the gene expression levels

over time. In case of Pitx2c and Nrp2 we identified multiple binding

events in HL-1 cells by ChIP-chip/seq of which their functionality

could be confirmed by common changes over time in the mouse

model (Figure 4B). Taken together, these data support an

important role for the co-occurrence of Srf and H3ac in the

regulation of the cardiac maturation process and underline the

influence of histone modifications.

Studying the Impact of miRNAs on the Srf-Driven
Transcription Network

Considering that only a small proportion of differentially

expressed genes in loss-of-function experiments are direct targets

Transcription Factor, Histone Acetylation, miRNA
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Figure 3. Histone 3 acetylation correlates with target gene expression of Srf and Gata4. (A) For each transcription factor the binding sites
were categorized into two groups depending on co-occurrence with histone 3 acetylation (H3ac) in ChIP-chip. Genes marked by Mef2a or Nkx2.5
show significant increased expression levels compared to non-marked genes (Ref) independent of co-occurring H3ac. In contrast, expression levels of
genes bound by Gata4 or Srf were only increased when H3ac marks co-occurred. (B) Confirmation of selected target genes of Srf and Gata4 with H3ac
dependent expression level. HL-1 Illumina expression levels were confirmed using same amount of cDNA for semi-quantitative PCR (30 cycles)
followed by gel electrophoresis and quantitative real-time PCR (40 cycles). Used primer had PCR efficiencies between 1.8–2.0. (C, D) Srf knockdown in
HL-1 cells leads to complementary alterations in H3ac marks at Srf binding sites. H3ac-ChIP enrichments after Srf knockdown (siSrf) compared to
control siRNA (siNon) were measured with qPCR for two groups of promoter regions (H3ac & Srf binding and no H3ac/Srf). The H3ac enrichment was
normalized to Input and IgG controls. Fold changes show significant decrease in H3ac enrichment after Srf knockdown. (E) Confirmation of H3ac
dependent expression of Srf target genes by ChIP-seq. Shown are expression levels of transcripts with H3ac and/or Srf binding close to the
transcriptional start site (TSS,1.5kb). (F) H3ac reduces downregulation of Srf target genes in its knockdown. Shown are fold changes relative to siNon
of downregulated transcripts after Srf knockdown with H3ac and/or Srf binding (TSS,1.5kb). Expression levels (A, E) and fold changes (F) are
represented as box plots. Genes showing neither binding of investigated transcription factors nor H3ac are used as reference. The resulting p-values
are indicated: p,0.001 (***), p,0.01 (**) and p,0.05 (*).
doi:10.1371/journal.pgen.1001313.g003

Transcription Factor, Histone Acetylation, miRNA
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of the respective transcription factors, we were interested in studying

the impact of miRNAs as secondary effectors (Figure 5A, 5B). Again

we focused on the transcription factor Srf, which is known to

regulate cardiac relevant miRNAs like miR-1 and miR-133 [26,43].

We investigated Srf binding using ChIP-seq technology to map Srf

binding sites potentially regulating miRNAs. We found 22 miRNAs

from the miRNA database miRBase with Srf binding within a

region of 10kb. This includes the previously described miR-208 Srf

binding site, as well as other well-known muscle relevant miRNAs

like miR-1, miR-125b, miR-133, miR-143 and miR145 (Table S9).

Second, we performed Srf knockdown using two different siRNAs

and quantified the miRNA expression levels by miRNA-seq (Table

S10 and Table S18). We observed 42 miRNAs (49 loci) to be

differentially expressed in both siRNA experiments, including miR-

208, miR-125b and miR-21. The analysis revealed that most of the

miRNAs were downregulated (78%) supporting the role of Srf as an

miRNA activator (Figure 5A).

To explore the potential effect of the differentially expressed

miRNAs on the Srf network, we assigned confirmed and predicted

targets to each miRNA. We found 192 miRNA targets to be also

differentially expressed in Srf knockdown, with a higher fraction of

upregulated genes (57% of all upregulated genes) compared to

downregulated genes (44% of all downregulated genes, Figure 5A).

The majority of these dysregulated target genes had 39UTR target

sequences for a panel of our differentially expressed miRNAs

(median of 3). The differential expression of miRNAs potentially

impacts up to 45% of all differentially expressed genes by Srf

knockdown, a higher proportion of genes than expected (Fisher’s

exact test, p = 1.77e-5), and provides a feasible explanation for the

observed consequences on the transcriptional portrait (Figure 5B).

A representative example is shown in Figure 5C. It comprises the

three genes Igfbp5 (insulin-like growth factor binding protein 5),

Nfic (nuclear factor I/C) and Ctnnal1 (catenin alpha-like 1). None

of these factors has a direct Srf binding site in ChIP-chip/seq but

all are found to be upregulated in the Srf siRNA knockdown

experiment. Using miRNA target prediction a number of

downregulated miRNAs were found that provide a possible

explanation for this indirect regulation (see Table S11).

