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Abstract

Metabolomics is a promising tool for discovery of novel biomarkers of chronic disease risk in prospective epidemiologic
studies. We investigated the between- and within-person variation of the concentrations of 163 serum metabolites over a
period of 4 months to evaluate the metabolite reliability expressed by the intraclass-correlation coefficient (ICC: the ratio of
between-person variance and total variance). The analyses were performed with the BIOCRATES AbsoluteIDQTM targeted
metabolomics technology, including acylcarnitines, amino acids, glycerophospholipids, sphingolipids and hexose in 100
healthy individuals from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study who had
provided two fasting blood samples 4 months apart. Overall, serum reliability of metabolites over a 4-month period was
good. The median ICC of the 163 metabolites was 0.57. The highest ICC was observed for hydroxysphingomyelin C14:1
(ICC = 0.85) and the lowest was found for acylcarnitine C3:1 (ICC = 0). Reliability was high for hexose (ICC = 0.76),
sphingolipids (median ICC = 0.66; range: 0.24–0.85), amino acids (median ICC = 0.58; range: 0.41–0.72) and glyceropho-
spholipids (median ICC = 0.58; range: 0.03–0.81). Among acylcarnitines, reliability of short and medium chain saturated
compounds was good to excellent (ICC range: 0.50–0.81). Serum reliability was lower for most hydroxyacylcarnitines and
monounsaturated acylcarnitines (ICC range: 0.11–0.45 and 0.00–0.63, respectively). For most of the metabolites a single
measurement may be sufficient for risk assessment in epidemiologic studies with healthy subjects.
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Introduction

The ‘‘omic’’ sciences – including genomics, proteomics and

metabolomics, among others - are promising novel approaches

that may be useful in prospective epidemiologic studies to screen

various targets at once with the aim to identify candidate

biomarkers for the estimation of the risk of chronic diseases, such

as cardiovascular disease or diabetes. Metabolomics systemati-

cally identifies and quantifies low-molecular weight compounds

that are intermediates or endpoints of metabolism. Because

metabolites may change rapidly in response to physiologic

perturbations, they may represent more proximal reporters of

intermediary or disease phenotypes than e.g. proteins [1,2,3].

Expanding the view from the more static genomic and proteomic

fields to metabolomics may, therefore, reveal more insight into a

system that is more sensitive to external stimuli. Thus,

metabolomics is a promising technique for candidate biomarker

discovery to assess chronic disease risk in large-scale epidemio-

logic studies [4]. To gain a reliable risk estimate with a single

blood measurement, as is usually obtained in large epidemiologic

studies, the within-subject variance over time should be small

compared with the between-subject variance since poor reliability

generally tends to bias relative risks in epidemiologic studies

between biomarkers and disease risk towards the null [5]. Thus,

the high sensitivity of the metabolome to internal or external

stimuli (such as age, hormonal status, diet and lifestyle) may

potentially limit their use for risk assessment in large-scale

epidemiologic studies that are based on single blood measure-

ments [6], but little is known on their within- and between-person

variance.

To address this issue, the present study aimed to evaluate the

reliability, expressed by the intraclass-correlation coefficient (ICC)

[5], as the ratio of between-person variance and total variance, of

163 targeted metabolites in fasting serum samples over a 4-month

period within a sub-sample of the European Prospective Investiga-

tion into Cancer and Nutrition (EPIC)-Potsdam cohort. This

metabolomic approach has already been successfully applied in the

human KORA cohort study [7,8], and covers acylcarnitines, amino

acids, glycerophospholipids, sphingolipids and hexoses, constituting

a biologically relevant panel of 163 metabolites.
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Results

The total sample consisted of 100 healthy participants who were

evenly distributed according to gender with a mean age of 56.1

years (Table 1). Men were older, had a higher BMI, waist-

circumference and waist-to-hip ratio than women.

Mean serum metabolite concentrations ranged from 0.01

mmol/L for a number of acylcarnitines to 5207 mmol/L for

hexose. On average, the serum reliability of 163 metabolites was

good with a median ICC of 0.57. The highest reliability was

observed for hydroxysphingomyeline SM(OH)C14:1 (ICC = 0.85)

and the lowest was found for acylcarnitine C3:1 (ICC = 0). The

ICCs for the individual metabolites according to their subclasses

are presented in Tables 2 to 5 (Table 2: acylcarnitines; Table 3:

amino acids, lysoglycerophospholipids, sphingolipids and hexose;

Table 4: diacyl-glycerophospholipids, and Table 5: acyl-alkyl-

glycerophospholipids). Excellent reliability (ICC$0.75) was found

for hexose; hydroxysphingomyelins SM(OH)C14:1, SM(OH)C-

22:2 and SM(OH)C16:1; sphingomyelins SMC18:1 and SMC-

16:1; phosphatidylcholines PCaeC44:6, PCaeC42:5, PCaeC36:2

and PCaeC42:4; and Butyryl-L-carnitine (C4). Among the metab-

olites that were poorly reliable (ICC,0.4), there were 16 out of 41

acylcarnitines, besides 14 out of 92 glycerophospholipids and

sphingomyelines SMC22:3, SMC20:2 and SMC26:0.

Among metabolite subclasses (Figure 1), the serum reliability was

excellent in hexose (ICC = 0.76), the 15 sphingolipids showed a poor

to excellent reliability (median ICC = 0.66, range: 0.24–0.85),

reliability of the 14 amino acids was fair to good with a median

ICC of 0.58 (range: 0.41–0.72) and the 92 glycerophospholipids had

a poor to excellent reliability with median ICC = 0.58 (range:

0.03–0.81). The least reliable metabolite subclass included the

41 acylcarnitines with median ICC = 0.45 (range: 0.00–0.81).

