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ABSTRACT

Expanded runs of consecutive trinucleotide CAG
repeats encoding polyglutamine (polyQ) stretches
are observed in the genes of a large number of
patients with different genetic diseases such as
Huntington’s and several Ataxias. Protein aggrega-
tion, which is a key feature of most of these
diseases, is thought to be triggered by these
expanded polyQ sequences in disease-related
proteins. However, polyQ tracts are a normal
feature of many human proteins, suggesting that
they have an important cellular function. To clarify
the potential function of polyQ repeats in biological
systems, we systematically analyzed available infor-
mation stored in sequence and protein interaction
databases. By integrating genomic, phylogenetic,
protein interaction network and functional infor-
mation, we obtained evidence that polyQ tracts in
proteins stabilize protein interactions. This
happens most likely through structural changes
whereby the polyQ sequence extends a neighboring
coiled-coil region to facilitate its interaction with a
coiled-coil region in another protein. Alteration of
this important biological function due to polyQ ex-
pansion results in gain of abnormal interactions,
leading to pathological effects like protein aggrega-
tion. Our analyses suggest that research on polyQ
proteins should shift focus from expanded polyQ
proteins into the characterization of the influence
of the wild-type polyQ on protein interactions.

INTRODUCTION

Polyglutamine (polyQ) stretches of expanded pathological
length in human proteins have been observed to cause
neurodegenerative diseases such as Huntington’s disease
(HD) or several ataxias (1). The formation of insoluble
protein aggregates is a key feature of all known polyQ
diseases (2–4). Biochemical and cell biological experiments

have demonstrated that expanded polyQ tracts drive the
spontaneous assembly of insoluble protein aggregates in
disease model systems (5), suggesting that polyQ-mediated
protein misfolding and aggregation are critical for disease
development. However, it remains unclear whether
polyQ-mediated aggregation of proteins is the cause or
the consequence of progressive neurodegeneration in
polyQ diseases (6,7). Further theoretical and experimental
studies are required to address the role of polyQ-
containing proteins under pathological and non-
pathological conditions (8).
Besides their association with disease development,

polyQ sequences may have normal functions. Indeed,
they are present in more than 60 human proteins (9),
and some lower organisms, such as the amoeba
Dictyostelium discoideum (10), possess several hundred.
However, their function has not yet been determined
(11). It was hypothesized that they form a flexible spacer
between protein domains like other low complexity regions
(12–14). Anecdotal experimental evidence suggests a role
of polyQ tracts in activation of gene transcription (15).
Accordingly, statistical studies revealed that proteins con-
taining a polyQ stretch are biased toward functions
related to transcriptional regulation and nuclear localiza-
tion in several species (12,16,17). Also, a more general role
in mediating protein–protein interactions has been sug-
gested (18).
In order to advance our understanding of the functions

of polyQ regions in proteins, we investigated their poten-
tial properties from a systemic point of view, with a par-
ticular focus on phylogenetic conservation, presence in
protein interaction networks and functional aspects of
protein families containing polyQ tracts. Our analyses
suggest that the normal function of polyQ regions in
proteins is to stabilize protein–protein interactions (PPIs)
and that the pathological effect of polyQ expansion would
then be due to a gain of abnormal interactions eventually
leading to protein aggregation.
We present our results starting with the analysis of

CAG repeats at the nucleotide level, moving on to the
analysis of protein sequences with polyQ tracts and phylo-
genetic studies of protein families, to the investigation of
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protein interaction networks of polyQ-containing proteins
and finally to an examination of features of the sequences
adjacent to polyQ tracts.

MATERIALS AND METHODS

Sequence data and annotation

Human genomic sequence data and gene annotations were
retrieved from the UCSC (human: GRCh37/hg19, rat:
Baylor 3.4/rn4, mouse: NCBI37/mm9 and fly: BDGP
R5/dm3) (19). Conflicting assignments for a genomic
region due to different splicing forms were resolved
by giving priority to assignments in the following order:
protein-coding exon, UTR, intron, intergenic region.
Protein sequences were downloaded from UniProt
(version 15.6) (20), which consists of the manually
curated and non-redundant Swiss-Prot database and a
largely automatically annotated TrEMBL data set.
Protein domain annotations were taken from Pfam
(version 23.0) (21) and protein family definitions from
the TreeFam database (22). For the analyses of
human protein–protein interactions (PPIs), the HIPPIE
database was used (23). HIPPIE is a large integrated
PPI network that consists of most commonly used
human experimental PPI databases. For the PPI analysis
of other species, we retrieved the BioGRID database (24)
and removed genetic interactions (Saccharomyces
cerevisiae v3.1.74 and Drosophila melanogaster v3.1.69).

Definition of the polyQ set

We examined a selection of proteins with a stretch of con-
secutive Qs. We found that a threshold of 10 was the
minimum length that recognized the set of nine known
human polyQ disease proteins (1). Ataxin-7 is, among
those disease proteins, the one with the minimum
polyQ length of 10 residues in its non-expanded form.
We allowed for one mismatch (independent of its
position within the polyQ tract) taking into account that
polyQ stretches are often interspersed with single amino
acids (as in the known polyQ D. melanogaster Homeobox
proteins Deformed and Antennapedia).
Where possible, we restricted our analyses of species-

specific polyQ sets to proteins from the manually
curated and non-redundant Swiss-Prot. For the analysis
of functional annotations and sequence features enriched
in the polyQ set, we defined a canonical set of representa-
tive species that had at least 750 protein entries in
Swiss-Prot (to guarantee a sufficiently large coverage of
their proteomes in the sequence database) and at least
eight polyQ proteins (to allow for conclusive enrichment
statistics). From the resulting 13 species, we removed two
yeast members (Kluyveromyces lactis and Candida
albicans) and kept only S. cerevisiae. Thereby, we came
up with a compact though heterogeneous set of 11 repre-
sentative species: Homo sapiens, Bos taurus, Rattus
norvegicus, Mus musculus, Danio rerio, D. melanogaster,
Caenorhabditis elegans, Arabidopsis thaliana, S. cerevisiae,
D. discoideum and Neurospora crassa.
To assemble the set of species for the comparison of

polyQ frequencies (Figure 2), we choose the same selection

criterion on minimum number of protein entries in
Swiss-Prot as before (>750 protein entries) without any
threshold on the polyQ number. For clarity reasons, we
removed several Bacteria since they have no polyQ
proteins.

Only for the purely quantitative analysis of domains
correlated with the presence of polyQ (Table 1;
Supplementary Tables S1 and S2) and for the analysis
and discussion of frequencies within non-model organ-
isms which are much less represented in Swiss-Prot, we
additionally included the automatically curated
TrEMBL.

Randomization test for the detection of domains enriched
in polyQ proteins

To detect overrepresented domains in the set of proteins
interacting with the polyQ proteins in the PPI network,
a randomization test was applied. As a test statistic, the
number of interactions between the polyQ or the random
set, and the domain set was calculated. The background
distribution was generated by selecting a set of non-
polyQ proteins with the same or more interacting
partners than those in the polyQ set and containing the
same amount of transcription factors. A similar random-
ization procedure was applied in the test for enrichment
of polyQ proteins in the set of proteins that interact with
polyQ proteins.

Gene ontology analysis of proteins with many partners

We assigned the number of interactions in which each
protein is participating (their degree) to all human and
yeast proteins and retrieved the top 86 proteins (corres-
ponding to the size of the human polyQ set) as well as
the 10% with the highest degree for each species. From
these lists, we removed all polyQ proteins. We then
calculated the enrichment of GO terms among these
proteins as compared to proteins that have at least
one interaction partner as a background using the web
tool DAVID (25). The resulting GO terms were cor-
rected for multiple testing with the Benjamini–
Hochberg method.

RESULTS

PolyQ repeats have functional and evolutionary features
that have been proposed to be relevant at different
inter-related molecular levels: nucleotide sequences,
protein sequences, protein structures and protein inter-
action networks. For this reason, we have studied and
combined analyses at those levels to obtain a systematic
overview of polyQ function and evolution.

Distribution of CAG repeats in the human genome

Glutamines in proteins can be encoded in human genes by
either CAG or CAA codons. However, the polyQ
stretches that are enlarged in human disease proteins are
encoded almost exclusively by pure CAG runs, while CAA
repeats have not been observed (1). This led to the sug-
gestion of a possible mechanism for their generation by
DNA slippage and hairpin formation during DNA
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replication facilitating length extensions to which CAG
but not CAA repeats are prone (26). Are CAG repeats,
and the polyQ encoded by them, just artifacts of faulty
DNA replication without biological function?

This question can be answered by examining the
genomic location of CAG repeats. If their genomic
location was solely determined by random processes
such as copy errors during DNA replication, and they
underwent no evolutionary selection, they should be
evenly distributed in the genome. On the contrary, if
they had a biological function, their distribution should
correspond to the molecular level of action: a function on
RNA level would bias their genomic position toward
transcribed genomic regions whereas a function in
proteins would shift their distribution toward protein-
coding exons.