Figure 4. The impact of Srf and H3ac on gene expression in mouse hearts during cardiac maturation. (A) Cardiomyocyte maturation
over three developmental stages around birth (E18.5, P0.5 and P4.5) with respect to alignment of myofibrils and cell-cell contacts. Paraffin sections of
mouse hearts double labeled with antibodies against a-Actinin and Connexin 43 (Cx43) and examined under the confocal microscope. The a-Actinin
stained myofibrils (in green, second panel) elongate and assemble throughout the maturation process while Cx43 (in red, third panel) forms distinct
punctuations, which become larger and brighter. Nuclei are visualized in blue by DAPI counterstaining and merged pictures are shown in the lower
panel. Scale bar 10mm. (B) Confirmation of the dependency of expression levels on H3ac and Srf binding in mouse hearts using the time-series E18.5,
P0.5 and P4.5. Expression levels as well as ChIP enrichment were analyzed by quantitative real-time PCR and normalized to Hprt and Input,
respectively. Shown changes of expression levels as well as Srf and H3ac binding over time are in general significant. Values are given in percentages
relative to E18.5. For Pitx2 and Nrp2 the additive effect of several measured genomic regions is shown.
doi:10.1371/journal.pgen.1001313.g004
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Confirmation of Novel Transcription Factor Binding Sites
We confirmed a panel of observed transcription factor binding

sites by qPCR (Figure S5). Using luciferase reporter gene assays,

we validated an Srf binding site in the regulatory region of mouse

miR-125b-1 as well as an Nkx2.5 binding element in the core

promoter region of human DPF3. Mmu-miR-125b-1 is known to

be deregulated in heart diseases [44] and was found to be

differentially expressed in Srf siRNA knockdown. Figure 6A shows

the Srf binding motif and respective Srf ChIP-seq peak within the

regulatory region of miR-125b-1. Luciferase reporter gene assays

with wildtype and mutated fusion constructs confirm its function-

ality. Mutation of the potential Srf binding sequence (CAGC-

CAACRCATAGTAC) significantly reduced the transcriptional

activity of the reporter gene. DPF3 is a novel epigenetic regulator

of heart and skeletal muscle development [13]. Within the 1.2kbp

promoter region we found three Mef2 matrices and one Nkx2.5

matrix using TRANSFAC MATCH [45]. In case of Mef2a, all

three potential binding sites can drive reporter gene expression as

reported [13]. Figure 6B shows the binding of Nkx2.5 to the

human DPF3 core promoter. Subsequently, co-transfection of

reporter construct and increasing amounts of Nkx2.5 expression

vector revealed a dose-dependent transcriptional activation by

Nkx2.5. In line with this, deletion of the potential Nkx2.5 binding

element (TCCACTTTCC) showed that transcriptional activity

was indeed mediated through this motif, as activation was lost in

the mutated construct.

Srf-Centered Transcription Network Integrating
Srf-Binding Events, H3ac, miRNAs, and Differential
Expression in Srf Knockdown

In addition to a genome-wide perspective, our analysis also

provides useful information on the level of individual genes. We

conducted an extensive literature search and built an Srf centered

cardiac transcription network, where we subsequently integrated

our findings from the Srf and histone 3 acetylation ChIP and Srf

siRNA-mediated knockdown experiments (Figure 7). Thus our

data add regulatory content to the nodes, which are connected by

referenced interactions. The network depicts common regulation

by Srf and H3ac as well as the impact of the posttranscriptional

modulation of expression levels by miRNAs. Target genes

important in the cardiovascular context are arranged to their

biological roles like regulation in muscle contractility or cardiac

growth and conduction. As an example the apoptotic machinery is

regulated at all three levels (Srf, H3ac and miRNAs) through

several pathways involving pro-apoptotic (Casp3, miR-320,

Hsp20/a8/a5, Bax) as well as anti-apoptotic (miR-21, Bcl2,

Mcl1) genes.

Discussion

We present a systematic in-vivo analysis of three levels

regulating cardiac mRNA profiles, namely regulation of gene

transcription by epigenetic and genetic factors and posttranscrip-

tional regulation by short noncoding RNAs. We performed

genome-wide profiling of the DNA occupancy of four key cardiac

transcription factors (Gata4, Nkx2.5, Mef2a and Srf) and studied

their co-occurrence with four activating histone modifications

(H3ac, H4ac, H3K4me2 and H3K4me3) as well as the potential

regulatory impact of miRNAs. We combined these data with

mRNA expression profiles in wildtype and RNAi mediated

knockdown cells and finally confirmed key conclusions in a time-

course of cardiac maturation in mouse around birth.

In human and mouse ,2,000 transcription factors, more than

100 different modifications of histone residues and ,700 miRNAs

modulate the mRNA profiles corresponding to ,23,000 genes.

