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Abstract

In pharmacology, it is essential to identify the molecular mechanisms of drug action in order to understand adverse side
effects. These adverse side effects have been used to infer whether two drugs share a target protein. However, side-effect
similarity of drugs could also be caused by their target proteins being close in a molecular network, which as such could
cause similar downstream effects. In this study, we investigated the proportion of side-effect similarities that is due to
targets that are close in the network compared to shared drug targets. We found that only a minor fraction of side-effect
similarities (5.8 %) are caused by drugs targeting proteins close in the network, compared to side-effect similarities caused
by overlapping drug targets (64%). Moreover, these targets that cause similar side effects are more often in a linear part of
the network, having two or less interactions, than drug targets in general. Based on the examples, we gained novel insight
into the molecular mechanisms of side effects associated with several drug targets. Looking forward, such analyses will be
extremely useful in the process of drug development to better understand adverse side effects.
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Introduction

As almost 30% of drug candidates fail in clinical stages of drug

discovery due to toxicity or concerns about clinical safety [1], an

increased understanding of unwanted side effects and drug action

is desirable. Large-scale computational analyses of chemical and

biological data have made it possible to construct drug-target

networks that can be correlated to physiological responses and

adverse effects of drugs and small molecules [2]. Such drug side

effects have been predicted from the chemical structure of drugs

[3], can be implied if drugs use a similar target or have been used

themselves to predict new (off-)targets of drugs [2,4,5]. Even

complete networks of pharmacological and genomic data have

been used to identify drug targets[6].

Since most drugs have in addition to their primary target many

off-targets [7], they are expected to perturb many metabolic and

signaling pathways, eliciting both wanted and unwanted physio-

logical responses. Such effects are expected to be part of a larger

set of mechanisms that can explain the molecular basis of side

effects, such as dosage effects, insufficient metabolization,

aggregation or irreversible binding of off-targets [8]. To obtain a

better understanding of the molecular mechanisms of disease, drug

action and associated adverse effects, it makes sense to view

chemicals and proteins in the context of a large interacting

network [9,10]. Integration with the drug-therapy network [11]

and the analysis and intentional targeting of the protein interaction

network underlying drug targets could expand our current range

of drug treatments and reduce drug-induced toxicity [12,13].

Previous integrative studies of human disease states, protein-

protein interaction networks and expression data have uncovered

common pathways and cellular processes that are dysregulated in

human disease or upon drug treatment [14,15]. However, the

direct connection between the targeting of metabolic and signaling

pathways by drugs and the adverse drug reactions that they cause

has so far not been systematically studied and is only known for

individual cases [16,17,18,19,20].

In this work, we aim to quantify the contribution of protein

network neighborhood on the observed side-effect similarity of

drugs. We developed a pathway neighborhood measure that

assesses the closest distance of drug pairs based on their target

proteins in the human protein-protein interaction network. We

show that this measure is predictive of the side-effect similarity of

drugs. By investigating the unique overlap between pathway

neighborhood and side-effect similarity of drugs, we find known

and unexpected associations between drugs and provide novel

mechanistic insights in drug action and the phenotypic effects they

cause.

Results

Network Neighborhood for predicting side-effect
similarity

Our network neighborhood measure is based on the protein

associations in the database STRING [21], which includes

physical as well as functional and predicted interactions between

proteins from human data as well as putative interactions
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transferred from other species. As there are large variations in

number of interactions between proteins in STRING, we

developed a normalized score based on the confidence-weighted

edges in STRING, that reflects the closeness of drug targets in the

protein-protein network (see Methods). The scores were normal-

ized to find those associations between proteins that have

significantly higher confidence score than the average confidence

score of the edges of both proteins to all their network neighbors.

We estimated the side-effect similarity of drug pairs using a

previously described method ([4] and Methods, Table S1).

To investigate whether drug targets that are close to each other

in the network tend to have similar side effects, both the

normalized pathway neighborhood scores and the direct confi-

dence scores in STRING were used to predict drug pairs with

significant side-effect similarity (Fig 1a). As an overall correlation

between interaction scores and side effect similarities cannot be

found, we used ROC (Receiver Operating Characteristic) to

address this question. The ROC curves show that both the

normalized network measure and the direct confidence scores are

able to predict drug pairs with side-effect similarity (P,0.01) with

high recall and specificity. The area under curve (AUC) for the

normalized pathway neighborhood is 0.71 and 0.70 for direct

STRING confidence scores. The AUC increases for both

measures if only drug pairs with higher side-effect similarity are

considered (with AUCs of 0.76 and 0.75 at a cutoff of 0.01 for

normalized and direct scores, respectively). The question arises

whether drug target neighborhood could also be indicative of

therapeutic effects, however we could not find such a relation

(Figure S1).