We studied the distribution of CAG repeats of 10 or
more consecutive trinucleotides in the human genome.
To measure whether the observed distribution is random
or biased toward specific elements, we calculated the
relative number of repeats falling into different regions
such as protein-coding exons, introns, untranslated
regions (UTRs) and intergenic regions. These frequencies
were normalized by the fraction of the genome covered by
the respective region type (Figure 1). Indeed, of 136 CAG
repeats considered, 33 are in protein coding exons as pre-
viously described (27) (�43-fold enrichment over a
random expectation). Although those 33 CAG repeats in
coding regions could potentially encode three types of
amino acid repeats depending on the reading frame
(polyQ, polyS and polyA, for codons CAG, AGC and
GCA, respectively), 28 coded for polyQ. This suggests
that even if CAG repeats are accidental, they are
selected for the encoding of polyQ in proteins, suggesting
that polyQ has a biological function. Accordingly, the
number of CAG repeats in introns and intergenic
regions is close to random expectation (8 and 89, respect-
ively; Figure 1). However, 6 CAG repeats are in UTRs

(8-fold over random expectation), including the known
disease locus in the 50-UTR of the gene PPP2R2B
causing spinocerebellar ataxia type 12 (28), suggesting
that they have a function at the transcript level. We also
found CAG repeats enriched in UTRs and protein coding
exons in rat, mouse and fly, though to a lower degree as in
human (UTR enrichment ranges from 1.7- to 2.5-fold and
exon enrichment from 3.1- to 5.3-fold) (Supplementary
Figure S1a–c).
For comparison, we did an analysis considering con-

secutive runs composed of both codons encoding glutam-
ine (CAG or CAA). These mixed trinucleotide repeats are
11 times more frequent in the human genome than pure
CAG repeats. Like CAG repeats, the mixed repeats were
enriched in exons and randomly distributed outside tran-
scripts; their presence in UTRs, unlike CAG repeats, was
close to random expectation. Together, these results
suggest that CAG repeats have a function both at the
protein and the transcript level.
We also analyzed the frequencies of pure CAA repeats

in the different genomic region types. We found them to
be generally more frequent in the human genome as
compared to pure CAG repeats (1000 versus 136) but
largely absent from protein coding regions (just one
CAA repeat falls into a translated region encoding a
polyQ stretch in the human protein ZFHX3). We note
that there is a 2-fold enrichment of genes encoding
tRNAs with an anticodon for CAG as compared to
tRNAs matching CAA (21 versus 11) and that the CAG
codon abundance is almost 3-fold higher in human exons
(29), but these numbers alone do not explain the 243-fold
higher relative amount of CAG repeats in human protein
coding regions.
Similarly, we did a calculation for CTG repeats in the

human genome, which, like CAG repeats, are CG rich and
when expanded are known to cause diseases of altered
RNA function (1) such as Myotonic dystrophy type 1
(30). Of a total of 136 CTG repeats, 7 were found in
coding regions: 4 encoding for polyL (CTG codon), 3
for polyA (GCT codon) and none for polyC (TGC
codon). Comparison to random expectation indicates
selection for protein function. As for CAG, the number
of CTG repeats found in UTRs was significantly above
random expectation, suggesting also that they have a bio-
logical function in transcripts. Recent evidence indicates
that CTG and CAG repeats form RNA–DNA hybrids
(R loops) and it has been hypothesized that these struc-
tures may have a biological role (31,32).
As CGG repeats of length 6 have been previously

described as being the most strongly overrepresented
trinucleotide repeats in human exons (27), we also
compared their distribution in the human genome to
that of CAG repeats. We observed a similar distribution
as the one for CAG and CTG with strong enrichment in
UTRs and protein coding exons. In summary, whereas
CAG repeats are clearly selected because they code
polyQ in human proteins, there is some evidence of their
function in non-coding parts of transcripts. We observed
this in other mammals and for other CG rich repeats
expanded in disease such as CTG.

Figure 1. Frequency of trinucleotide repeats in the human genome.
The y-axis represents the log2 of the ratio between the relative
number of repeat runs observed (considering runs of at least 10 con-
secutive trinucleotides) and the proportion of the genome that is
covered by the respective genomic region type.
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Investigating the relative number of polyQ proteins
in different organisms

We determined the frequency of polyQ containing
proteins in a large number of species belonging to a

wide taxonomic range (20). For this analysis (and here-
after, unless otherwise indicated), we identified as polyQ
proteins those containing at least one polyQ stretch with a
minimum length of 10 glutamines allowing for one

Figure 2. Relative amount of polyQ proteins in a representative set of species. The graph represents the fraction of proteins of each species’ available
proteome that contains a polyQ tract. Species included had more than 1000 protein sequences in the UniProt/Swiss-Prot database (version 15.6) (20).
For simplicity, just two bacterial species were included in the plot since all of those analyzed had very few or no polyQ proteins.

Table 1. Correlation of domains to polyQ presence over species

Pfam identifier Description Class Correlation on
eukaryotic subset

PF03810 Importin-beta N-terminal domain 0.530
PF01302 CAP-Gly domain 0.522
PF12171 Zinc-finger double-stranded RNA-binding ZF 0.494
PF02207 Putative zinc finger in N-recognin (UBR box) UBX, ZF 0.493
PF01363 FYVE zinc finger PI, ZF 0.479
PF03731 Ku70/Ku80 N-terminal alpha/beta domain 0.476
PF01151 GNS1/SUR4 family 0.470
PF08389 Exportin 1-like protein 0.464
PF00787 PX domain PI 0.447
PF00153 Mitochondrial carrier protein 0.435
PF00169 PH domain PI 0.432
PF00613 Phosphoinositide 3-kinase family, accessory domain (PIK domain) PI 0.431
PF09336 Vps4 C terminal oligomerization domain 0.428
PF01585 G-patch domain 0.423
PF05047 Mitochondrial ribosomal protein L51 / S25 / CI-B8 domain 0.417
PF00620 RhoGAP domain 0.408
PF00566 TBC domain 0.400

Columns are (1) Pfam identifier, (2) Pfam description, (3) functional and structural classes: zinc finger (ZF), ubiquitin (UBX) or phosphatidylinositol
(PI), (4) (Spearman) correlation over 133 eukaryotic species.

4276 Nucleic Acids Research, 2012, Vol. 40, No. 10
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mismatch. This threshold was chosen in order to account
for all known human polyQ disease proteins (see
‘Materials and Methods’ section for details).

We observed that the fraction of proteins having a
polyQ stretch deviates largely among different species.
Figure 2 displays polyQ frequencies in several representa-
tive species of the manually curated part of UniProt
(Swiss-Prot) and Supplementary Table S1 lists the
amount for a larger selection of species from the entire
UniProt (Swiss-Prot and TrEMBL). This suggests that
abundance of polyQ proteins is not a random feature
but depends on properties variable between species.

While the proteomes of bacteria and archaea typically
contain no proteins with polyQ tracts at all, lower and
higher eukaryotes on an average have 0.1% proteins
with polyQ tracts. The H. sapiens fraction of polyQ
proteins is above the average (0.34%) but much lower
than that of many other organisms such as the yeast S.
cerevisiae (1.1%), the fly D. melanogaster (3.8%) or the
slime mold D. discoideum (10.5%).

In many cases, taxonomically related species have simi-
lar content of polyQ proteins but this is by no means the
rule. For example, one can observe extreme differences
between yeasts: the fission yeast Schizosaccharomyces
pombe has only three polyQ proteins (out of 4974,
<0.1%) whereas the baker’s yeast S. cerevisiae has
79 (out of 6552, 1.1%), with other yeasts having
even higher frequencies, e.g. N. crassa (2.7%) and
Lodderomyces elongisporus (6.8%). Variation of polyQ
protein content can be significant even within species of
the same genus. For example, in the 12 Drosophilae species
that were analyzed the fraction ranges from 2.7% in
D. simulans to the 8.9% of D. grimshawi (median 4.2%).
Variation of polyQ protein content between species is
indeed important but we observed that it is limited when
we compare closely related species, suggesting that it is
tied to evolution. For example, while the three strains of
the yeast Paracoccidioides brasiliensis analyzed had slightly
different numbers of proteins, their overall polyQ
frequencies were found to be similar (around 1.1%).

To find out whether there are species-specific functions
that associated with polyQ protein content, we studied the
frequency of polyQ proteins in a species in relationship to
the presence of other proteins with particular domains.
Protein domains are good indicators of particular
protein functions and subcellular locations. Numerous
and accurate annotations of domains known or predicted
to be present in proteins can be easily obtained from
several databases like Pfam (21). We calculated the correl-
ation between the relative number of proteins containing a
polyQ stretch and the relative number of proteins contain-
ing a given protein domain (Table 1 and Supplementary
Table S2). For this investigation, we used the protein an-
notations stored in the Pfam database [version 23.0; (33)].