Major insights have been gained into the regulation of the

transcription process by DNA-binding transcription factors [46–

48]. The role of histone modifications in establishing and

maintaining the chromatin status and their function as protein

interaction partners has been discovered [12,13,49]. More

recently, the high impact of miRNAs on mRNA profiles and

their function as inhibitors of the translation process has emerged

[43,50–52]. However, we lack data showing the interaction

between these three levels of regulation. The initial insights were

Figure 5. miRNAs and their impact on the Srf-driven transcription network. (A) RNAi knockdown of Srf in HL-1 cardiomyocytes results in 42
differentially expressed miRNAs (49 loci) (Table S10). Target prediction of these mostly downregulated miRNAs revealed 192 differentially expressed
genes, with a higher fraction of upregulated genes (57% of all upregulated genes) compared to downregulated genes (44% of all downregulated
genes). (B) Direct Srf targets represent only a small fraction of all differentially expressed genes in Srf knockdown (orange and blue). Targets of
differentially expressed miRNAs impact 45% (dark grey) with a partial overlap of direct Srf targets (orange). Approximately 50% of differential
expression is driven by other secondary effects (light grey). (C) Exemplary network of indirect gene regulation by miRNAs. The genes Igfbp5, Nfic and
Ctnnal1, which are not directly bound by Srf, are predicted targets for a set of downregulated miRNAs and are found to be upregulated in the Srf
knockdown.
doi:10.1371/journal.pgen.1001313.g005
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obtained by focusing on the different levels independently, and it

was long thought that transcription factors are the main driving

force. We feel that it is a fine-tuned balance and our data favor a

comparable impact for all three levels with a high degree of

interdependency. Our data indicate that histone 3 acetylation is

involved in the regulation of Srf as well as Gata4 dependent

cardiac genes and moreover potentially compensates the loss of

transcriptional activation in Srf knockdown. Vice versa histone

modifying enzymes represent an important group of direct

downstream targets of Srf (e.g. histone demethylases containing

a Jumonji domain such as Jmjd1c, Jmjd2b, Jmjd3, Jmjd4 and

Jmjd5, see Figure 7). A similar picture emerges for the relationship

of miRNAs and Srf such that the Argonaute proteins Eif2c2

(Ago2) and Eif2c3 (Ago3), which are direct Srf targets, play a key

role for miRNA mediated-mRNA cleavage via the RISC complex

[53]. In line with this, we found a panel of miRNAs deregulated in

Srf knockdown, explaining three times more differentially

expressed genes than Srf binding events alone could do. We are

convinced that these data reflect the high degree of interdepen-

dency between the different levels. In addition, our data underline

the high potency of compensatory regulation between DNA-

binding transcription factors. We show that genes regulated by

multiple transcription factors were significantly less likely differ-

entially expressed in RNAi knockdown of one respective factor. So

far, it had been postulated that members of a gene family (e.g. Mef

transcription factors [4,54,55]) or factors with redundant paralogs

could buffer each others dysfunction [18]. Our data extend these

findings to primarily unrelated transcription factors, which share

common targets.

The observed correlation of histone 3 acetylation with Srf and

Gata4 target gene activation underlines the beneficial effects seen for

HDAC inhibitors for a variety of disease states [17]. Further, we favor

the view that modulation of the histone modification status might be a

plausible explanation for incomplete penetrance or phenotypic

diversity as frequently observed in mouse models with identical

genetic background or in human disease such as congenital heart

disease. Here, a distinct gene mutation can lead to a broad portfolio

of phenotypes, such as mutations in Cited-2 [56,57]. Environmental

factors are potentially causative for these observation and recent

reports show a link between environment and alterations of histone

modifications. Thus, the change of the phosphorylation status and

thereof the activity of histone modifying enzymes mediated for

example via the calcium/calmodulin-dependent protein kinase II

(CaMKII) could represent a mechanistic explanation [58–60].

In accordance with others, we found that the overwhelming

proportion of differentially expressed genes in our RNAi

experiments were indirect targets of the respective transcription

factor. Computational studies suggest that up to 30% of all human

genes are regulated by miRNAs, while each miRNA may control

hundreds of gene targets [61,62]. Our in-vivo data highlight the

global impact of miRNAs on expression profile alterations seen in

transcription factor loss-of-function studies. Differentially ex-

pressed miRNAs in Srf knockdown potentially explain up to

45% of the altered mRNA profile in our study.

Figure 6. Promoter analysis of miR-125b-1 and DPF3. (A) Srf ChIP-seq analysis revealed an Srf binding region downstream of mmu-miR-125b-1.
Shown are the positions of mmu-miR-125b-1 and the Srf binding motif with its core sequence in red. The Srf ChIP-seq peak region was cloned as
mmu-miR-125b-1 promoter into the pGL3basic vector for luciferase reporter gene assay. Srf alone and in combination with its cofactor Myocardin
(Myocd) significantly increases the activation of the luciferase beyond activation driven by endogenous Srf. Mutation of the core sequence
(GCCARTAGT) of the Srf binding motif (Mut) abolished activation by Srf and Myocd compared to the wildtype (WT). (B) ChIP-chip showed binding of
Nkx2.5 to an evolutionary human-mouse conserved region of the DPF3 core promoter. Depicted is the Nkx2.5 binding element, which were deleted
for luciferase reporter gene assays (red). The DPF3 core promoter fused to luciferase alone and in combination with increasing amounts of Nkx2.5
expression vector showed dose-dependent activation by Nkx2.5 beyond the endogenous Nkx2.5 activation. Deletion of the Nkx2.5 binding element
(red) abolished activation by Nkx2.5 compared to the wildtype (WT). The empty pcDNA3.1 expression vector and the empty pGL3basic luciferase
reporter vector served as controls for transcription factors and reporter constructs, respectively. The resulting p-values are indicated: p,0.001 (***),
p,0.01 (**).
doi:10.1371/journal.pgen.1001313.g006
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In summary, our data indicate that the different levels

regulating mRNA profiles have a high degree of interdependency.