However, acylcarnitines were a very heterogeneous class. Among

acylcarnitines, most of the short and medium chain saturated

compounds showed a good to excellent reliability (ICC ranging from

0.50–0.81), whereas reliability of hydroxyacylcarnitines and mono-

unsaturated acylcarnitines was mostly poor to fair (ICC range: 0.11–

0.45 and 0.00–0.63, respectively). The analytical variance of the

metabolites was also evaluated measuring 230 replicates (Tables S1
and S2). 29 of the metabolites, most of them monounsaturated- and

hydroxyacylcarnitines, next to few glycerophospholipids, showed very

low serum concentrations that were below the limit of detection

(LOD) of the analytical method. After excluding these metabolites

from the ICC calculation, the overall corrected median ICCcorr was

0.59, and in specific for acylcarnitines median ICCcorr was 0.52 and

for glycerophospholipids median ICCcorr was 0.59.

Since reliability depends on both, within- and between-person

variances, we also report these variance components in Tables 2 to

5, to illustrate their contribution to the ICC. For example, the

acylcarnitines C4 and C16 had very similar within-person variances

(18.7% vs. 18.8%, respectively); however, their ICCs were different

(0.49 vs. 0.81, respectively) (Table 2), which was explained by their

differing between-person variances (18.3% vs. 38.4%, respectively).

Acylcarnitine C4 showed a much lower within-person variance

compared to its between-person variance (18.8% vs. 38.4%,

respectively), leading to a high ICC (0.81) and indicating excellent

reliability; whereas acylcarnitine C16 showed similar within- and

between-person variances (18.7% vs. 18.3%, respectively), leading

to a lower ICC (0.49) and suggesting only fair reliability.

Discussion

This study, investigating the reliability of 163 serum metabolites

under fasting conditions using a commercially available kit in a

healthy sub-sample of the population-based EPIC-Potsdam cohort

over a 4-month period, observed an acceptable reliability for most

of the metabolites. Reliability was fair to excellent for hexose, all of

the amino acids, saturated short- and medium chain acylcarnitines

and most of the sphingomyelins and glycerophospholipids. The

results support the concept that these metabolites are reliable

candidates for risk assessment in prospective epidemiologic studies

with one blood sample collection, as a single measurement

appropriately reflects their long-term concentration in individuals.

Few compounds revealed higher variability, such as hydroxya-

cylcarnitines and monounsaturated acylcarnitines, which imply

restrain conditions in the design of epidemiologic studies.

A single assessment of a biochemical indicator may be

susceptible to short-term variation and not reflect true long-term

exposure. The ICC, as the ratio of between-person variance and

total variance (sum of between- and within-person variances),

reflects reliability very well as it considers both between- and

within-person variability. A high ICC can be obtained by low

within- and/or high between-person variance. A low ICC is

attributable to high within- and/or low between-person variance.

Random measurement error generally tends to decrease correla-

tion and regression coefficients in epidemiologic studies toward 0

and bias relative risks toward 1. To assess long-term exposure

using a single blood measurement, as it is often the case in large

epidemiologic studies, the between-person variance should

account for most of the observed variability in the biomarker

concentration, whereas within-person variance should be relatively

low [5,9]. This requirement was met by the majority of the

metabolites that were included in the present study.

Reliability studies often focus on technological improvement

of biochemical assays, sample handling or storage conditions

[10,11,12,13]. However, studies investigating the biological vari-

ance and over-time reliability of metabolite concentrations are

rarely found in the literature [14,15,16]. Previous studies focused on

biological variation of metabolites in other biological fluids e.g.

plasma or cerebral spinal fluid, were based on a limited number of

samples or used an untargeted metabolomics strategy. Investigators

previously reported similar high ICCs for plasma concentrations of

amino acids in different nutritional states [17]. Amino acid

metabolism is tightly regulated, and a genetic component has been

suggested to play a major role in amino acid homeostasis [17].

Therefore, intra-individual blood concentrations of amino acids are

within a narrow range. This fact is also reflected in our results, as we

found that within-person variance in amino acids is in a lower range

than between-person variance.

We found low within-person variance and excellent reliability of

hexose concentrations. Hexose includes various monosaccharides

containing 6 carbons, e.g. glucose, fructose and galactose, among

others. Hormonal control mechanisms immediately respond to

feeding, postprandial and fasting states and ensure that blood sugar

concentrations are contained within a narrow range over-time.

Table 1. Characteristics of the EPIC-Potsdam Sub-Sample.

All (n = 100) Men (n = 50) Women (n = 50)

Mean (SD) Mean (SD) Mean (SD)

Age (years) 56.1 (4.05) 57.9 (3.13) 54.4 (4.15)

BMI (kg/m2) 26.8 (4.04) 28.0 (3.78) 25.6 (3.96)

Waist (cm) 94.6 (13.5) 103 (10.9) 86.1 (10.1)

Waist-to-hip ratio 0.89 (0.10) 0.96 (0.06) 0.81 (0.06)

doi:10.1371/journal.pone.0021103.t001
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Table 2. Geometric Means, Variances and Intraclass-Correlation Coefficients (ICCs) of Serum Concentrations of Acylcarnitines
Measured 4 Months Apart Among 100 Healthy Subjects from the EPIC-Potsdam Cohort.