In a first analysis, we computed the correlations of 4088
domains found in human proteins over all bacterial and
eukaryotic species with at least 5000 protein entries in
Pfam (for a total of 428 species, 133 of them eukaryotic
and 295 bacterial). Since polyQ proteins are almost absent
from prokaryotes, many domains appeared to be
correlated to polyQ protein frequency simply because

they were exclusive to eukarya. Therefore, we did a
second analysis of correlation only on the 133 eukaryotic
species. We found 40 domains having a (Spearman) cor-
relation value over all species >0.8 and a correlation value
on eukaryotic species >0.3 indicating that these domains
are significantly enriched in the proteomes of species with
many polyQ proteins (see the most highly correlated
domains in Table 1 and a full list of all 40 domains
including additional information in Supplementary
Table S2).
Among the most highly correlated domains were the

FYVE and PX domains. Remarkably, they are the only
domains known to bind phosphatidylinositol 3-phosphate
(PI3P) (34). The current version of the SMART database
of domain annotations (35) indicates that these domains
do not co-occur in any of the current set of annotated
proteins. This suggests that the identification of these
two domains is based on independent sequences. The
functional implication is that there is a true association
to polyQ proteins, more precisely, that the presence of
polyQ proteins in a species is likely to be connected with
processes that use PI3P, possibly in relation to signaling
and transport mechanisms in which this molecule is
involved.
We can point to further striking functional and struc-

tural similarities between the other 38 correlated domains
supporting associations to polyQ proteins to particular
functions. Three domains have a function in the
phosphatidylinositol (PI) signaling system (CRAL/
TRIO, PH, Phosphoinositide 3-kinase family accessory
domain). Two domains are related to ubiquitin (UBR
box and UBX). Finally, we also observed seven domains
that belong to the zinc finger domain class (FYVE, Zinc-
finger of the MIZ type in Nse subunit, UBR box,
Zinc-finger double-stranded RNA-binding, Zinc finger
ZZ type, PHD-finger, HIT zinc finger). Together, these
observations suggest that polyQ proteins seem to be
present in high numbers in species rich in proteins with
roles related to PI signaling, the protein degradation
system and molecular interactions.

PolyQ emergence in protein families

Human non-pathogenic huntingtin contains an
N-terminal polyQ tract of variable length [ranging from
11 to 34 glutamines (1): Q11–Q34]. Such N-terminal
polyQ appreciably and progressively shortens in orthologs
from species increasingly distant from human along the
chordate lineage (Q10 in dog, Q7 in mouse, Q6 in
opossum, Q4 in Xenopus and fish; Figure 3a, left box).
We noted that the Drosophila huntingtin protein in
various Drosophilae does not contain any N-terminal
polyQ stretch but has several in two other regions of the
protein (e.g. D. yakuba GenPept ID:195503512, has a Q10
at positions 625–634 and a Q12 in a stretch of 14 amino
acids at positions 1118–1131), which are absent in the
human protein (Figure 3a). This indicates that huntingtin
proteins in ancestral species along the chordate and
Drosophilae lineages have experienced independent
events of insertion of polyQ tracts. This would suggest that
the huntingtin protein is under evolutionary pressure to
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accept polyQ insertions, but that this pressure would not
seem to act on the precise position of those insertions in
the sequence.
To test whether this finding in huntingtin is unique or

whether there are other protein families that under-
went similar events during their evolution, we examined
the distribution of polyQ-containing proteins in families
of proteins with members in human (H. sapiens),
zebrafish (D. rerio) representing another chordate and
the fly (D. melanogaster) representing a non-chordate
organism. Given a protein family, existence of a polyQ
in the human and fly proteins but not in the zebrafish
one will suggest that at least two independent events of
polyQ insertion occurred: one outside the Chordate
lineage and another within the chordate lineage, after
the divergence of zebrafish and human.
We obtained 4759 protein families with at least one

member from each of human, fly and fish according to
the database of phylogenetic trees TreeFam (22). We

then selected those families in which the more distantly
related species (human and fly) both had at least one
homolog with a polyQ stretch (here requiring 8 Q in a
range of 10 residues) while the zebrafish homologues
were required to have no polyQ stretch at all (less than
5 Q in a window of size 10), considering them as families
with evidence of multiple evolutionary events of polyQ
insertion (see Figure 3b). A total of 14 protein families
fulfilled this conservative criterion (Supplementary Table
S3). This number was significant (P< 0.05, randomization
test). Considering also that in most cases the polyQ
stretches appear at different protein positions within the
aligned protein family, we conclude that the most likely
explanation for the distribution of polyQ regions in the
protein families analyzed is that polyQ emerged independ-
ently at different time points during evolution rather than
that being lost in zebrafish.

The emergence of a significant number of protein
families where insertion of polyQ tracts occurs in

Figure 3. Protein families with multiple events of polyQ insertion. (A) Fragments of a multiple sequence alignment of huntingtin orthologs from
several species, with glutamines and prolines marked in red and green, respectively. Left box: N-terminal polyQ region progressively enlarged along
the chordate lineage and missing in Drosophilae. Note how this region is followed by polyP in some species where the polyQ length is above four.
Right box: very variable polyQ rich insertion specific to Drosophilae at another, distant position in huntingtin. (B) A total of 4759 protein families
with members in human, zebrafish and fly was studied. We found 75 families having at least one human protein with a polyQ stretch, 354 families
having at least one fly protein with a polyQ stretch, and 4293 having no Q-rich region in the fish proteins (see main text for details). For a total of 14
families (including huntingtin), both the human and the fly sequences had polyQ tracts (red boxes within the blue boxes) but not the zebrafish one,
indicating multiple events of polyQ insertion along separate lineages (stars). By randomizing the identity of the polyQ sets in human and fly, we
found the number of selected families to be significantly higher than random expectation (P< 0.05).
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multiple ancestral proteins suggests that functional selec-
tion for the insertion of polyQ tracts at the protein level is
a significant factor affecting the evolution of polyQ tracts.
The fact that these insertions may be located at different
positions in the protein suggests that polyQ performs a
function that is not bound to a particular sequence.
Insertion of polyQ tracts, however, does not seem to be
absolutely necessary and therefore its function, while ad-
vantageous, must depend on some pre–existing, more im-
portant functional context. PolyQ could be selected to
modulate already existing protein interactions of the
protein in which it is inserted.

PolyQ in protein complexes

To find if the functional context of polyQ tracts is related
to protein interactions, we investigated whether polyQ-
containing proteins are enriched among proteins that
form complexes. Among 1825 human protein complexes
[defined as described in ref. (36)], we identified 130 having
at least one protein containing a polyQ stretch (using the
same polyQ definition as above: repeat length of 10
glutamines allowing for one mismatch).

These 1825 human complexes are formed by 8797 com-
ponents; among them 149 are polyQ proteins, showing a
4-fold enrichment with respect to the frequency of polyQ
proteins in the human proteome. In the non-redundant list
of 2541 proteins forming part of complexes, the enrich-
ment is still significant (2.1-fold). This suggests that polyQ
proteins even have a tendency to form part of multiple
complexes. This is the case of human proteins such as
CBP and TBP.

To test whether there is a significant tendency to
find multiple polyQ proteins within individual protein
complexes, we applied a randomization test. We rando-
mized the polyQ annotations and observed whether, we
obtained an equal or larger amount of complexes contain-
ing two or more polyQ proteins, which happened in 52 of
1000 tests (P=0.052). For less restrictive polyQ threshold
selections, the results were even more significant (e.g. eight
Qs in a window of 10 residues resulted in a P-value
<0.001). This suggested that polyQ containing proteins
are not randomly distributed among complexes but that
the chance of seeing one polyQ protein increases signifi-
cantly the chance of finding at least one other polyQ con-
taining protein in the same protein complex. For example,
the RSmad complex contains a total of 10 proteins.
Among them are three polyQ containing proteins:
ARID1B, CBP and NCOA3. In summary, protein
complexes are enriched in polyQ proteins suggesting that
polyQ function is related to protein interactions.

PolyQ tracts are associated to proteins with
many partners

To further investigate the association of polyQ tracts with
protein interactions, we compared the distribution of
polyQ tract containing proteins and the number of
protein interacting partners (according to the HIPPIE
database of human PPI data (23)). We observed that
proteins containing polyQ tracts have significantly more
interactions than proteins that do not (P=5e-09,

Wilcoxon–Mann–Whitney test). However, we observed
that polyQ proteins have a longer than average length
(1253 residues versus 550 residues) and that longer
proteins have more interaction partners as compared to
short proteins, probably due to their higher number of
potential interaction interfaces (e.g. the longest 25% of
all human proteins have a mean value of 9.1 interaction
partners while the shortest 25% have only 4.9). Therefore,
we repeated the test ensuring that the randomly chosen
non-polyQ proteins used for comparison were at least as
long as the average polyQ containing protein. The result-
ing P-value of 0.007 was again significant.
Since it is likely that transcription factors have more

interactions than the average protein and polyQ proteins
are enriched in transcription factors, we repeated the test
comparing the interaction distribution of the polyQ
proteins to that of the set of human transcription factors
[as defined by UniProt annotations (20)] without a polyQ
tract (Figure 4a). The resulting P-value of 0.009 was once
more significant.
We carried out the same analysis in the proteins of S.

cerevisiae and observed that its polyQ proteins have a sig-
nificantly larger number of interacting partners than those
that do not have polyQ (P-value 2e-12), even when filter-
ing for transcription factors (P-value 0.041) or proteins of
higher length (P-value 0.0003) (Figure 4b). These results
confirm that our findings are not species-specific and that
our observations in human proteins are not due to a bias
in the PPI network arising from researchers focusing on
particular disease related proteins.
To test whether there is an effect of the length of the

polyQ stretch on the number of interactions, we binned
either all human or all yeast proteins into the three
categories: lacking polyQ tract, having a small polyQ
(length between 5 and 14 amino acids), and having a
long polyQ tract (longer than 14 amino acids). As in the
analyses described earlier, we counted the number of
interactors for each of these proteins (Figure 4c and d).
The differences between degree distributions were signifi-
cant (P< 0.01) and increased with the length of the polyQ
tract both for human and for yeast proteins. This obser-
vation suggests a correlation between the length of polyQ
and the interaction capacity of the hosting protein.
In summary, these analyses demonstrate that polyQ

proteins have more protein interactions than proteins
lacking a polyQ tract. Although there is a component in
that effect related to polyQ proteins having longer than
average length and being associated to particular func-
tions, these properties of polyQ proteins alone are not
responsible for the whole effect. We interpret these
results as indicating that polyQ tracts favor PPIs.