The different nodes of the regulatory network have the potential to

modulate each other and should therefore be viewed in context.

Further functional tests will be required to evaluate regulatory

circuits on a single gene basis. It will be of interest to study how the

interdependency of the different factors stabilizes the overall

function of given networks, and how it contributes to the resistance

to external disturbances as well as to the impact of novel

therapeutic tools such as HDAC inhibitors or antagomirs.

Materials and Methods

All methods are abbreviated and additional information is

provided in the online supplement.

Ethics Statement
Human cardiac tissue was obtained from the German Heart

Center with ethical approval by the responsible institutional review

committee (Charité 129/2000) and informed consent of patients

[63].

Cell Culture and Cardiac Samples
HL-1 cells were provided by Prof. William C. Claycomb

(Departments of Biochemistry and Molecular Biology and Cell

Biology and Anatomy, Louisiana State University Medical Center,

New Orleans, LA 70112) and cultured as described [64]. The cells

were used for experiments at their maximum contraction.

HEK293T cells were cultivated according to standard protocols.

Mouse hearts at the indicated stages of CD1 and C57/Bl6 strain

were dissected in cold PBS from the rest of the body. For

Figure 7. Srf-centered transcription network integrating Srf binding events, H3ac, miRNAs, and differential expression in Srf
knockdown. The shown transcription network is based on an extensive literature search [7,26,41,43,79–120] and integration of our findings. Our
data add the regulatory content to the nodes, which are connected by referenced interactions. It illustrates the common regulation by Srf and
histone 3 acetylation (H3ac) as well as the impact of the posttranscriptional modulation of expression levels by miRNAs. Data based on Illumina
expression array, ChIP-chip/seq, miRNA-seq and qPCR. Srf binding and H3ac occurrence are depicted in small boxes and up- (red) or downregulation
(green) in Srf knockdown is further indicated.
doi:10.1371/journal.pgen.1001313.g007
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subsequent RNA isolation heart samples were directly snap frozen

in liquid nitrogen and stored at 280uC. For ChIP or histology

experiments heart samples were fixed with formaldehyde or

paraformaldehyde, respectively.

siRNA and Cell Transfection
For RNAi knockdown HL-1 cells were transfected with two

different siRNAs (Qiagen) per transcription factor (Table S12)

using two biological replicates each (4 replicates in total). As a

control, the cells were transfected with an unspecific siRNA

(siNon). Cells were grown to 70–80% confluence for at least two

days without addition of antibiotics. 36105 cells were seeded into

6-well plates with 2ml media resulting in 70–80% confluence after

4h. The mixture of 9ml (20mM) siRNA in 270ml of DMEM media

and 16ml Lipofectamine 2000 (Invitrogen) in 470ml DMEM media

was incubated for 20min at room temperature and added drop

wise to the cells. The cell culture media was changed after 24h and

cells were harvested for protein extraction or RNA preparation

after 48h. For reporter gene assays HEK293T cells were

transfected with Transfast (Promega) according to manufacturer’s

instruction.

mRNA Expression Analysis in Wild-Type and siRNA–
Treated Cells

Total RNA of cultured cells and heart tissues was isolated using

TRIzol reagent (Invitrogen) followed by DNase digest (Promega)

and ethanol precipitation according to standard protocols. Reverse

transcription reactions were carried out via AMV-RT (Promega)

with random hexamers (Amersham Pharmacia Biotech). Illumina

array analysis was performed by Integragen (France). For each set

of experiments two biological and two technical replicates were

analyzed using Illumina Mouse-6 v1.1 genome-wide microarrays.

To verify transcript expression levels of HL-1 cells and mouse

hearts, quantitative real-time PCR measurements were performed

using SYBR Green PCR Master Mix (ABgene) and the ABI

PRISM 7900HT Sequence Detection System. Gene expression

was calculated using the DCT method with normalization to the

housekeeping gene Hprt. Primer sequences and additional results

are given in Tables S8 and S13 and Figure S1.

Analysis of mRNA Expression Data in Wild-Type and
siRNA–Treated Cells

The raw and transformed data of the Illumina expression

microarrays (Mouse-6 v1.1 genome wide arrays) were deposited in

the ArrayExpress database at the EBI (accession code E-TABM-

376). Probe intensities were obtained from Integragen (France).