1st Measurement 2nd Measurement CV (%)

Metabolite
[mmol/L]ab Mean 95% CI Mean 95% CI P-valuec

Within-
person

Between-
person ICCd,e,,f 95% CI

C0 35.8 (34.1–37.6) 37.0 (35.3–38.8) 0.09 13.4 19.7 0.69 (0.57–0.78)

C10 0.35 (0.32–0.38) 0.37 (0.33–0.41) 0.20 27.0 38.5 0.67 (0.55–0.77)

C10:1g 0.21 (0.20–0.22) 0.23 (0.21–0.24) 0.04 20.4 23.2 0.57 (0.42–0.68)

C10:2 0.04 (0.04–0.04) 0.04 (0.04–0.04) 0.44 21.0 19.2 0.46 (0.29–0.60)

C12 g 0.13 (0.12–0.14) 0.14 (0.13–0.15) 0.09 23.1 23.0 0.50 (0.34–0.63)

C12-DCg 0.03 (0.03–0.04) 0.04 (0.03–0.04) 0.16 16.8 7.2 0.15 (0.00–0.34)

C12:1g 0.03 (0.03–0.04) 0.04 (0.03–0.04) 0.25 19.6 17.9 0.45 (0.28–0.60)

C14g 0.10 (0.09–0.10) 0.09 (0.09–0.10) 0.28 14.7 11.5 0.38 (0.20–0.53)

C14:1 0.26 (0.25–0.27) 0.27 (0.26–0.28) 0.05 15.5 16.2 0.52 (0.36–0.65)

C14:1-OHg 0.02 (0.02–0.02) 0.02 (0.02–0.02) 0.08 25.4 19.7 0.37 (0.19–0.53)

C14:2 0.04 (0.04–0.04) 0.04 (0.04–0.04) 0.39 30.7 28.4 0.46 (0.29–0.60)

C14:2-OH 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.17 37.8 20.5 0.23 (0.03–0.40)

C16 0.14 (0.13–0.14) 0.14 (0.14–0.15) 0.08 18.7 18.3 0.49 (0.33–0.63)

C16-OHg 0.01 (0.01–0.01) 0.01 (0.00–0.01) 0.20 44.8 15.4 0.11 (0.00–0.30)

C16:1g 0.05 (0.05–0.06) 0.05 (0.05–0.06) 0.99 17.6 17.1 0.49 (0.32–0.62)

C16:1-OHg 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.72 32.9 13.8 0.15 (0.00–0.34)

C16:2 0.01 (0.01–0.01) 0.01 (0.01–0.01 0.26 40.9 23.2 0.24 (0.05–0.42)

C16:2-OHg 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.02 31.6 12.4 0.13 (0.00–0.32)

C18 0.05 (0.05–0.06) 0.06 (0.05–0.06) 0.10 28.1 22.9 0.40 (0.22–0.55)

C18:1 0.18 (0.17–0.19) 0.19 (0.18–0.21) 0.00 19.2 18.7 0.49 (0.32–0.62)

C18:1-OHg 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.87 43.4 22.1 0.21 (0.01–0.39)

C18:2 0.06 (0.06–0.07) 0.07 (0.07–0.07) 0.00 21.9 23.9 0.54 (0.39–0.67)

C2 6.97 (6.55–7.41) 7.18 (6.74–7.65) 0.29 20.1 24.1 0.59 (0.45–0.70)

C3 0.39 (0.36–0.41) 0.39 (0.36–0.41) 0.97 18.7 27.9 0.69 (0.57–0.78)

C3-DC/C4-OHg 0.04 (0.04–0.04) 0.04 (0.04–0.05) 0.18 17.0 0.23 0.23 (0.04–0.41)

C3-DC-M/C5-OH 0.02 (0.02–0.02) 0.02 (0.02–0.02) 0.58 22.6 0.45 0.45 (0.28–0.59)

C3-OHg 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.08 36.7 15.6 0.15 (0.00–0.34)

C3:1g 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.27 57.6 0.00 0.00

C4 0.23 (0.21–0.25) 0.23 (0.21–0.25) 0.81 18.8 38.4 0.81 (0.73–0.87)

C4:1g 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.60 35.1 11.3 0.09 (0.00–0.28)

C4:1-DC/C6 0.09 (0.08–0.09) 0.09 (0.08–0.10) 0.13 22.0 30.6 0.66 (0.53–0.76)

C5 0.13 (0.12–0.14) 0.14 (0.13–0.15) ,.001 21.2 28.1 0.64 (0.50–0.74

C5-DC/C6-OH 0.02 (0.02–0.02) 0.02 (0.02–0.02) 0.80 25.4 0.41 0.41 (0.24–0.56)

C5-M-DCg 0.03 (0.02–0.03) 0.03 (0.03–0.03) 0.57 28.7 32.0 0.56 (0.40–0.68)

C5:1g 0.04 (0.03–0.04) 0.04 (0.03–0.04) 0.75 26.1 9.4 0.11 (0.00–0.30)

C5:1-DCg 0.01 (0.01–0.02) 0.01 (0.01–0.02) 0.68 31.8 11.3 0.11 (0.00–0.30)

C6:1g 0.01 (0.01–0.01) 0.01 (0.01–0.01) 0.57 30.1 9.8 0.10 (0.00–0.29)

C7-DC 0.04 (0.04–0.04) 0.04 (0.04–0.05) 0.26 26.1 21.7 0.41 (0.23–0.56)

C8g 0.26 (0.24–0.28) 0.28 (0.26–0.30) 0.02 20.1 33.5 0.73 (0.63–0.81)