Function of polyQ proteins

It has already been noted that polyQ proteins are biased
toward functions related to transcriptional regulation and
nuclear localization (12,16,17). To make a comprehensive
analysis of the association of polyQ function to particular
functions in the proteins containing it, we collected the
polyQ proteins from 11 eukaryotic organisms of different
taxa including plants, fungi, nematoda and Chordata
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(H. sapiens, B. taurus, R. norvegicus, M. musculus, D. rerio,
D. melanogaster, C. elegans, A. thaliana, S. cerevisiae,
D. discoideum and N. crassa) and studied their functional
annotations using two complementary approaches.
Firstly, we computed the enrichment in Gene Ontology

annotations associated to these polyQ sets with respect to
the total protein set. We analyzed each of the 11 species
independently using the web tool DAVID (25). Anno-
tations significantly enriched in the polyQ sets of several
of these species included nuclear related functions
(e.g. transcription, splicing), but interestingly also
protein dimerization, which correlates with our findings
above suggesting that polyQ is involved in protein inter-
actions (Table 2).
Secondly, we evaluated functional enrichment accord-

ing to protein annotations where annotated domains are
known [Pfam version 23.0; (33)]. A total of 31 domains
were significantly overrepresented in polyQ proteins in at
least 2 out of the 11 species (P< 0.05; see ‘Materials and
Methods’ section for details; Supplementary Table S5).
PolyQ tracts were not significantly located near them
(data not shown).
Overall, most of these domains group into five function-

al categories: transcription regulation, protein binding,
chromatin maintenance, RNA binding and signaling.
For example, among the 15 most frequently colocalized

domains (those which are overrepresented in the polyQ
sets of at least three species), we found 6 domains
involved in protein–protein interactions (PAS
fold, Bromodomain, PHD finger, PH, PDZ, SAM).
Furthermore, many domains frequently present in
proteins with polyQ fulfill functions in the nucleus
(Supplementary Table S5).

In agreement with the association of polyQ protein
content to phosphatidylinositol signaling that we found
at genomic level, here we also identified some domains
related to this function including, again, the PH domain.
Many PH domains certainly bind PI (10–20%), other
lipids, as well as peptides and proteins (37). Perhaps
more specifically to PI, we also found the enrichment of
the ENTH and ANTH domains. These two domains bind
lipids (including PI) to recognize and manage vesicle coat
components (38). Interestingly, the top domains found in
relation to this function in the genomic association analysis
(FYVE, PX) were not found here, indicating that PI sig-
naling might be a function related to polyQ proteins but
not directly performed by polyQ proteins.

Other functions found to be enriched in polyQ proteins
were not found in the genomic analysis, indicating a more
direct association than PI signaling. We observed several
domains associated with chromatin maintenance. The
Bromodomain, e.g. associated with polyQ in seven of

Figure 4. Protein interaction degree distribution for different protein sets. Box plots of the distribution of protein interaction partners for different
protein sets. (A and B) Comparison of polyQ proteins, transcription factors without polyQ, large proteins without polyQ and all non-polyQ proteins,
for human and yeast, respectively. (C and D) Comparison of proteins with long polyQ, short polyQ, or no polyQ, for human and yeast, respectively.
All pairwise differences within a species were significant (P< 0.01) except for the comparison between medium and long polyQ length in yeast
(P-value 0.056). This exception was due to an outlier in the medium set: one of the proteins has a degree of 2549 which is more than twice as high as
the second highest degree. Removing it results in significant differences for all comparisons.
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the analyzed species, is involved in the recognition of
acetylated-lysines, e.g. in the N-termini of histones, and
is found in chromatin associated proteins (39).

Function of proteins interacting with polyQ proteins

We found that polyQ proteins are associated with inter-
actions between proteins and that polyQ proteins are
enriched in some general functions related to the nucleus
such as transcriptional regulation and chromatin mainten-
ance among others. We wondered whether there
would be particular domains or functions specific to
the proteins interacting with polyQ proteins. These
would account for other indirect functional associations
of polyQ proteins.

To investigate this, we measured the significance
of over-representation of predicted domains in non-
polyQ proteins that interact with polyQ proteins (see
‘Materials and Methods’ section for details).

In our analysis of proteins interacting with polyQ
proteins, we found 17 domains significantly enriched
(occurring in more than 10 polyQ-protein interacting
proteins; P< 0.01). The list of domains was manually
curated to remove redundant entries and obvious false
positive predictions (as detailed in Supplementary
Methods). The set was different from the set of domains
found to be enriched in polyQ proteins with the exception
of nuclear hormone receptor domains (NHR and Zinc
finger C4 type). In general functional terms, the list of
domains contained again an important fraction of
domains with nuclear functions (NHR, bZIP, MH1,
Zinc finger MIZ type). However, it also included
domains with non-nuclear functions (Ubiquitin family,
AAA, EGF). The curated set of domains enriched in
proteins interacting with the polyQ set is listed in Table 3.

For comparison, we tested the enrichment of protein
domains in proteins interacting with polyP tracts
(defined as for polyQ tracts: minimum number of 10 con-
secutive P allowing for one mismatch). The known polyP
interacting domains SH3 and WW were among the top 15
most enriched domains (additionally, Actin, RhoGEF,
SH2, BAR, Spectrin, Arf, FF, PX, FCH, WH1, CH,
RhoGAP and the UBX domain) all being significantly
associated to polyP (P< 0.01). The strength of these

associations is comparable to that of the top polyQ
associated domains.

PolyQ as a motif for protein interaction

Multiple observations presented above seem to indicate
that polyQ is involved in PPI: polyQ proteins are related
to dimerization, proteins with longer polyQ tracts tend to
have more interaction partners, and many human protein
complexes contain multiple polyQ proteins.
In addition, among the 86 human polyQ containing

proteins, we counted 49 interactions where both interact-
ing proteins contained polyQ tracts. This enrichment was
as significant as the enrichment determined for domains
present in proteins interacting with polyQ proteins
(Table 3; P-value of 0.0023, see ‘Materials and Methods’
section).
Moreover, among the list of domains enriched in

proteins that interact with human polyQ proteins, we
observed the bZIP domain, which can form a coiled-coil.
It was recently shown that polyQ regions overlap with
coiled-coils regions in a set of polyQ containing proteins
and are also found in their interaction partners (40).
Coiled-coil domains are involved in oligomerization.
This would explain the function of polyQ observed
above as a motif of protein interaction ubiquitously used.
To determine whether the association of polyQ tracts

and coiled-coil regions is a general phenomenon, we sys-
tematically studied the overlap of polyQ regions and pre-
dicted coiled-coil regions in polyQ proteins. For the
prediction of coiled-coils, we applied the tool Coils (41),
which detects hydrophobic heptad repeats in protein
sequences. We considered only high-confidence predic-
tions (over a probability threshold of 0.8). We observed
a significant enrichment in human and in the other 10
eukaryotic species analyzed (Supplementary Table S4).
For example, of the 109 polyQ tracts in 86 human
proteins, 54 (50%) overlapped with a coiled-coil region
and 5 more were in very close proximity (distance of 10
amino acids or less) (P-value 3.8e-15).
We found that the distribution of coiled-coils is

extremely biased toward the N-terminus of the polyQ
tract. In this respect, one has to note that the amino
acid composition of the regions surrounding polyQ

Table 2. Frequently overrepresenteda functional annotations among polyQ proteins from 11 eukaryotic species