Since both the Recall (7.9 %) of side-effect similarity by the top

500 normalized scores and the Precision (29.8%) are higher than

the Recall and Precision by the top 500 direct neighborhood

scores (1.8%; 5.7%) (see Methods/Fig 1b), the normalized

pathway neighborhood scores indeed appear to be better suited

for exploring the impact of pathway neighborhood on drugs

causing similar adverse effects.

We conclude that drug pairs targeting proteins that are network

neighbors indeed have higher side-effect similarity. However,

while many drug pairs that have similar side effects target the same

network neighborhood, protein network neighborhood doesn’t

appear to be a good predictor for novel, so far undetected side-

effect similarities of drugs.

Quantification of side-effect similarity caused by network
neighborhood

Previous work has shown that sharing of drug targets is often

reflected by similarity in side effects and now we find that also

drugs targeting the same network neighborhood show similarity in

side effects. We aim to quantify the percentage of side-effect

similarities that arise from drugs that target a similar part of the

protein-protein network as opposed to drugs that share a target.

To this end, we define the drug pairs that target neighboring

proteins as those that have a normalized neighborhood score $1,

i.e. those protein pairs that have STRING confidence which are

more than twice the average confidence of the proteins. At this

cutoff, 25,263 drug pairs are classified as targeting the same

protein network neighborhood.

Of all drug pairs with significant side-effect similarity

(N = 1,534), we observe that both drugs are targeting a similar

protein network neighborhood in 47.3% of the cases (N = 726)

(Fig 2a). However many of these similarities are expected to arise

because drugs have one or more drug targets in common [4]. If we

exclude those drug pairs that are known to share a target, the

overlap is reduced to only 101 drug pairs with significant side-

effect similarity.

Since it is known that drugs that are chemically similar or have

targets that are similar in sequence and/or structure are likely to

share a target [2,22], we further exclude drug pairs that display

chemical structure similarity and/or the sequence similarity of

their targets. For chemical similarity, we consider Tanimoto

coefficients $0.8 as structurally similar. Below this cutoff, less than

30% of these drug pairs are expected to have similar protein

binding properties [23]. Four of the 101 drug pairs have similar

chemical structures, reducing the overlap to 97 drug pairs. These

97 drug pairs have average Tanimoto coefficients of 0.2860.18,

showing that they are chemically unrelated and unlikely to share

the same protein targets on these grounds. Of these 97 pairs, 9

drug pairs had protein targets that displayed sequence similarity

(#1e24 using the BLAST algorithm [24]), resulting in a unique set

Figure 1. The predictive performance of normalized and direct
pathway neighborhood scores for predicting side-effect sim-
ilarity. This performance is estimated with a ROC curve (A) and a
precision/recall plot (B). For these analyses, we discretize the side-effect
similarity p-values into binary values at a cutoff of 0.10 as the target
drug pairs to predict. This is a relatively strict cutoff that captures those
drug pairs that are sufficiently similar in terms of their adverse effects.
Blue: normalized pathway neighborhood scores Red: direct confidence
scores STRING.
doi:10.1371/journal.pone.0022187.g001

Network Contribution to Drug Side Effects
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of 89 (5.8%) drug pairs with side-effect similarity correlated with

network neighborhood, while we estimate that at least 64% of

significant side-effect similarities are explained by shared drug

targets.

To investigate if the local network topology is markedly different

for the proteins that are targeted by these drugs, we investigated

the degree (number of interaction partners) of drug targets

(Fig 2b). We find that these drugs significantly target proteins

with low degrees, defined as an average degree of both targets #2

(p-value ,0.0032). We only consider edges with STRING

confidence scores .0.7, a cutoff that has previously been shown

to capture relevant protein-protein interactions and functional

pathway modules [25]. Thus, two proteins in a linear part of the

network that are targeted by drugs are more likely to display

similar side effects than two hub-like proteins with many

interactions. We conclude that if either component in a linear

pathway is targeted, similar molecular and physiological effects

unfold.