Probes were filtered according to the detection score given by the

Illumina array analysis software BeadStudio. Only probes with a

detection score greater or equal to 0.95 in at least one experiment

were retained. Probe intensities were qspline normalized and

probes assigned to one transcript (Ensembl v46, mm8) were

normalized using the median polish procedure. Differential

expression was determined using the limma package [65] of

Bioconductor 2.0 [66] and p-values were corrected for multiple

testing according to Benjamin and Yekutieli [67]. Only transcripts

with p-value smaller or equal to 0.05 in both siRNA-mediated

knockdowns when compared to siNon-treated cells were consid-

ered to be significantly differentially expressed.

MicroRNA Expression Analysis
Small RNAs were isolated from total RNA of HL-1 cells and

prepared for miRNA sequencing using Illumina Kit FG-102-1009

according to manufacturer’s protocol. For quantification of miR-

133a-1 in mouse hearts stem-loop qPCR (primer sequence:

GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCA-

GAGCCAACCAGCTG) and TaqMan qPCR (forward primer:

59ATTAATTTGGTC CCCTTCAAC, reverse primer:59GT-

GCAGGGTCCGAGGT, TaqMan probe 21 (Roche)) were

performed as described elsewhere [68,69].

MicroRNA-seq Data Analysis
Small RNAs were sequenced by Illumina/Solexa next-genera-

tion (single-end) sequencing technology. The small RNA-seq data

were deposited in the Gene Expression Omnibus (GEO) database

at the NCBI (accession code GSE26397). In two independent

siRNA-mediated knockdowns of Srf (Srf-si1 & Srf-si2) and an

unspecific siRNA we retrieved 14,911,499 (Srf-si1), 14,518,157

(Srf-si2) and 14,742,382 (siNon) unfiltered 36bp reads, which

yielded 5,634,650 (Srf-si1), 5,503,661 (Srf-si2) and 5,674,429

(siNon) unique (i.e. non-redundant) read sequences. These reads

were mapped to the mouse reference genome (NCBI v37, mm9)

using MicroRazerS [70] allowing at most 20 equally-best hits for

each read and using a seed length of 16 bases with at most one

mismatch. For Srf-si1 96.7%, for Srf-si2 96.2% and for siNon

96.5% of all unique sequences could be mapped to the mouse

genome. In total 402 miRNAs were identified, corresponding to

450 different loci. To annotate the aligned sequence reads with

miRNAs, we checked for overlaps with miRNA positions (http://

www.miRBase.org/, release 14.0). We tested for differential

expression between the Srf-si1/2 and siNon libraries using Fisher’s

exact test with FDR correction for multiple testing (p#0.05). For

all miRNAs identified as significantly differentially expressed in at

least one siRNA knockdown of Srf (but both either up- or

downregulated) compared to negative control we did target gene

predictions using the miRanda v3.0 algorithm [71]. Finally, the

target prediction revealed 192 of 429 differentially expressed

genes. Using a fisher exact test we found the number to be

statistical significant when compared to a prediction based on all

versus differentially expressed genes (p = 1.77e-5).

miRNA Expression Levels in HL-1 Cells Compared to
Human Right Ventricle

The number of unfiltered 36bp reads for wildtype HL-1 was

14,440,535, while the human heart samples produced 14,475,968

(NH-1, normal heart (NH)), 16,270,049 (NH-2), 12,940,172 (NH-

3) and 14,890,970 (NH-4) unfiltered reads, respectively, yielding

5,541,954 (HL-1), 5,176,852 (NH-1), 7,189,852 (NH-2), 3,397,365

(NH-3) and 5,075,129 (NH-4) unique reads. Mapping to mouse

and human reference genomes (mm9, NCBI v37 and hg18, NCBI

v36) was performed by MicroRazerS [70] allowing at most one

mismatch and 20 equally-best hits per read with a seed length of

16 (mouse) and 18 (human), respectively. 97% (HL-1) and 87–91%

(NH-1-4) of all unique sequences could be mapped to the

corresponding reference genome. In total 196 common, 107

mouse-specific and 180 human-specific miRNA families were

found (http://www.miRBase.org, release 14.0). To account for

cross-species differences in the specific-expression levels, we used

rank-transformed miRNA expression levels for comparison.

Chromatin Immunoprecipitation
ChIP experiments with HL-1 cells and mouse hearts were

carried out as previously described [72] with minor modifications.

The antibodies used are given in the Table S14. ChIP-chip

experiments of HL-1 cells were performed on NimbleGen custom

made microarrays with two biological duplicates (containing two

pooled technical replicates each). Samples were labeled and
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hybridized according to NimbleGen standard procedure. Sample

preparation for ChIP-seq of HL-1 cells was performed according

the Illumina library preparation procedure. Two pooled biological

replicates for Srf and H3ac were sequenced using Illumina/Solexa

next-generation (single-end) sequencing technology. ChIP-chip

and ChIP-seq data were confirmed by quantitative real-time PCR

using the SyberGreen I PCR Master Mix (Abgene) and the ABI

PRISM 7900HT Sequence Detection System or using the

RealTime ready DNA Probes Master with the Universal

ProbeLibrary and the LightCycler 1536 (Roche). Results of

ChIP-qPCR experiments are given in Figure S5 and primer

sequences for verifications in Table S13. ChIP after siRNA

knockdown of Srf in Hl-1 cells was performed using the LowCell

ChIP Protein A Kit from Diagenode according to the manufac-

ture’s instructions.