Categoryb HS BT RN MM DR DM CE AT SC DD NC

Transcription-related 3 3 3 3 3 3 3 3 3

Nucleus 3 3 3 3 3 3 3 3 3

(RNA and nitrogen) metabolic or biosynthetic process 3 3 3 3 3 3 3 3

Compositionally biased region (Ser,Gly,Pro,Ala) 3 3 3 3 3 3

Protein phoshporylation 3 3 3 3 3

Alternative splicing 3 3 3 3

Protein dimerization activity 3 3 3

Developmental protein 3 3 3

aUsing the web tool DAVID (25).
bWe merged the resulting species-specific lists of functional terms (applying a P-value threshold of 0.05 after multiple testing correction with the
Benjamini–Hochberg method) and replaced similar terms by representative substitutes.
HS=Homo sapiens, BT=Bos taurus, RN=Rattus norvegicus, MM=Mus musculus, DR=Danio rerio, DM=Drosophila melanogaster,
CE=Caenorhabditis elegans, AT=Arabidopsis thaliana, SC=Saccharomyces cerevisiae, DD=Dictyostelium discoideum, NC=Neurospora crassa.
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tracts is biased for some amino acids. For example, we
could detect enrichment in proline and histidine around
polyQ tracts in several organisms including human, fly
and yeast. The described amino acid bias is not evenly
distributed to both sides of the polyQ stretch. In human
sequences, the most extreme case is found for prolines,
which often appear as polyP tracts almost exclusively
C-terminally to the polyQ. For example, in the set of 86
human polyQ proteins, 13 proteins contain a polyP run of
at least three residues at a maximum distance of three
amino acids from the polyQ. Of those, we found 12
C-terminally and only 1 N-terminally to the polyQ
stretch. For the other enriched amino acids (aspartic, me-
thionine, histidine), the number of single amino acid
tracts surrounding polyQ was actually too small to
assess any distributional bias. This finding corresponds
to the findings of Bhattacharyya et al. (42) that
polyproline (polyP) stretches inhibit polyQ-dependent ag-
gregate formation only when located at the C-terminus of
the polyQ tract and support the ability of polyP to
stabilize protein conformation situated near their
N-terminus (43).
To exclude the possibility that the bias of coiled-coils

toward the N-terminus of polyQ tracts is simply due to
C-terminal polyP, we analyzed the position of coiled-coils
with respect to polyQ tracts excluding cases where polyP
was present. The bias was still observed both in human (34
N-terminal versus 6 C-terminal) and yeast (14 N-terminal
versus 1 C-terminal), suggesting that the association of
coiled-coils to polyQ tracts is asymmetric.
Finally, we could establish that also non-polyQ proteins

interacting with polyQ proteins are significantly enriched
in coiled-coil regions. This enrichment was stronger than
the enrichment found for protein domains (P< 2.2e-16).
To exclude that the observed colocalization of coiled-coils
with polyQ stretches is an artifact of the prediction tool
applied (e.g. over-predicting spurious coiled-coil regions
on polyQ stretches), we repeated the coiled-coil prediction
on the human polyQ set with a different prediction tool
[Paircoil2 (44)]. We found, again, a significant enrichment
of coiled-coils in the polyQ set (for a tool specific thresh-
old of 0.025, we observed 30 proteins with a coiled-coil
among the 86 human polyQ proteins at a background
prediction rate of 13%; P< 4e-9).

To further substantiate our observations, we deleted the
polyQ stretches from the sequences and repeated the
coiled-coil prediction in 45 human proteins hosting 54
polyQ stretches that were either overlapping a coiled-coil
or in close proximity of one. We excluded from this
analysis those proteins where the coiled-coil was predicted
to be within a polyQ stretch and those with a C-terminal
polyP. We counted how often we could still observe a
coiled-coil prediction in the 10 residues flanking each
side of the 54 deletion sites. In 11 of the 54 cases, a
coiled-coil was predicted, which corresponds to a 6-fold
enrichment over the background frequency of predicted
coiled-coil regions in all human protein sequences. This
enrichment was significant (P=2.0e-6; probability of
observing 11 or more coiled-coil regions under the
Binomial distribution). This result proves that the associ-
ation of polyQ to coiled-coil regions is not just due to the
presence of polyQ but that also its flanking sequences have
significant coiled-coil forming potential.

In summary, we found a significant association of
polyQ tracts after coiled-coil regions. This agrees with a
function of polyQ tracts related to protein interactions.
We wondered if functions previously noted to be
associated to polyQ proteins (12,16,17) could be just a
secondary effect and explained simply by the fact that
those functions (e.g. transcriptional regulation) require
more protein interactions than other functions (e.g. me-
tabolism). Therefore, we tested if we observed a similarly
high enrichment in certain GO terms when we compared
proteins with many interactions to all proteins with at
least one known interaction (see ‘Materials and
Methods’ section for details). Indeed, many functions
associated to the polyQ set are also enriched in the set
of proteins with the 10% highest number of interaction
partners. For example, both in yeast and human, we
observed in the set of proteins with many partners a sig-
nificant enrichment of the GO term GO:0031981-nuclear
lumen (P-values 6.3e-53 and 4.2e-28) and in human
proteins of the term GO:0008134-transcription factor
binding (P-value 1.7e-23). This effect is independent of
the precise protein set size and can be reproduced,
e.g. with the 86 highest degree proteins in human
(a cutoff chosen in accordance with the size of the
human polyQ set).

Table 3. Domains overrepresented in proteins that interact with human polyQ proteins

Domain name P-value Pfam accs. Reason for merginga Interactions

Nuclear hormone receptor associated 0b PF00104c, PF00105c Colocalization 95
EGF 0b,d PF00008, PF07645 Colocalization and overlap 29
Zinc finger MIZ type 0.0016 PF02891, PF11789 Overlap 12
ATPase family associated with various cellular activities (AAA) 0.00 PF00004, PF05496 Colocalization and overlap 24
Ubiquitin family 0.002 PF00240, PF11976 Overlap 25
MH1 domain 0.007 PF03165, PF03166, PF10401 Colocalization and overlap 30
Basic Leucine Zipper Domain (bZIP) 0.0088 PF00170, PF07716 Overlap 37

aDetails in Supplementary Methods.
bP-value remains under a significant level of 0.05 even after Benjamini and Hochberg correction for multiple testing.
cOver-represented in polyQ proteins (Supplementary Table S5).
dResult is reproducible in Drosophila melanogaster.
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DISCUSSION

PolyQ tracts in protein sequences have been researched
mostly because of their pathogenic expansion in multiple
human genetic diseases. However, their presence in many
wild-type proteins across a variety of species is intriguing
and suggests that normal polyQ tracts might have a
function.

Following this idea, we provide evidence collected at
multiple inter-related biological levels that collectively
and consistently indicates that polyQ tracts are involved
in protein interactions, e.g. because of their enrichment in
protein complexes, and their association with coiled-coil
regions. Through our analyses, we noted other features of
polyQ tracts, which may not be directly related to their
function as an interaction motif, but to the pathogenic
effects of their abnormal expansion.

At the nucleotide level, we could observe selection of
CAG repeats in exons of human, mouse, rat and fly genes.
Intriguingly, we found them also enriched, although at a
lower level, in untranslated regions of transcripts (UTRs).
It was noted that both CAG and CTG repeats can form
RNA � DNA hybrids (R loops) that could have a bio-
logical function (31,32). In agreement with this, we found
CTG and CGG repeats similarly enriched in UTRs but
not so much in exons.

Along these lines, we found that whereas only 13% of
prolines in human proteins are encoded by the rare codon
CCG, this fraction is higher in prolines forming polyP (of
length three or more) (23%), and even higher (43%;
n=48 codons) if the polyP is near uninterrupted polyQ
sequences of minimum length 10 (at a maximum distance
of three amino acids). We observed a related effect in
polyQ, which are encoded more frequently by CAG
codons when the polyQ sequences are close to polyP
tracts (n=156) as compared to other polyQ (n=1169)
(90% versus 79%). This inter-dependence between GC
rich codons hints at an effect at the transcript level. In
summary, we interpret these results as indicating that
CAG repeats are under positive selection at the nucleotide
level. Abnormally expanded CTG repeats bind
muscleblind resulting in Myotonic dystrophy type 1 (30).
CAG and CTG repeats might bind to proteins in their
wild-type transcripts.

The mechanisms that have been proposed to originate
regions encoding poly-amino acid repeats are not well
known (45). Many polyQ tracts are composed exclusively
of CAG repeats in mammals (46) (the other possible
codon encoding Q being CAA); this is interpreted as
evidence of their formation due to trinucleotide expansion
by gene slippage, resulting from the formation of an
abnormal loop of the CAG repeat via CG pairings.
According to this, it was shown that polyQ-coding pure
CAG repeats are expanded from mouse to human (47)
while expansion does not occur if they are formed by a
mix of CAG and CAA codons. In contrast, in some
non-mammalian organisms polyQ tracts tend to be
encoded by pure CAA repeats [e.g. Drosophila (46) and
D. discoideum (10)] actually suggesting that they are
selected to resist slippage.