Exploration of network neighborhoods that influence
side effects: Novel mechanistic insights of drug actions

We visualized the drug-drug relationships of the 89 remaining

cases in a network (Fig 3). In addition to many single edges

between isolated drugs, a number of highly connected nodes can

be seen. For example, the cluster of glucocorticoids (i), tryciclic

antidepressants (ii) and a/b blockers (iii). While these drugs are

chemically dissimilar and their targets have little sequence

similarity, they have similar targets and mode of action, making

their observed side-effect similarity relatively unsurprising.

The network analysis also reveals novel mechanistic insights,

illustrated, for example by the association of the alcohol sensitivity

drug disulfiram with isoniazid, which is both an antitubercular

agent and antidepressant. Common adverse effects of both drugs

include liver related pathologies (‘‘jaundice’’, ‘‘hepatitis’’), but also

neural and neuronal conditions (‘‘encephalopathy’’, ‘‘neuritis’’,

‘‘psychosis’’, ‘‘eye pain’’). Both drugs have long been suspected to

Figure 2. Drug pairs with side effect similarity overlap with drug drug pairs targeting network neighborhood. (A) Venn diagram of
drug pairs with side-effect similarity, shared targets and targeting network neighborhood. We define drug pairs that have side effect p-values #0.10
as pairs having significant side-effect similarity. Pairs that target neighboring proteins are defined as having normalized neighborhood score $1.
Drug pairs that share one or more drug targets are based on data from DrugBank, Matador and PDSP Ki. Only drug-pairs are taken into consideration
where at least one drug target is known for both drugs and the side-effect similarity is also available. After removing 12 drug pairs (from 101) where
we might expect target-sharing based on chemical or protein similarity, 89 drug pairs are left that target neighboring proteins and have similar side-
effects. This is 5.8% of drug pairs with side-effect similarity where we have both target and network information. A minimum of 986 (64%) of side-
effect similarities can be explained by sharing drug-targets in the set where at least one drug target is known. (B) Degree distribution of drug pairs
with side-effect similarity that target the same network neighborhood. The drugs have been divided in two categories, drugs that target proteins
with two or less interaction partners and more than two interaction partners. The drugs in drug pairs that have side-effect similarity target
significantly more target proteins with fewer interaction partners than when we consider all drug pairs that target the same network neighborhood.
Drug pairs with high chemical similarity or with high sequence similarity of protein binding partners have been removed from the overlapping set, to
avoid possible undetected shared targets between drug pairs.
doi:10.1371/journal.pone.0022187.g002
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interact with each other when taken concurrently [26], presum-

ably since they both interact with cytochrome P450 2E1 [27,28].

However, our network neighborhood analysis reveals that both

drugs also interfere with butanoate metabolism. Isoniazid is known

to induce pyridoxine deficiency, affecting the breakdown of the

major neurotransmitter GABA, since both GABA transaminase

and glutamic acid decarboxylase require pyridoxine as a cofactor

[29]. Disulfiram inhibits GABA transaminase and succinate-

semialdehyde dehydrogenase, which are both involved in the

catabolism of GABA [30]. These interactions might be responsible

for the similarity of neural and neuronal side effects observed in

patients taking these drugs.

Another example for revealing mechanistic insights of drug

actions can be derived from the association between tegaserod and

Figure 3. Drug-drug network of drugs targeting network neighbors and having side-effect similarity. Drugs are drawn as yellow circles,
grey lines between them indicate drug targets that are network neighbors.
doi:10.1371/journal.pone.0022187.g003
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phenylephrine, both GPCR agonists. Tegaserod is an agonist of

the serotonin receptor 5-hydroxytryptamine 4 (5-HT4) and has

been used for treating chronic constipation in patients with

irritable bowel syndrome and chronic idiopathic constipation

[31,32]. Tegaserod was withdrawn from the market when pooled

clinical studies indicated an increased risk of cardiovascular

ischemic events, even though a recent cohort study found no

such association [33]. Phenylephrine is a beta-2 adrenergic

receptor (ADRB2) agonist and its vasoconstrictive properties have

been found useful in a wide range of applications, including use as

a decongestant, vasopressor and pupil dilation agent [34]. The

adverse effect profiles of both drugs are similar and include side

effects of a cardiovascular (‘‘angina pectoris’’, ‘‘tachycardia’’),

neuronal (‘‘dizziness’’, ‘‘sleep disorders’’) and genitourinary nature.