C8:1 0.10 (0.10–0.11) 0.12 (0.11–0.13) 0.00 27.9 36.4 0.63 (0.50–0.73)

C9 0.04 (0.04–0.05) 0.04 (0.04–0.05) 0.46 26.1 30.8 0.58 (0.44–0.70)

aAbbreviations are as follows: Cx:y (x = number of carbons in the fatty acid side chain, y = number of double bonds in the fatty acid side chain), decarboxyl (DC),
hydroxyl (OH). For detailed nomenclature see Table S1.

bn = 100.
cA paired t-test based on log-transformed values was calculated to compare geometric means of metabolite concentrations over-time.
dBased on log transformed values.
eICC calculated as the ratio of between-person variance and total variance.
fFor negative values ICC was calculated based on positive variance estimators [33].
gMetabolite concentration was below the assay’s limit of detection.
doi:10.1371/journal.pone.0021103.t002
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Table 3. Geometric Means, Variances and Intraclass-Correlation Coefficients (ICCs) of Serum Concentrations of Amino Acids,
Lysoglycerophospholipids, Sphingolipids and Hexose Measured 4 Months Apart Among 100 Healthy Subjects from the EPIC-
Potsdam Cohort.

1st Measurement 2nd Measurement CV (%)

Metabolite
[mmol/L]ab Mean 95% CI Mean 95% CI P-valuec

Within-
person

Between-
person ICCd,e,f 95% CI

Amino Acids

Arg 135 (130–140) 136 (132–141) 0.49 11.4 13.7 0.59 (0.45–0.70)

Gln 726 (701–751) 741 (713–770) 0.22 11.7 14.3 0.60 (0.46–0.71)

Gly 313 (298–329) 329 (313–345) 0.01 14.1 20.4 0.68 (0.55–0.77)

His 93.7 (90.7–96.9) 96.4 (93.0–100) 0.07 11.0 13.5 0.60 (0.46–0.71)

Met 36.5 (35.1–38.0) 37.8 (36.2–39.4) 0.12 15.8 13.2 0.41 (0.24–0.56)

Orn 112 (107–118) 121 (116–127) 0.00 15.8 18.4 0.58 (0.43–0.69)

Phe 67.1 (64.6–69.7) 70.6 (68.1–73.3) 0.01 13.9 13.1 0.47 (0.30–0.61)

Pro 196 (185–208) 206 (194–219) 0.02 15.9 25.6 0.72 (0.62–0.80)

Ser 140 (134–146) 147 (141–154) 0.01 13.4 16.7 0.61 (0.47–0.72)

Thr 104 (98.7–109) 108 (103–113) 0.08 17.4 15.5 0.44 (0.27–0.59)

Trp 83.8 (81.2–86.5) 84.9 (82.2–87.8) 0.44 12.1 10.9 0.45 (0.28–0.59)

Tyr 80.1 (76.6–83.8) 84.2 (80.2–88.4) 0.03 15.9 17.4 0.54 (0.39–0.67)

Val 338 (324–353) 351 (333–369) 0.09 15.9 17.8 0.56 (0.41–0.68)

xLeu 261 (250–274) 276 (263–289) 0.01 15.7 18.1 0.57 (0.42–0.69)

Lysoglycerophospholipids

lysoPC a C14:0 3.28 (3.11–3.46) 3.36 (3.13–3.62) 0.47 24.3 21.6 0.44 (0.27–0.59)

lysoPC a C16:0 157 (151–163) 167 (160–175) 0.01 15.6 15.1 0.49 (0.32–0.62)

lysoPC a C16:1 4.51 (4.24–4.79) 4.69 (4.38–5.02) 0.20 21.7 24.8 0.57 (0.42–0.69)

lysoPC a C17:0 2.54 (2.39–2.69) 2.65 (2.49–2.82) 0.09 18.5 24.5 0.64 (0.50–0.74)

lysoPC a C18:0 49.8 (47.6–52.1) 52.6 (50.2–55.2) 0.02 16.7 16.5 0.50 (0.33–0.63)

lysoPC a C18:1 30.5 (28.9–32.1) 31.8 (30.0–33.6) 0.12 18.7 20.3 0.54 (0.39–0.66)

lysoPC a C18:2 36.33 (34.2–38.6) 37.52 (35.0–40.2) 0.29 21.2 25.1 0.58 (0.44–0.70)

lysoPC a C20:3 3.29 (3.08–3.50) 3.37 (3.18–3.58) 0.47 24.9 18.7 0.36 (0.18–0.52)

lysoPC a C20:4 8.50 (8.00-9.03) 9.11 (8.58–9.67) 0.01 19.8 23.2 0.58 (0.43–0.69)

lysoPC a C24:0g 0.37 (0.34–0.39) 0.35 (0.33–0.38) 0.32 25.2 19.3 0.37 (0.19–0.53)

lysoPC a C26:0g 0.51 (0.47–0.56) 0.51 (0.47–0.55) 0.91 31.0 32.0 0.52 (0.36–0.65)

lysoPC a C26:1g 3.09 (3.03–3.15) 3.05 (2.99–3.10) 0.28 9.1 3.7 0.14 (0.00–0.33)

lysoPC a C28:0g 0.48 (0.44–0.51) 0.47 (0.44–0.50) 0.62 24.7 24.1 0.49 (0.32–0.62)

lysoPC a C28:1 0.76 (0.71–0.81) 0.73 (0.68–0.78) 0.25 20.6 25.4 0.60 (0.46–0.71)

lysoPC a C6:0g 0.02 (0.02–0.02) 0.02 (0.02–0.02) 0.81 48.2 15.1 0.11 (0.00–0.32)