The abundance of proteins with polyQ tracts across dif-
ferent species is highly variable, being, e.g. absent from
prokaryotic organisms. In a few species, polyQ tracts are
among the most frequent amino acid repeats (14,48). This
variability may be related to the inability of some species
to deal with these aggregation-prone repeats. Therefore,
analysis of the correlation between systemic properties of
species and presence of polyQ proteins might hint at
the mechanisms by which species deal with polyQ
proteins and at the origin of their pathogenic effects.
We investigated this systematically and observed a
huge variation between species in content of polyQ
proteins (e.g. highest in D. discoideum and D. melanogaster
versus, e.g. very low for Xenopus or D. rerio). We observed
that those species with high polyQ protein content have a
higher number of proteins bearing domains with functions
related to phosphatidylinositol (PI) signaling and
ubiquitin-directed protein degradation. Interestingly,
both ubiquitin and phosphatidylinositol play a role in
the clearance of polyQ aggregates: aggregates containing
proteins with an expanded polyQ stretch have been shown
to be ubiquitinated (49). Phosphatidylinositol-binding
domains are involved in targeting polyQ aggregates to
membranes during the process of macroautophagy. For
example, the FYVE domain containing human protein
Alfy promotes the degradation of huntingtin in mamma-
lian cells (50). Therefore, this association between high
content of polyQ proteins at the genomic level to both
PI signaling and ubiquitin-directed protein degradation
could be explained by the need of the cell to effectively
degrade polyQ containing aggregation-prone proteins. We
speculate that differential selection explains the high
content of polyQ proteins in some organisms (47): organ-
isms that can select polyQ co-evolve the appropriate
machinery to clear polyQ protein aggregates, whereas or-
ganisms lacking strong clearance mechanisms for
protein-aggregates might not tolerate polyQ proteins at
all; this could explain the absence of polyQ proteins in
the prokaryotic kingdom.
When analyzing the variability of polyQ protein occur-

rence in a large variety of species in more detail, we
observed that polyQ tracts are not a feature characteristic
of particular gene families. Variability of polyQ protein
content among species is therefore due to orthologs of a
protein having a polyQ tract in one species and not in
another. Moreover, we demonstrated that particular
protein families show multiple events of emergence of
polyQ and that they can happen at different positions of
the sequence. For example, the human huntingtin has a
polyQ tract situated near the N-terminus of the protein,
whereas many lower organisms have none, e.g. Ciona (51).
However, the huntingtin of the Drosophila genus has
multiple polyQ tracts, none of them in the N-terminus.
This suggests that particular protein families, including
huntingtin, are under selective pressure to accumulate
polyQ tracts. In summary, the fact that some organisms
have orthologs lacking the polyQ tract indicates that the
protein can fulfill its tasks without this feature: its function
cannot be essential. In addition, the fact that the polyQ
tracts can occupy different positions in the sequence
suggests that polyQ tracts perform a function without
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strong positional requirements. On the other hand, they
do have some function specific to particular protein
families since evolutionary pressure to insert the polyQ
tracts leads to this occurring in distantly related clades.
In terms of speed, the evolutionary expansion of a
polyQ tract is much slower than a pathological expansion.
For example, the expansion of the N-terminal polyQ tract
in human huntingtin could be estimated to have evolved at
an average rate of one Q per 30 million years. This is
indicative of how delicate the effect of modification of
polyQ tract length can be (Figure 3a, left box). On the
other hand, the large variations of the huntingtin
mid-of-sequence polyQ tracts in the different
Drosophilae indicate that fast evolution of polyQ tracts
is also possible (Figure 3a, right box).
There is already some experimental evidence suggesting

that the function of polyQ could be to modulate protein–
protein interactions (PPIs). For example, a polyQ
sequence in TBP modulates its interaction with TFIIB
(52), and a glutamine-rich activation domain in SP1
directly interacts with TAF4 in Drosophila (53). It was
observed in an in vitro experiment that mouse Sp1 and
some components of the core transcription apparatus
(e.g. TFIID and TFIIF) are direct targets inhibited by
mutant huntingtin in a polyglutamine-dependent manner
(54). In addition, mutant proteins with enlarged polyQ
tracts aggregate, which also points to a relation between
polyQ and protein interactions (2–4). Given this evidence,
we wondered whether the non-specific function of
wild-type polyQ could be to modulate protein–protein
interactions (PPIs): such a role is coherent with our obser-
vations described earlier. We were able to provide further
evidence to support this hypothesis at multiple levels. For
example, we could detect that polyQ proteins have more
protein interaction partners than non-polyQ proteins and
have a higher tendency to interact with other polyQ
proteins than non-polyQ proteins.
In agreement to previous studies (55), we identified an

over-representation of protein domains related to
nucleus-based functions in polyQ proteins but also in
proteins that interact with them. In fact, we could demon-
strate that these functions are also over-represented in
proteins with many interactions. Therefore, we deduce
that the functional biases observed in polyQ and
polyQ-interacting proteins are due to the involvement of
polyQ in protein interactions.
Until now, the structural basis for the possible modula-

tion of protein interactions by polyQ is not clear. To begin
with, the precise structure of polyQ itself is unknown and
suggested conformations of both synthetic polyQ peptides
and naturally occurring proteins with polyQ tracts
include alpha helix, random coil, and extended loop
[e.g. huntingtin exon1 (56)]. This might be due to polyQ
adopting an unstable context-dependent structure. Part of
this context can be flanking sequences, which have been
shown to influence both the structure (56) and aggregation
properties of polypeptides with polyQ tracts (57). Length
expansions of polyQ stretches seem to be accompanied by
a transition of a random coil into a beta sheet structure
(58) (which would account for its pathogenic effect). In
addition, polyQ tracts seem to be able to modify the

conformation of structured domains nearby in sequence
(59). Such interactions could be dependent on the presence
of other interacting proteins, and it has recently been sug-
gested that the mechanisms by which polyQ modulate
protein interactions might be the expansion of
sequence-adjacent coiled-coil regions upon interaction of
the coiled-coil region with another protein (40).

In support of this view, we found a very strong associ-
ation between polyQ and coiled-coil regions: both are
found in the same sequence more often than random
expectation, overlapping or at very short distance, as
well as in proteins that interact with each other. This as-
sociation was by far more significant than the association
of polyQ to any protein domain. In summary, our results
underline that polyQ expansions are selected in evolution
to extend coiled-coil regions that take part in protein–
protein interactions.

We found a strong bias for coiled-coil regions to be
situated N-terminally of polyQ tracts. At the same time,
polyP is sometimes found near polyQ and if so, often
C-terminally to the polyQ tract. This is in agreement
with the finding that polyP stabilizes the structure of
adjacent polyQ when located C-terminally but not when
located N-terminally of it. This directional property of
polyP to influence conformation is known in contexts
other than polyQ proteins [see (42) and references
therein]. In an X-ray study of huntingtin exon 1, the
polyP was found to adopt a classical poly-proline helix
structure (left-handed helix) (56). The conformational ex-
tension by polyQ of the coiled-coil region is then stabilized
and paused at the polyP region. According to this
evidence, we propose that polyQ tracts have a tendency
to follow a coiled-coil region that they expand upon
protein interaction and in turn to be followed by a
capping sequence which, like polyP, acts directionally to
stabilize and stop the growth of the helical region
(Figure 5).

With respect to the properties of the sequences sur-
rounding polyQ tracts, it is interesting to note that in a
recent computational study polyQ tracts were associated
to the presence of disordered regions (60). Indeed, we
could confirm a significant enrichment of disordered
regions [as predicted by the tool RONN (61)] nearby
polyQ compared to all human proteins, though this was
smaller than the one found for coiled-coil regions (3.3-fold
versus 6-fold, data not shown).

In summary, our results lead to the following general
picture of the function of polyQ: its activity as a motif for
protein interaction is tightly related to the length of the
polyQ tract itself, the character of the sequences adjacent
to it and to the concentration of interacting protein
partners. We assume that the normal interplay of all
these elements would lead to an enhanced, highly stable
and specific interaction. However, the complexity of this
system also suggests that small perturbations could lead to
pathological interactions either with altered affinities or
with different partners. The complex interaction of
factors influencing the function of polyQ tracts perhaps
explains why so many processes have been found to con-
tribute to the pathomechanism of polyQ diseases
including transcriptional dysregulation (62), RNA
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toxicity (63), impairment of the ubiquitin-proteasome
system (64–66), mitochondrial dysfunction (67) and dis-
turbed calcium signaling (68).

Our results also suggest that a given species may accu-
mulate an abundance of polyQ proteins to modulate many
protein interactions. However, this may come at no small
expense: protein networks with abundant polyQ proteins
may be in a delicate balance in which aggregation can
occur depending on the concentration of many molecules.
This balance might be lost in specific tissues and circum-
stances as mechanisms to keep protein aggregates in check
get challenged in ageing cells [as it has been observed in C.
elegans (69)]. This may explain why neurons of the elderly
are particular prone to anomalous polyQ expansion and
in turn neurodegeneration.

We suggest that the study of the function of wild-type
and pathogenic polyQ proteins will require experiments to
test the variation in functionality that removing or
expanding particular polyQ stretches will produce.
Specifically, it needs to be investigated how these modifi-
cations influence the interaction abilities of the polyQ
protein. Gain or loss of interactions with other proteins
with coiled-coil regions and polyQ should be paid special
attention. Explaining and predicting the effects of polyQ
tracts will require elaborate analysis for each particular
situation. The recent analysis of SCA1, where dramatic
differences in the effects of the pathogenic protein were
observed between brain regions (70), supports this idea.

In conclusion, our work has approached the study of
CAG/glutamine repeats integrating analyses at the nucleo-
tide and protein level with phylogenetic data, genomic
analyses and studies of protein interaction networks.
The wild-type function of polyQ tracts is to modulate

protein interactions in dependency of their molecular
context. Therefore, their study will require correlating
modification of this context to modifications in the
protein interaction network.
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We thank Sigrid Schnögl (MDC, Berlin) for critical
reading of the manuscript.