Interestingly, some of these adverse effects appear to be opposite

physiological responses (‘‘somnolence’’ and ‘‘insomnia,’’ or

‘‘polyuria’’ and ‘‘dysuria’’ for tegaserod and phenylephrine,

respectively). The 5-HT4 and ADRB2 proteins directly interact

with each other in heterodimers and are therefore network

neighbors [35]. The functional relevance of this dimerization is as

of yet unknown, but it is tempting to speculate that the similar

physiological effects of both drugs, including the cardiovascular

adverse effects of tegaserod, have a common molecular basis in

their functional interaction.

A final example is the association between the drugs tolcapone

and pergolide, which are both used in the treatment of Parkinson’s

disease [36]. Both drugs have broad side effect profiles, and share

many severe adverse effects of the nervous (‘‘hallucinations’’,

‘‘amnesia’’), digestive (‘‘gastroenteritis’’, ‘‘diarrhea’’) and cardio-

vascular (‘‘bradykardia’’, ‘‘stroke’’) systems. Despite the large

similarities in the physiological response of the human body, both

drugs have different mechanisms of action: tolcapone is a catechyl-

O-methyl transferase (COMT) inhibitor [37], whereas pergolide is

a dopamine receptor agonist [38]. By inhibiting COMT,

tolcapone increases dopamine levels by preventing it from being

converted to 3-methoxytiramine. Additionally, tolcapone is often

used in adjunct with the dopamine precursor levodopa, to reduce

its rapid catabolization in the gut, thereby prolonging the effects of

levodopa. As a dopamine receptor agonist, pergolide mimics the

activating effects of dopamine on the dopaminergic receptors. Our

analysis suggests that the observed similarity of side effects of both

drugs might reflect the underlying physiological response to

prolonged/increased dopaminergic activity.

Discussion

In this study we have shown that the similarity of adverse effects

for a number of drugs can uniquely be explained by the common

protein subnetwork that they target. While network neighborhood

on its own is not predictive for side-effect similarity, it does lead to

novel mechanistic insights into the molecular basis of side effects. It

must be noted that the percentage of drug pairs with significant

side-effect similarity sharing a common target is much larger than

the percentage of drug pairs targeting non-overlapping proteins

that are neighbors in a pathway (64% compared to 5.8%).

Previous studies relied on the assumption that common adverse

effects between drugs generally arise due to the binding of the

same (off-)targets [2,4,16,19]. This seems to be a valid assumption

since only a small number of side-effect similarities are expected to

arise due to pathway neighborhood effects based on the results

presented here.

The figure of 5.8% should be treated with caution and is likely

to be an underestimate of the role of the protein interactions play

in causing adverse drug effects. Since our pathway neighborhood

measure only accounts for direct neighbors in the network, further

relations between protein network neighborhood and phenotypic

effects might be found if larger parts of the network are considered.

The number is even more likely to increase if the limited

knowledge of the human protein-protein interaction network, even

after transferring information from other species, will be extended

by more experimental data. The integration of protein network

data with other molecular and cellular readouts (e.g., gene

expression) should also provide a more sensitive and comprehen-

sive understanding of the role that pathway perturbations play in

establishing adverse drug reactions. On the other hand, more

complete knowledge of the drug target profiles of small molecules

could increase the number of side-effect similarities that are

associated with a shared drug target, making our figure an

overestimation.

In the drug-drug network that is presented here, we observe

multiple drug pairs where both drugs are known to negatively

interact (such as disulfiram and isoniazid) or are used in

combination therapies (amiloride and thiazide, for example). Most

in silico predictions of adverse drug interactions are currently based

on either cytochrome P450 metabolization information or phar-

mocokinetic predictions derived from in vitro or in vivo data [39,40].

The protein-protein network has so far remained underexplored in

the prediction of adverse drug interactions [12,16,17,18,19,20].

With the expansion of human protein-protein interaction networks

and pathway information, neighborhood analysis as is presented

here can be refined and adapted for the prediction adverse drug

interactions or efficacious drug combinations.

Materials and Methods

Construction of drug target, side effect and pathway
effect datasets

Drugs and their protein targets were extracted from the drug

target databases; DrugBank, Matador [41,42] and PDSP Ki

(http://pdsp.med.unc.edu/indexR.html). Only drug target anno-

tations with binding constants lower than 10 mM were considered.