ChIP-chip Data Analysis
The raw and transformed data of the ChIP-chip experiments

and the array design were deposited in the ArrayExpress database

(accession code E-TABM-378 and A-MEXP-893). We designed a

set of two 385k NimbleGen arrays to represent enhancer and

promoter regions of 12,625 transcriptional start sites based on a

broad panel of muscle relevant data source (Table S1) [13]. The

arrays represented 89Mbp of the mouse genome build mm8 and

contained 740,000 probes with a tiling of 110bp (50–60bp gap

between probes). This included conserved regions (based on

PhastCons [31] score thresholds of 0.2) within 10kb upstream, the

full sequence within 2kb upstream and the first exon and intron of

the corresponding transcript.

The array intensities of each channel were normalized and log-

transformed using VSN [73]. Log-ratio enrichment levels for each

probe were calculated by subtraction of log Cy3 (Input) from log

Cy5 (ChIP sample). The signal of transcription factors were

smoothed by calculating a median over the probes inside a sliding

window of 600bp. To distinguish enriched probes a z-score and

empirical p-value for each probe on the null hypothesis that these

z-scores have a symmetric distribution with mean zero was

calculated. Significant probe positions (corrected for multiple

testing [74], FDR,0.1), with a distance less than 210bp were

combined into transcription factor binding sites. The histone

binding sites were identified as described previously [39].

ChIP-seq Data Analysis
The ChIP-seq data were deposited in the GEO database

(accession code GSE26397). Of the initial 6,967,318 and

8,364,328 sequence reads obtained in the Srf and H3ac ChIP-

seq experiment, respectively, 4,543,634 (65.2%) for Srf and

6,141,144 (73.4%) for H3ac could be mapped to the mouse

reference genome (NCBI v37, mm9) using the read mapping tool

RazerS [75]. Only uniquely mapped 36nt reads with at most two

mismatches were retained. To identify enriched regions we used

the CisGenome software [76]. For Srf we used a window size of

100bp, a step size of 25bp and a read count level of 10

(FDR = 1.6%). For H3ac we applied a window size of 250bp, a

step size of 50bp and a read count level of 10 (FDR = 4.7%). After

peak localization the found Srf and H3ac peaks were filtered (see

Text S1) identifying 2,190 Srf and 10,486 H3ac ChIP-seq peaks.

TFBS Conservation Analysis
The occurrence of transcription factor binding motifs within

observed peaks was analyzed with TRANSFAC MATCH

program [45] by using 6250bp sequence surrounding the peak

center and position weight matrices corresponding to the studied

factors obtained from TRANSFAC [29]. The TRANSFAC

matrices used for motif search are listed in Table S7. Presence

of the CArG-box was determined by searching the pattern CC(A/

T)6GG with two errors at most. The degree of conservation of

respective motifs was studied using PhastCons conserved elements

[31]. In addition 100% conservation between human and mouse

was defined using 100bp windows.

Occurrence and Co-Occurrence of TFBS
Identified ChIP-chip or ChIP-seq binding sites were assigned to

transcriptional start sites if located within 10kb upstream or in the

transcribed region. General co-regulation of a gene by two or

more transcription factors was defined irrespective of the distance

between the binding sites. In addition, co-occurrence between

transcription factors or histone modifications was defined if the

centers of the peaks had a distance below 6500bp.

Gene Ontology Associations to Gene Groups
The association of gene groups to Gene Ontology (GO) terms

[77] was assessed as described previously [78] (conditional

hypergeometric test, p,0.001). To analyze the association of

differentially expressed transcripts with GO categories, transcripts

were mapped to genes. Overrepresentation was tested against all

genes represented on the ChIP and siRNA array, respectively.

Data Analysis
Standard bioinformatic analysis was carried out using R and

Bioconductor packages [66] as well as Perl and its BioPerl

modules. If not mentioned otherwise, p-values given are based on

Student’s t-test.

Protein Extraction and Western Blot
Specific or non-specific siRNA treated HL-1 cardiomyocytes

were used for Western Blot analysis to monitor the knockdown

efficiency at protein level. HL-1 cells were treated with lysis buffer

(20mM Tris-HCl pH 7.4, 150nM NaCl, 1mM EDTA, 1% Triton,

1mM DTT, 0.1mM PMSF, 16Protease Inhibitor Cocktail, 1mM

NaVO4) for protein extraction. Western Blot was performed

according to standard protocols. All antibodies with their

respective dilution are given in Table S14.

Reporter Gene Assays and Site-Directed Mutagenesis
Reporter constructs were made by cloning the 385bp long

human DPF3 minimal promoter (chr14:72.430.563–72.430.943,

NCBI36/hg18) and the 485bp long regulatory region downstream

of mmu-miR-125b-1 (chr9:41.390.238–41.390.700, NCBI37/

mm9) into the pGL3 basic vector (Promega). Transient co-

transfections were carried out in triplicates in 96-well plates in

HEK293T cells by transfecting 50ng of reporter vector, 5ng of

Firefly luciferase vector for internal normalization of transfection

efficiency and 50–150ng of the respective expression vectors.