FUNDING

Program of medical genome research NGFNp by the
German Ministry of Education and Research (BMBF)
(reference numbers 01GS08169-171 and 01GS0844 to
E.E.W. and 01GS08170 to M.A. A.-N.), DFG
Collaborative Research Centre grants (SFB577, SFB740
to E.E.W; SFB618 to E.E.W. and M.A. A.-N.), Helmholtz
Alliance for Systems Biology grant to E.E.W and M.A.
A.-N., Huntington’s Disease Society of America (HDSA)
and Cure Huntington’s Disease Initiative (CHDI) grants
to E.E.W. Funding for open access charge: Max Delbrück
Center for Molecular Medicine.

Conflict of interest statement. None declared.

REFERENCES

1. Gatchel,J.R. and Zoghbi,H.Y. (2005) Diseases of unstable repeat
expansion: mechanisms and common principles. Nat. Rev. Genet.,
6, 743–755.

2. Tran,P.B. and Miller,R.J. (1999) Aggregates in neurodegenerative
disease: crowds and power? Trends Neurosci., 22, 194–197.

3. Kopito,R.R. (2000) Aggresomes, inclusion bodies and protein
aggregation. Trends Cell Biol., 10, 524–530.

4. Ross,C.A. (1997) Intranuclear neuronal inclusions: a common
pathogenic mechanism for glutamine-repeat neurodegenerative
diseases? Neuron, 19, 1147–1150.

5. Warrick,J.M., Paulson,H.L., Gray-Board,G.L., Bui,Q.T.,
Fischbeck,K.H., Pittman,R.N. and Bonini,N.M. (1998) Expanded
polyglutamine protein forms nuclear inclusions and causes neural
degeneration in Drosophila. Cell, 93, 939–949.

6. Chai,Y., Shao,J., Miller,V.M., Williams,A. and Paulson,H.L.
(2002) Live-cell imaging reveals divergent intracellular dynamics
of polyglutamine disease proteins and supports a sequestration
model of pathogenesis. Proc. Natl Acad. Sci. USA, 99,
9310–9315.

7. Kuemmerle,S., Gutekunst,C.A., Klein,A.M., Li,X.J., Li,S.H.,
Beal,M.F., Hersch,S.M. and Ferrante,R.J. (1999) Huntington
aggregates may not predict neuronal death in Huntington’s
disease. Ann. Neurol., 46, 842–849.

8. Pennuto,M., Palazzolo,I. and Poletti,A. (2009) Post-translational
modifications of expanded polyglutamine proteins: impact on
neurotoxicity. Hum. Mol. Genet., 18, R40–R47.

9. Butland,S.L., Devon,R.S., Huang,Y., Mead,C.L., Meynert,A.M.,
Neal,S.J., Lee,S.S., Wilkinson,A., Yang,G.S., Yuen,M.M. et al.
(2007) CAG-encoded polyglutamine length polymorphism in the
human genome. BMC Genomics, 8, 126.

10. Eichinger,L., Pachebat,J.A., Glockner,G., Rajandream,M.A.,
Sucgang,R., Berriman,M., Song,J., Olsen,R., Szafranski,K., Xu,Q.

Figure 5. Cartoon of proposed polyQ function in protein interaction.
Left: a polyQ protein contains a coiled-coil (blue), followed by a polyQ
region (red) and a polyP region (green). In the unbound state, the
polyQ region is disordered. Right: upon interaction with a protein
partner X, the polyQ region adopts a coiled-coil structure that
extends the original coiled-coil. The polyP region remains unstructured
capping precisely the extension of the coiled-coil.

Nucleic Acids Research, 2012, Vol. 40, No. 10 4285

 at FA
K

/M
D

C
 on M

ay 29, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/cgi/content/full/gks011/DC1
http://nar.oxfordjournals.org/


et al. (2005) The genome of the social amoeba Dictyostelium
discoideum. Nature, 435, 43–57.

11. von Mikecz,A. (2009) PolyQ fibrillation in the cell nucleus: who’s
bad? Trends Cell Biol., 19, 685–691.

12. Karlin,S. and Burge,C. (1996) Trinucleotide repeats and long
homopeptides in genes and proteins associated with nervous
system disease and development. Proc. Natl Acad. Sci. USA, 93,
1560–1565.

13. Huntley,M. and Golding,G.B. (2000) Evolution of simple
sequence in proteins. J. Mol. Evol., 51, 131–140.

14. Faux,N.G., Bottomley,S.P., Lesk,A.M., Irving,J.A.,
Morrison,J.R., de la Banda,M.G. and Whisstock,J.C. (2005)
Functional insights from the distribution and role of homopeptide
repeat-containing proteins. Genome Res., 15, 537–551.

15. Mitchell,P.J. and Tjian,R. (1989) Transcriptional regulation in
mammalian cells by sequence-specific DNA binding proteins.
Science, 245, 371–378.

16. Alba,M.M. and Guigo,R. (2004) Comparative analysis of amino
acid repeats in rodents and humans. Genome Res., 14, 549–554.

17. Harrison,P.M. (2006) Exhaustive assignment of compositional
bias reveals universally prevalent biased regions: analysis of
functional associations in human and Drosophila.
BMC Bioinformatics, 7, 441.

18. Hands,S., Sinadinos,C. and Wyttenbach,A. (2008) Polyglutamine
gene function and dysfunction in the ageing brain. Biochim.
Biophys. Acta, 1779, 507–521.

19. Karolchik,D., Baertsch,R., Diekhans,M., Furey,T.S., Hinrichs,A.,
Lu,Y.T., Roskin,K.M., Schwartz,M., Sugnet,C.W., Thomas,D.J.
et al. (2003) The UCSC Genome Browser Database.
Nucleic Acids Res., 31, 51–54.

20. Magrane,M. and Consortium,U. (2011) UniProt Knowledgebase:
a hub of integrated protein data. Database, 2011, bar009.

21. Bateman,A., Birney,E., Cerruti,L., Durbin,R., Etwiller,L.,
Eddy,S.R., Griffiths-Jones,S., Howe,K.L., Marshall,M. and
Sonnhammer,E.L. (2002) The Pfam protein families database.
Nucleic Acids Res., 30, 276–280.

22. Ruan,J., Li,H., Chen,Z., Coghlan,A., Coin,L.J., Guo,Y.,
Heriche,J.K., Hu,Y., Kristiansen,K., Li,R. et al. (2008) TreeFam:
2008 Update. Nucleic Acids Res., 36, D735–D740.

23. Schaefer,M.H., Fontaine,J.F., Vinayagam,A., Porras,P.,
Wanker,E.E. and Andrade-Navarro,M.A. (2012) HIPPIE:
integrating protein interaction networks with experiment based
quality scores. PLoS One., 7, e31826.

24. Stark,C., Breitkreutz,B.J., Chatr-Aryamontri,A., Boucher,L.,
Oughtred,R., Livstone,M.S., Nixon,J., Van Auken,K., Wang,X.,
Shi,X. et al. (2011) The BioGRID Interaction Database: 2011
update. Nucleic Acids Res., 39, D698–D704.

25. Dennis,G. Jr, Sherman,B.T., Hosack,D.A., Yang,J., Gao,W.,
Lane,H.C. and Lempicki,R.A. (2003) DAVID: Database for
Annotation, Visualization, and Integrated Discovery.
Genome Biol., 4, P3.

26. Strand,M., Prolla,T.A., Liskay,R.M. and Petes,T.D. (1993)
Destabilization of tracts of simple repetitive DNA in yeast
by mutations affecting DNA mismatch repair. Nature, 365,
274–276.

27. Kozlowski,P., de Mezer,M. and Krzyzosiak,W.J. (2010)
Trinucleotide repeats in human genome and exome.
Nucleic Acids Res., 38, 4027–4039.

28. Holmes,S.E., Hearn,E.O., Ross,C.A. and Margolis,R.L. (2001)
SCA12: an unusual mutation leads to an unusual spinocerebellar
ataxia. Brain Res. Bull., 56, 397–403.

29. Chan,P.P. and Lowe,T.M. (2009) GtRNAdb: a database of
transfer RNA genes detected in genomic sequence. Nucleic Acids
Res., 37, D93–D97.

30. Miller,J.W., Urbinati,C.R., Teng-Umnuay,P., Stenberg,M.G.,
Byrne,B.J., Thornton,C.A. and Swanson,M.S. (2000) Recruitment
of human muscleblind proteins to (CUG)(n) expansions
associated with myotonic dystrophy. EMBO J., 19,
4439–4448.

31. Reddy,K., Tam,M., Bowater,R.P., Barber,M., Tomlinson,M.,
Nichol Edamura,K., Wang,Y.H. and Pearson,C.E. (2010)
Determinants of R-loop formation at convergent bidirectionally
transcribed trinucleotide repeats. Nucleic Acids Res., 39,
1749–1762.

32. Lin,Y., Dent,S.Y., Wilson,J.H., Wells,R.D. and Napierala,M.
(2010) R loops stimulate genetic instability of CTG.CAG repeats.
Proc. Natl Acad. Sci. USA, 107, 692–697.

33. Finn,R.D., Mistry,J., Tate,J., Coggill,P., Heger,A., Pollington,J.E.,
Gavin,O.L., Gunasekaran,P., Ceric,G., Forslund,K. et al. (2010)
The Pfam protein families database. Nucleic Acids Res., 38,
D211–D222.