Sphingolipids

SM (OH) C14:1 7.08 (6.66–7.52) 7.18 (6.77–7.61) 0.41 11.6 27.7 0.85 (0.78–0.90)

SM (OH) C16:1 3.57 (3.37–3.78) 3.56 (3.35–3.79) 0.95 13.7 26.3 0.79 (0.70–0.85)

SM (OH) C22:1 13.7 (13.1–14.5) 13.9 (13.2–14.5) 0.69 13.7 20.7 0.70 (0.58–0.78)

SM (OH) C22:2 11.6 (10.9–12.3) 11.6 (11.0–12.3) 0.83 13.1 25.5 0.79 (0.70–0.85)

SM (OH) C24:1 1.26 (1.19–1.34) 1.22 (1.15–1.30 0.26 18.9 24.6 0.63 (0.49–0.73)

SM C16:0 125 (120–130) 127 (122–132) 0.42 11.3 15.5 0.66 (0.53–0.75)

SM C16:1 17.9 (17.0–18.7) 18.1 (17.4–19.0) 0.33 11.4 19.8 0.75 (0.65–0.83)

SM C18:0 26.4 (25.3–27.6) 26.7 (25.5–27.9) 0.60 12.8 19.0 0.69 (0.57–0.78)

SM C18:1 11.50 (10.9–12.1) 11.5 (10.9–12.1) 0.98 12.7 23.4 0.77 (0.68–0.84)

SM C20:2 0.46 (0.42–0.50) 0.44 (0.41–0.47) 0.39 32.3 19.1 0.26 (0.07–0.43)

SM C22:3 1.99 (1.81–2.19) 2.23 (2.08–2.38) 0.03 34.2 22.5 0.30 (0.11–0.47)

SM C24:0 24.0 (22.9–25.1) 24.1 (23.1–25.1) 0.78 14.2 16.3 0.57 (0.42–0.69)

SM C24:1 51.9 (49.8–54.2) 52.3 (50.0–54.6) 0.73 12.6 17.5 0.66 (0.54–0.76)
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Acylcarnitines represent esterified fatty acid derivates that

occur in the process of fatty acid translocation into the inner

mitochondrial membrane which is the limiting step for b-

oxidation. Acylcarnitines can efficiently pass into the cytosol and

subsequently into the blood stream. Blood acylcarnitine concen-

trations, therefore, reflect the substrate flux through b-oxidation.

Increased acylcarnitine concentrations have been associated with

type 2 diabetes mellitus previously [18,19]. However, information

on serum reliability is scarce. We found that short and medium

chain acylcarnitines in serum are more reliable than longer chain

hydroxy- and monounsaturated acylcarnitines. In healthy human

individuals, acylcarnitines are generally observed at low concen-

trations in plasma and serum. This might also affect the observed

ICCs and the analytical variance. Per example, all hydroxylated

acylcarnitines were below the LOD, except C14:1-OH, which

showed values very close to the LOD. Therefore, the analytical

variance observed for these metabolites is presented in Table S2.

Phosphatidylcholines belong to the group of membrane

phospholipids that consist of a glycerol core which carries a

choline head group and two fatty acid residues. Lysophosphati-

dylcholines usually originate from hydrolysis of the sn-2 fatty acid

and transesterification by phospholipase A2 and, therefore, only

carry one fatty acid. De-novo synthesis and redistribution from

plasma membranes may impact phosphatidylcholine and lyso-

phosphatidylcholine concentrations in blood [20]. Sphingomyelins

are also membrane phospholipids, but instead of glycerol, they

contain a ceramide core, including a fatty acid, and a polar head

group. Besides being part of membranes, they are also involved in

signal transduction such as nuclear factor-kB pathways [21]. This

action requires enzymatical breakdown of sphingomyelins and

release of ceramides [22]. A previous study that investigated the

reproducibility of platelet phospholipid measures in 12 subjects

over a 3-week period reported similar ICCs as observed in our

study [23]. That study found an ICC of 0.50 for total

phosphatidylcholines and an ICC of 0.54 for total sphingomyelins,

as compared to a median ICC of 0.58 for phosphatidylcholines

and median ICC of 0.66 for sphingomyelins observed in our study.

These findings indicate good reliability of most phospholipids and

support their usefulness as reliable candidate biomarkers.

The strength of our study was that we assessed reliability in a wide

spectrum of metabolites including different classes of compounds.

Furthermore, the detection assay for these metabolites represents a

modern high-throughput technique that has already been approved

and standardized, and can be applied to future metabolome

analysis. We also used a sub-sample of a large population-based

prospective cohort study for this reliability investigation, therefore,

ensuring a high precision for the results of the ICCs. The

participants of this study were free-living, and thus, their exposure

to various external factors differed reflecting a real life situation.

Our study had some limitations. The estimation of within-

person variation (% CV) was based on only two time point

measurements. This was a trade-off for the large sample size of the

present study. To account for this limitation we included a long

time span between the two measurements of metabolite concen-

trations where participants were free-living and thus, exposed to

several external factors that could have affected stability of

metabolite concentrations. The present study included fasting

healthy subjects. Reliability of metabolites may be different for

people with existing chronic disease and in situations in which

fasting status is not possible to obtain. Future studies are warranted

to further investigate the metabolite reliability in different (i.e.

those with overt disease or challenged) populations.