Activity was measured by Dual-Luciferase assay (Promega) after

48 hours. Site-directed mutagenesis of DNA was carried out using

the QuikChange site-directed mutagenesis kit (Stratagene) accord-

ing to manufacturer’s instructions. Oligonucleotides for mutagen-

esis were designed to introduce deletions or mutations of the

potential Nkx2.5 or Srf binding sites. Mutagenesis was confirmed

by plasmid sequencing carried out at MWG Biotech.

Immunocytochemistry
For immunofluorescence analyses, the heart tissues were fixed

over night with 4% paraformaldehyde, dehydrated and embedded

in paraffin. Subsequently sections of 8mm were de-paraffinized,

rehydrated and antigen retrieval was performed in 10mM citric
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acid buffer (pH 6). Blocking was carried out in 5% normal goat

serum in PBS for 1h at room temperature. Primary and secondary

antibodies were applied in the same buffer for 2h at room

temperature, each followed by three washes in PBS and a DAPI

counterstaining. Antibodies with their respective dilution are listed

in Table S14. The sections were mounted in Flouromount G

(Electron Microscopy Science) and examined on a Zeiss LSM 510

META confocal microscope (Carl Zeiss).

Supporting Information

Figure S1 RNAi induced knockdown of Gata4, Mef2a, Nkx2.5

and Srf. Knockdown efficiency of two different siRNAs per

transcription factor in HL-1 cells was analyzed on protein level by

(A) Western Blot and (B) quantitative real-time PCR 48h after

transfection. Histone 3 served as loading control. mRNA

expression levels are normalized to Hprt and relative to unspecific

siRNA.

Found at: doi:10.1371/journal.pgen.1001313.s001 (0.12 MB TIF)

Figure S2 Influence of RNAi knockdown of Srf, Gata4, Mef2a

and Nkx2.5 on cell death 48h after transfection. (A) Cell viability

study. (B) Annexin apoptosis assay.

Found at: doi:10.1371/journal.pgen.1001313.s002 (0.12 MB TIF)

Figure S3 Co-occurrence of transcription factor binding sites

with histone modifications. Transcription factor binding sites of

Gata4, Mef2a, Nkx2.5 and Srf co-occur in ,80% with one or

more histone marks. The overlap of the transcription factor

binding events and the respective histone modification H3ac,

H3K4me2, H3K4me3 and H4ac is 55% on average. The

expected percentage overlap would be 23–38% based on 100times

random distribution of transcription factor binding sites on

genomic sequences.

Found at: doi:10.1371/journal.pgen.1001313.s003 (0.06 MB TIF)

Figure S4 The activating potential of Srf in relation to

accompanying histone modifications. Srf binding sites were

classified into five classes: ‘Srf only’ (only binding of Srf, no

histone modification is observed), H3ac, H3K4me2, H3K4me3

and H4ac (histone modification in addition to Srf binding).

Boxplots representing the distribution of expression levels of

transcripts assigned to these binding sites are shown. The number

of transcripts belonging to each group are indicates in brackets

below the group name. A single transcript can belong to multiple

groups if it has multiple histone modifications. Estimated

coefficients for the influence of individual histone modifications

on target gene expression and their associated p-values are derived

by a linear model using least square estimation and F statistics.

The ‘Srf only’ group was taken as reference.

Found at: doi:10.1371/journal.pgen.1001313.s004 (0.09 MB TIF)

Figure S5 ChIP-chip confirmation by qPCR. Known and novel

binding sites of Gata4 (A), Mef2a (B), Nkx2.5 (C) and Srf (D) were

confirmed by quantitative real-time PCR.

Found at: doi:10.1371/journal.pgen.1001313.s005 (0.08 MB TIF)

Table S1 Source considered for array design.

Found at: doi:10.1371/journal.pgen.1001313.s006 (0.23 MB PDF)

Table S2 ChIP-chip confirmation by literature. Conformation

of 42 genes, which were previously described to be directly or

indirectly regulated by Gata4, Mef2a, Nkx2.5 or Srf as pointed out

in the given publication.

Found at: doi:10.1371/journal.pgen.1001313.s007 (0.29 MB PDF)

Table S3 GO term analysis of genes bound by Gata4. Statistical

analysis of overrepresented ‘Biological process’ GO term associ-

ation of genes regulated by Gata4 in HL-1 cells according to

ChIP-chip data.

Found at: doi:10.1371/journal.pgen.1001313.s008 (0.24 MB PDF)

Table S4 GO term analysis of genes bound by Mef2a. Statistical

analysis of overrepresented ‘Biological process’ GO term associ-

ation of genes regulated by Mef2a in HL-1 cells according to

ChIP-chip data.

Found at: doi:10.1371/journal.pgen.1001313.s009 (0.24 MB PDF)

Table S5 GO term analysis of genes bound by Nkx2.5.