34. Stenmark,H., Aasland,R. and Driscoll,P.C. (2002) The
phosphatidylinositol 3-phosphate-binding FYVE finger. FEBS
Lett., 513, 77–84.

35. Letunic,I., Doerks,T. and Bork,P. (2009) SMART 6: recent
updates and new developments. Nucleic Acids Res., 37,
D229–D232.

36. Ruepp,A., Brauner,B., Dunger-Kaltenbach,I., Frishman,G.,
Montrone,C., Stransky,M., Waegele,B., Schmidt,T.,
Doudieu,O.N., Stumpflen,V. et al. (2008) CORUM: the
comprehensive resource of mammalian protein complexes.
Nucleic Acids Res., 36, D646–D650.

37. DiNitto,J.P. and Lambright,D.G. (2006) Membrane and
juxtamembrane targeting by PH and PTB domains.
Biochim. Biophys. Acta, 1761, 850–867.

38. Duncan,M.C. and Payne,G.S. (2003) ENTH/ANTH domains
expand to the Golgi. Trends Cell Biol., 13, 211–215.

39. Dhalluin,C., Carlson,J.E., Zeng,L., He,C., Aggarwal,A.K. and
Zhou,M.M. (1999) Structure and ligand of a histone
acetyltransferase bromodomain. Nature, 399, 491–496.

40. Fiumara,F., Fioriti,L., Kandel,E.R. and Hendrickson,W.A. (2010)
Essential role of coiled coils for aggregation and activity of Q/
N-rich prions and PolyQ proteins. Cell, 143, 1121–1135.

41. Lupas,A., Van Dyke,M. and Stock,J. (1991) Predicting coiled
coils from protein sequences. Science, 252, 1162–1164.

42. Bhattacharyya,A., Thakur,A.K., Chellgren,V.M., Thiagarajan,G.,
Williams,A.D., Chellgren,B.W., Creamer,T.P. and Wetzel,R.
(2006) Oligoproline effects on polyglutamine conformation and
aggregation. J. Mol. Biol., 355, 524–535.

43. Hinderaker,M.P. and Raines,R.T. (2003) An electronic effect on
protein structure. Protein Sci., 12, 1188–1194.

44. McDonnell,A.V., Jiang,T., Keating,A.E. and Berger,B. (2006)
Paircoil2: improved prediction of coiled coils from sequence.
Bioinformatics, 22, 356–358.

45. Kovtun,I.V. and McMurray,C.T. (2008) Features of trinucleotide
repeat instability in vivo. Cell Res., 18, 198–213.

46. Alba,M.M., Santibanez-Koref,M.F. and Hancock,J.M. (2001) The
comparative genomics of polyglutamine repeats: extreme
differences in the codon organization of repeat-encoding
regions between mammals and Drosophila. J. Mol. Evol., 52,
249–259.

47. Hancock,J.M. (1995) The contribution of slippage-like processes
to genome evolution. J. Mol. Evol., 41, 1038–1047.

48. Karlin,S., Brocchieri,L., Bergman,A., Mrazek,J. and Gentles,A.J.
(2002) Amino acid runs in eukaryotic proteomes and disease
associations. Proc. Natl Acad. Sci. USA, 99, 333–338.

49. Suhr,S.T., Senut,M.C., Whitelegge,J.P., Faull,K.F., Cuizon,D.B.
and Gage,F.H. (2001) Identities of sequestered proteins in
aggregates from cells with induced polyglutamine expression.
J. Cell. Biol., 153, 283–294.

50. Filimonenko,M., Isakson,P., Finley,K.D., Anderson,M., Jeong,H.,
Melia,T.J., Bartlett,B.J., Myers,K.M., Birkeland,H.C., Lamark,T.
et al. (2010) The selective macroautophagic degradation of
aggregated proteins requires the PI3P-binding protein Alfy.
Mol. Cell, 38, 265–279.

51. Gissi,C., Pesole,G., Cattaneo,E. and Tartari,M. (2006) Huntingtin
gene evolution in Chordata and its peculiar features in the
ascidian Ciona genus. BMC Genomics, 7, 288.

52. Friedman,M.J., Shah,A.G., Fang,Z.H., Ward,E.G., Warren,S.T.,
Li,S. and Li,X.J. (2007) Polyglutamine domain modulates the
TBP-TFIIB interaction: implications for its normal function and
neurodegeneration. Nat. Neurosci., 10, 1519–1528.

53. Hoey,T., Weinzierl,R.O., Gill,G., Chen,J.L., Dynlacht,B.D. and
Tjian,R. (1993) Molecular cloning and functional analysis of
Drosophila TAF110 reveal properties expected of coactivators.
Cell, 72, 247–260.

54. Zhai,W., Jeong,H., Cui,L., Krainc,D. and Tjian,R. (2005)
In vitro analysis of huntingtin-mediated transcriptional

4286 Nucleic Acids Research, 2012, Vol. 40, No. 10

 at FA
K

/M
D

C
 on M

ay 29, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


repression reveals multiple transcription factor targets. Cell, 123,
1241–1253.

55. Whan,V., Hobbs,M., McWilliam,S., Lynn,D.J., Lutzow,Y.S.,
Khatkar,M., Barendse,W., Raadsma,H. and Tellam,R.L. (2010)
Bovine proteins containing poly-glutamine repeats are often
polymorphic and enriched for components of transcriptional
regulatory complexes. BMC Genomics, 11, 654.

56. Kim,M.W., Chelliah,Y., Kim,S.W., Otwinowski,Z. and
Bezprozvanny,I. (2009) Secondary structure of Huntingtin
amino-terminal region. Structure, 17, 1205–1212.

57. Dehay,B. and Bertolotti,A. (2006) Critical role of the proline-rich
region in Huntingtin for aggregation and cytotoxicity in yeast.
J. Biol. Chem., 281, 35608–35615.

58. Perutz,M.F. (1996) Glutamine repeats and inherited
neurodegenerative diseases: molecular aspects.
C Opin. Struct. Biol., 6, 848–858.

59. Ignatova,Z. and Gierasch,L.M. (2006) Extended polyglutamine
tracts cause aggregation and structural perturbation of an
adjacent beta barrel protein. J. Biol. Chem., 281, 12959–12967.

60. Simon,M. and Hancock,J.M. (2009) Tandem and cryptic amino
acid repeats accumulate in disordered regions of proteins. Genome
Biol., 10, R59.

61. Yang,Z.R., Thomson,R., McNeil,P. and Esnouf,R.M. (2005)
RONN: the bio-basis function neural network technique applied
to the detection of natively disordered regions in proteins.
Bioinformatics, 21, 3369–3376.

62. Truant,R., Atwal,R.S. and Burtnik,A. (2007) Nucleocytoplasmic
trafficking and transcription effects of huntingtin in Huntington’s
disease. Prog. Neurobiol., 83, 211–227.

63. Li,L.B., Yu,Z., Teng,X. and Bonini,N.M. (2008) RNA toxicity is
a component of ataxin-3 degeneration in Drosophila. Nature, 453,
1107–1111.

64. Chai,Y., Koppenhafer,S.L., Shoesmith,S.J., Perez,M.K. and
Paulson,H.L. (1999) Evidence for proteasome involvement in
polyglutamine disease: localization to nuclear inclusions in SCA3/
MJD and suppression of polyglutamine aggregation in vitro.
Hum. Mol. Genet., 8, 673–682.

65. Bence,N.F., Sampat,R.M. and Kopito,R.R. (2001) Impairment of
the ubiquitin-proteasome system by protein aggregation. Science,
292, 1552–1555.

66. Waelter,S., Boeddrich,A., Lurz,R., Scherzinger,E., Lueder,G.,
Lehrach,H. and Wanker,E.E. (2001) Accumulation of mutant
huntingtin fragments in aggresome-like inclusion bodies as a
result of insufficient protein degradation. Mol. Biol. Cell, 12,
1393–1407.

67. Lin,M.T. and Beal,M.F. (2006) Mitochondrial dysfunction and
oxidative stress in neurodegenerative diseases. Nature, 443,
787–795.

68. Tang,T.S., Slow,E., Lupu,V., Stavrovskaya,I.G., Sugimori,M.,
Llinas,R., Kristal,B.S., Hayden,M.R. and Bezprozvanny,I. (2005)
Disturbed Ca2+ signaling and apoptosis of medium spiny
neurons in Huntington’s disease. Proc. Natl Acad. Sci. USA, 102,
2602–2607.

69. David,D.C., Ollikainen,N., Trinidad,J.C., Cary,M.P.,
Burlingame,A.L. and Kenyon,C. (2010) Widespread protein
aggregation as an inherent part of aging in C. elegans. PLoS
Biol., 8, e1000450.

70. Jafar-Nejad,P., Ward,C.S., Richman,R., Orr,H.T. and
Zoghbi,H.Y. (2011) Regional rescue of spinocerebellar ataxia type
1 phenotypes by 14-3-3epsilon haploinsufficiency in mice
underscores complex pathogenicity in neurodegeneration.
Proc. Natl Acad. Sci. USA, 108, 2142–2147.

Nucleic Acids Research, 2012, Vol. 40, No. 10 4287

 at FA
K

/M
D

C
 on M

ay 29, 2012
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/