We were primarily interested to study the reliability of

metabolites for risk assessment using a single blood measurement,

as is usually the case in large scale epidemiologic studies. Therefore,

we did not investigate in detail possible sources of within- or

between-person variance. We are aware of a need to evaluate the

impact of genetic and non-genetic factors on these variance

components, which should be the aim of future studies. Some

metabolites, especially of the acylcarnitine group, showed lower

serum concentrations than the LOD of the assay system; thus, the

observed low ICCs could also be explained by technological

limitation. Beyond biologic variability, the total variance of the

biomarker concentrations depends on the precision of the

measurement. Although most metabolites were measured with

relatively high precision, the coefficients of variations were larger for

a few metabolites, which may explain the lower reliability for some

of these markers. Thus, the reliability depends on the assay system,

and, although we used a validated kit, the reliability of the

metabolites measured here may be different when other systems are

used. Although reliability was low for some of the metabolic markers

when analysed separately as in our analysis, this does not exclude

the possibility that these markers may still be useful when

investigating the impact of metabolic profiles on disease risk.

In conclusion, we found fair to excellent reliability for most of

the metabolites, including short- and medium chain acylcarnitines,

amino acids, hexose and phospholipids in free-living healthy

subjects. Our results suggest that a single assessment of these

1st Measurement 2nd Measurement CV (%)

Metabolite
[mmol/L]ab Mean 95% CI Mean 95% CI P-valuec

Within-
person

Between-
person ICCd,e,f 95% CI

SM C26:0 0.21 (0.20–0.22) 0.22 (0.20–0.23) 0.48 29.0 16.2 0.24 (0.04–0.41)

SM C26:1 0.46 (0.44–0.49) 0.43 (0.40–0.46) 0.04 24.4 19.8 0.40 (0.22–0.55)

Hexose 5059 (4811–5320) 5207 (4940–5488) 0.11 12.7 22.6 0.76 (0.66–0.83)

aAbbreviations are as follows: Cx:y (x = number of carbons in the fatty acid side chain, y = number of double bonds in the fatty acid side chain), hydroxyl (OH),
phosphatidylcholine (PC), acyl (a), sphingomyelin (SM). For detailed nomenclature see Table S1.

bn = 100; except: lysoPC a C6:0 n = 61; SM C20:2 and SM C22:3 n = 99.
cA paired t-test based on log-transformed values was calculated to compare geometric means of metabolite concentrations over-time.
dBased on log transformed values.
eICC calculated as the ratio of between-person variance and total variance.
fFor negative values ICC was calculated based on positive variance estimators [33].
gMetabolite concentration was below the assay’s limit of detection.
doi:10.1371/journal.pone.0021103.t003
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Table 4. Geometric Means, Variances and Intraclass-Correlation Coefficients (ICCs) of Serum Concentrations of Diacyl-
Glycerophospholipids Measured 4 Months Apart Among 100 Healthy Subjects from the EPIC-Potsdam Cohort.

1st Measurement 2nd Measurement CV (%)

Metabolite
[mmol/L]ab Mean 95% CI Mean 95% CI P-valuec

Within-
person

Between-
person ICCd,e,f 95% CI

PC aa C24:0 0.12 (0.11–0.13) 0.12 (0.11–0.13) 0.56 32.3 25.8 0.39 (0.21–0.54)

PC aa C26:0g 0.84 (0.79–0.89) 0.80 (0.77–0.84) 0.04 16.6 20.4 0.60 (0.46–0.71)

PC aa C28:1 3.55 (3.37–3.74) 3.59 (3.43–3.77) 0.51 13.4 21.3 0.72 (0.61–0.80)

PC aa C30:0 4.89 (4.62–5.18) 4.86 (4.58–5.16) 0.81 19.6 21.8 0.55 (0.40–0.67)

PC aa C30:2 0.12 (0.10–0.16) 0.13 (0.10–0.16) 0.30 96.6 51.9 0.27 (0.00–0.43)

PC aa C32:0 16.2 (15.6–16.8) 16.4 (15.8–17.1) 0.38 13.2 14.3 0.54 (0.39–0.66)

PC aa C32:1 19.3 (17.6–21.2) 19.2 (17.4–21.2) 0.88 26.4 40.3 0.70 (0.58–0.79)

PC aa C32:2 4.71 (4.39–5.05) 4.59 (4.26-4.96) 0.44 23.6 28.2 0.59 (0.44–0.70)

PC aa C32:3 0.54 (0.51–0.57) 0.55 (0.52–0.58) 0.35 16.2 21.9 0.65 (0.52–0.75)

PC aa C34:1 245 (233–259) 254 (242–267) 0.13 16.2 20.3 0.61 (0.47–0.72)

PC aa C34:2 451 (433–469) 466 (450–483) 0.07 12.6 14.1 0.55 (0.40–0.68)

PC aa C34:3 17.8 (16.9–18.9) 18.0 (16.9–19.0) 0.80 18.8 21.8 0.57 (0.43–0.69)

PC aa C34:4 2.06 (1.92–2.21) 2.06 (1.92–2.22) 0.96 22.9 27.7 0.59 (0.45–0.71)

PC aa C36:0 2.72 (2.58–2.86) 2.79 (2.64–2.94) 0.30 17.8 20.1 0.56 (0.41–0.68)

PC aa C36:1 53.1 (50.4–55.8) 53.7 (51.3–56.1) 0.61 16.1 17.7 0.55 (0.39–0.67)

PC aa C36:2 267 (256–278) 272 (262–283) 0.32 14.3 13.2 0.46 (0.29–0.60)

PC aa C36:3 142 (135–148) 144 (138–150) 0.52 15.4 15.8 0.51 (0.35–0.64)