Statistical analysis of overrepresented ‘Biological process’ GO

term association of genes regulated by Nkx2.5 in HL-1 cells

according to ChIP-chip data.

Found at: doi:10.1371/journal.pgen.1001313.s010 (0.23 MB PDF)

Table S6 GO term analysis of genes bound by Srf. Statistical

analysis of overrepresented ‘Biological process’ GO term associ-

ation of genes regulated by Srf in HL-1 cells according to ChIP-

chip data.

Found at: doi:10.1371/journal.pgen.1001313.s011 (0.24 MB PDF)

Table S7 TRANSFAC identifier. Transcription factor binding

matrices which were used for motif search.

Found at: doi:10.1371/journal.pgen.1001313.s012 (0.23 MB PDF)

Table S8 Genes deregulated in RNAi knockdown of Gata4,

Mef2a, Nkx2.5 and Srf. Deregulation of gene expression for a

subset of genes was determined using quantitative real-time PCR.

Fold changes are calculated in relation to unspecific siRNA treated

cells.

Found at: doi:10.1371/journal.pgen.1001313.s013 (0.27 MB PDF)

Table S9 MiRNAs with Srf binding events. ChIP-seq analysis

reveals 22 miRNAs with at least one Srf binding event within a

genomic region of 610kb. Srf-ChIP peaks and miRNA positions

based on mouse genome NCBIv37 (mm9).

Found at: doi:10.1371/journal.pgen.1001313.s014 (0.23 MB PDF)

Table S10 Significantly deregulated miRNAs in Srf knockdown.

42 miRNAs (49 loci) were differentially expressed in Srf

knockdown compared to control miRNA loci based on mouse

genome NCBIv37 (mm9). Matched reads to mature and star

miRNA sequence based on miRBase annotations (release 14.0).

Found at: doi:10.1371/journal.pgen.1001313.s015 (0.32 MB PDF)

Table S11 Predicted miRNA targets (corresponding to

Figure 5C). Igfbp5, Nfic and Ctnnal1 represent up-regulated

genes with predicted miRNA target sites of down regulated

miRNAs in Srf knockdown.

Found at: doi:10.1371/journal.pgen.1001313.s016 (0.24 MB PDF)

Table S12 siRNAs sequences. Sequences of siRNAs used in

RNAi experiments of Gata4, Mef2a, Nkx2.5 and Srf in HL-1 cells.

Found at: doi:10.1371/journal.pgen.1001313.s017 (0.23 MB PDF)

Table S13 Oligonucleotide sequences. Primer sequences used

for qPCR expression measurements and ChIP-chip verification

and TaqMan Assays used for ChIP-qPCR measurements are

listed.

Found at: doi:10.1371/journal.pgen.1001313.s018 (0.28 MB PDF)

Table S14 Antibodies. Antibodies used in ChIP, Immunocyto-

chemistry and Western Blot and their respective amount used in

the experiments are given.

Found at: doi:10.1371/journal.pgen.1001313.s019 (0.24 MB PDF)

Table S15 Gata4, Mef2a, Nkx2.5, and Srf enriched ChIP-chip

peaks according to empirical distribution of lowly enriched probes

(FDR,0.1). Peak loci are based on mouse genome NCBIv36
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(mm8). Peaks were subsequently assigned to genes if they lay less

than 10 kb upstream or inside a gene (Ensembl v45).

Found at: doi:10.1371/journal.pgen.1001313.s020 (0.41 MB

XLS)

Table S16 Srf and H3ac enriched ChIP-seq peaks according to

CisGenome software. Sequence reads were mapped to mouse

genome NCBIv37 (mm9) using RazerS. Peaks were subsequently

assigned to genes if they lay less than 10 kb upstream or inside a

gene (Ensembl v54).

Found at: doi:10.1371/journal.pgen.1001313.s021 (1.62 MB

XLS)

Table S17 Gata4, Mef2a, Nkx2.5, and Srf differentially

expressed genes (Ensembl v45) using duplicates of two different

siRNAs.

Found at: doi:10.1371/journal.pgen.1001313.s022 (0.21 MB

XLS)

Table S18 List of miRNAs and target genes of differentially

expressed miRNAs in HL-1 cells treated with Srf siRNAs. MiRNA

loci based on mouse genome NCBIv37 (mm9). Matched reads to

mature and star miRNA sequence based on miRBase annotations

(release 14.0). For all miRNAs (in total 77) identified as

significantly differentially expressed in at least one siRNA

knockdown of Srf (Srf-si1/Srf-si2, but both either up- or

downregulated) compared to negative control target gene

predictions using the miRanda v3.0 algorithm were performed.

For prediction the mature miRNA sequences and the 39UTR

sequences from all differentially expressed genes were used.

Found at: doi:10.1371/journal.pgen.1001313.s023 (0.10 MB

XLS)

Text S1 Additional supporting Materials and Methods.

Found at: doi:10.1371/journal.pgen.1001313.s024 (0.31 MB PDF)
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