Metabolizing enzymes and proteins like albumin that bind drugs

unspecifically were excluded from the drug target set because our

goal in this research is to identify shared side effects of drugs that

target functionally related proteins on a level that extends beyond

basic interactions. Proteins were excluded if their ENSEMBL

annotations matched one of the following keywords: ‘‘Cyto-

chrome’’, ‘‘ATP-binding cassette’’, ‘‘Thromboxane’’, ‘‘Arachido-

nate-lipoxygenase’’, ‘‘Glutathione-transferase’’, ‘‘Flavin containing

monooxygenase’’, ‘‘Albumin’’ or ‘‘Histocompatibility’’. The re-

sulting drug target set is composed of 781 drugs and 1245 targets,

forming 6036 drug target interactions.

In order to investigate the role of pathways in the side-effect

similarity of drugs, we created two datasets: one for pairwise

comparisons between drugs in terms of the adverse effects that

they cause and another one that contains a measure for the

closeness of proteins in the human protein-protein network. The

side-effect similarity of drug pairs is calculated as previously

described [4]. In short, side effects are extracted from publicly

available package inserts via text-mining approaches. To capture

the similarity between closely related side effects, side effects are

mapped to the Unified Medical Language System ontology after

which all parent terms are assigned to the drugs. For every drug

pair a side-effect similarity score is calculated based on the side

effects that they share, where every shared side effect is weighted

for the rareness and its correlation with other side effects. Drugs

and their side effects are available for download from SIDER

(http://sideeffects.embl.de) [43].

Network Contribution to Drug Side Effects
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To obtain a measure for the relatedness of proteins in the

human protein-protein network, we use the confidence scores

between proteins in the STRING functional protein association

database [21]. STRING is a resource that not only captures

physical protein-protein interactions, but also functional associa-

tions derived from multiple sources, such as manually curated

pathway databases and inferred relationships from text-mining

PubMed abstracts. Since drugs may cause similar side effects on

different functional levels, ranging from pathway perturbations to

targeting the same protein complexes, this integrative approach

suits our goals by allowing us to analyze the relationships between

proteins on several molecular and functional levels at once.

For every possible pair of drugs in our dataset of 827 drugs, we

go through the list of their associated targets and retrieve the

confidence scores for every target pair where there is an edge

present in the STRING network. We normalize these confidence

scores by dividing them by the sum of the average confidence

scores of all edges both targets have in the network. The idea

behind this normalization is that an interaction with high

confidence between two proteins is more significant if it has a

higher confidence score than would be expected from the average

confidence score of the edges of both proteins. The overlap

between the datasets on side-effect similarity and pathway

neighborhood consists of 129,975 unique drug pairs.

Chemical similarity of drugs
The chemical similarity of drugs is calculated using the

commonly used Tanimoto/Jaccard 2D chemical similarity scores

[44]. The structural resemblance between two molecules is

calculated by dividing the intersection of chemical substructures

common to the pair of molecules by the total number of chemical

substructures found in both pairs.

Normalization
For every possible pair of drugs in our dataset of 827 drugs, we

go through the list of their associated targets and retrieve the

confidence scores for every target pair where there is an edge

present in the STRING network. We normalize these confidence

scores by dividing them by the sum of the average confidence

scores of all edges i and j that both targets u1 and u2 have in the

network, according to equation 1. The highest normalized score of

a target pair is then reported as the normalized pathway

neighborhood score for a drug pair.

s u1u2ð Þ
1

N u1ð Þj j
X

i[N u1ð Þ
s u1,ið Þz 1

N u2ð Þj j
X

i[N u2ð Þ
s u2, jð Þ

ð1Þ

The idea behind this normalization is that an interaction with

high confidence between two proteins is more significant if it has a

higher confidence score than would be expected from the average

confidence score of the edges of both proteins.

Supporting Information

Figure S1 The predictive performance of normalized
and direct pathway neighborhood scores for predicting
therapeutic effect similarity. This performance is estimated

with a ROC curve (A) and a precision/recall plot (B). For these

analyses, we take as positive set drugs that overlap at the 3rd level

of ATC classification and as negative set all other combinations of

these drugs. Although there is some signal, there seems to be no

significant overlap between drug target neighborhood and drug

therapeutic effect similarity.

(TIF)

Table S1 Side effect similarity between drugs.

(XLSX)
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