PC aa C36:4 200 (191–211) 209 (199–220) 0.02 13.5 20.8 0.70 (0.59–0.79)

PC aa C36:5 30.6 (27.9–33.6) 29.0 (26.5–31.8) 0.21 29.9 35.4 0.58 (0.44–0.70)

PC aa C36:6 1.16 (1.07–1.24) 1.09 (1.01–1.18) 0.11 24.6 28.9 0.58 (0.43–0.70)

PC aa C38:0 2.91 (2.75–3.08) 2.93 (2.78–3.10) 0.76 16.2 22.9 0.67 (0.540.76)

PC aa C38:1 0.43 (0.34–0.55) 0.43 (0.35–0.52) 0.94 100.5 15.3 0.03 (0.00–0.23)

PC aa C38:3 53.6 (50.9–56.4) 53.5 (51.1–56.0) 0.94 16.9 17.7 0.52 (0.37–0.65)

PC aa C38:4 118 (112–125) 123 (116–130) 0.08 14.6 22.6 0.70 (0.59–0.79)

PC aa C38:5 59.0 (56.0–62.2) 58.4 (55.4–61.6) 0.65 15.9 21.4 0.64 (0.51–0.75)

PC aa C38:6 86.0 (81.2–91.0) 84.9 (80.1-90.1) 0.61 16.8 23.9 0.67 (0.55–0.77)

PC aa C40:1g 0.42 (0.40–0.44) 0.40 (0.38–0.43) 0.26 18.3 17.2 0.47 (0.30–0.61)

PC aa C40:2 0.26 (0.24–0.28) 0.25 (0.23–0.27) 0.23 35.4 14.3 0.14 (0.00–0.33)

PC aa C40:3 0.48 (0.45–0.51) 0.46 (0.44–0.49) 0.28 26.9 16.5 0.28 (0.08–0.45)

PC aa C40:4 3.74 (3.54–3.94) 3.88 (3.68–4.09) 0.14 17.7 20.4 0.57 (0.42–0.69)

PC aa C40:5 10.7 (10.1–11.3) 10.7 (10.1–11.3) 0.90 17.4 22.4 0.62 (0.49–0.73)

PC aa C40:6 31.0 (29.1–33.1) 30.4 (28.5–32.4) 0.48 19.4 25.8 0.64 (0.51–0.74)

PC aa C42:0 0.54 (0.50–0.57) 0.53 (0.50–0.57) 0.98 17.2 28.7 0.73 (0.63–0.81)

PC aa C42:1 0.25 (0.24–0.27) 0.26 (0.24–0.28) 0.59 19.8 28.1 0.67 (0.54–0.76)

PC aa C42:2 0.21 (0.20–0.22) 0.21 (0.20–0.22) 0.87 22.8 18.8 0.40 (0.23-0.56)

PC aa C42:4 0.17 (0.16–0.17) 0.17 (0.16–0.18) 0.29 24.5 11.4 0.18 (0.00–0.36)

PC aa C42:5 0.39 (0.37–0.42) 0.37 (0.35–0.39) 0.13 23.2 19.7 0.42 (0.24-0.57)

PC aa C42:6 0.65 (0.63–0.68) 0.63 (0.60–0.66) 0.09 15.2 15.7 0.52 (0.36–0.65)

aAbbreviations are as follows: Cx:y (x = number of carbons in the fatty acid side chain, y = number of double bonds in the fatty acid side chain), phosphatidylcholine
(PC), acyl-acyl (aa). For detailed nomenclature see Table S1.

bn = 100; except: PC aa C30:2 n = 73; PC aa C38:1 n = 82.
cA paired t-test based on log-transformed values was calculated to compare geometric means of metabolite concentrations over-time.
dBased on log transformed values.
eICC calculated as the ratio of between-person variance and total variance.
fFor negative values ICC was calculated based on positive variance estimators [33].
gMetabolite concentration was below the assay’s limit of detection.
doi:10.1371/journal.pone.0021103.t004
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Table 5. Geometric Means, Variances and Intraclass-Correlation Coefficients (ICCs) of Serum Concentrations of Acyl-Alkyl-
Glycerophospholipids Measured 4 Months Apart Among 100 Healthy Subjects from the EPIC-Potsdam Cohort.

1st Measurement 2nd Measurement CV (%)

Metabolite
[mmol/L]ab Mean 95% CI Mean 95% CI P-valuec

Within-
person

Between-
person ICCd,e,f 95% CI

PC ae C30:0 0.38 (0.36–0.40) 0.38 (0.36–0.41) 0.96 18.2 24.6 0.65 (0.52–0.75)

PC ae C30:1 0.25 (0.22–0.28) 0.21 (0.18–0.25) 0.12 67.9 17.7 0.06 (0.00–0.26)

PC ae C30:2 0.11 (0.11–0.12) 0.11 (0.10–0.12) 0.40 22.8 23.9 0.52 (0.37–0.65)

PC ae C32:1 3.07 (2.94–3.21) 3.10 (2.96–3.25) 0.64 13.3 18.4 0.66 (0.53–0.75)

PC ae C32:2 0.79 (0.75–0.83) 0.78 (0.75–0.82) 0.71 14.0 21.1 0.70 (0.58–0.78)

PC ae C34:0 1.55 (1.47-1.63) 1.57 (1.48–1.66) 0.70 18.0 20.9 0.57 (0.43–0.69)

PC ae C34:1 10.8 (10.4–11.3) 11.0 (10.5–11.5) 0.42 14.1 17.7 0.61 (0.47–0.72)

PC ae C34:2 12.8 (12.1–13.5) 13.2 (12.5–14.0) 0.14 17.1 22.3 0.63 (0.49–0.73)

PC ae C34:3 7.98 (7.54–8.44) 8.41 (7.93–8.91) 0.03 16.7 23.7 0.67 (0.54–0.76)

PC ae C36:0 0.68 (0.65–0.72) 0.71 (0.67–0.74) 0.18 17.4 20.1 0.57 (0.42–0.69)

PC ae C36:1 8.81 (8.40–9.23) 8.84 (8.44–9.27) 0.84 14.0 19.2 0.65 (0.53–0.75)

PC ae C36:2 14.1 (13.4–14.9) 14.1 (13.4–14.9) 1.00 13.0 23.0 0.76 (0.66–0.83)

PC ae C36:3 7.79 (7.39–8.21) 8.14 (7.74–8.55) 0.10 18.6 17.9 0.48 (0.32–0.62)

PC ae C36:4 18.8 (17.8–19.8) 19.9 (19.0–21.0) 0.02 17.8 19.4 0.54 (0.39–0.67)

PC ae C36:5 12.0 (11.3–12.6) 12.6 (11.9–13.3) 0.03 16.1 21.8 0.65 (0.52–0.75)

PC ae C38:0 1.69 (1.60–1.78) 1.66 (1.57–1.76) 0.49 17.3 21.6 0.61 (0.47–0.72)

PC ae C38:1 0.67 (0.60–0.74) 0.75 (0.69–0.82) 0.06 46.1 16.1 0.11 (0.00–0.30)

PC ae C38:2 1.48 (1.40–1.56) 1.44 (1.35–1.53) 0.38 24.5 15.7 0.29 (0.10–0.46)

PC ae C38:3 4.23 (4.03–4.45) 4.24 (4.04–4.45) 0.95 14.9 19.4 0.63 (0.50–0.73)

PC ae C38:4 13.5 (12.9–14.1) 14.0 (13.4–14.7) 0.04 13.5 18.6 0.65 (0.53–0.75)

PC ae C38:5 17.6 (16.8–18.4) 18.4 (17.6–19.2) 0.03 14.4 18.1 0.61 (0.47–0.72)

PC ae C38:6 7.82 (7.40–8.26) 7.87 (7.47–8.29) 0.76 16.2 21.6 0.64 (0.51–0.74)

PC ae C40:0g 8.62 (8.36–8.89) 8.59 (8.33–8.85) 0.80 10.3 11.5 0.56 (0.40–0.68)

PC ae C40:1 1.04 (0.98–1.09) 1.03 (0.98–1.09) 0.95 17.3 20.7 0.59 (0.44–0.70)

PC ae C40:2 2.12 (2.02–2.22) 2.11 (2.00–2.24) 0.94 14.0 22.5 0.72 (0.61–0.80)

PC ae C40:3 1.05 (1.00–1.10) 1.01 (0.96–1.06) 0.07 15.2 18.4 0.60 (0.45–0.71)

PC ae C40:4 2.11 (2.02–2.21) 2.18 (2.07–2.29 0.12 13.6 20.6 0.70 (0.58–0.79)

PC ae C40:5 3.66 (3.52–3.81) 3.71 (3.54–3.89) 0.51 14.0 17.1 0.60 (0.46–0.71)

PC ae C40:6 4.81 (4.59–5.05) 4.79 (4.55–5.05) 0.80 13.9 20.8 0.69 (0.57-0.78)

PC ae C42:0g 0.31 (0.30–0.32) 0.30 (0.29–0.32) 0.25 18.4 5.5 0.08 (0.00–0.27)

PC ae C42:1 0.36 (0.34–0.38) 0.36 (0.34–0.38) 0.93 19.0 18.7 0.49 (0.33-0.63)

PC ae C42:2 0.64 (0.61–0.67) 0.63 (0.60–0.66) 0.35 16.1 18.4 0.56 (0.42–0.68)

PC ae C42:3 0.68 (0.65–0.72) 0.65 (0.61–0.69) 0.10 18.8 22.3 0.59 (0.44–0.70)

PC ae C42:4 0.93 (0.88–0.98) 0.95 (0.90–1.01) 0.26 13.8 24.2 0.75 (0.65–0.83)

PC ae C42:5 2.10 (2.00–2.20) 2.12 (2.01–2.22) 0.66 11.7 21.5 0.77 (0.68–0.84)

PC ae C44:3 0.11 (0.10–0.12) 0.10 (0.10–0.11) 0.06 25.0 23.5 0.47 (0.30–0.61)

PC ae C44:4 0.38 (0.36–0.41) 0.40 (0.37–0.43) 0.10 18.8 29.1 0.71 (0.59–0.79)

PC ae C44:5 1.91 (1.81–2.02) 1.94 (1.83–2.06) 0.45 15.0 25.3 0.74 (0.64–0.82)

PC ae C44:6 1.27 (1.20–1.35) 1.30 (1.22–1.38) 0.38 13.3 27.3 0.81 (0.73–0.87)

aAbbreviations are as follows: Cx:y (x = number of carbons in the fatty acid side chain, y = number of double bonds in the fatty acid side chain), phosphatidylcholine
(PC), acyl-alkyl (ae). For detailed nomenclature see Table S1.

bn = 100; except: PC ae C30:1 n = 97.
cA paired t-test based on log-transformed values was calculated to compare geometric means of metabolite concentrations over-time.
dBased on log transformed values.
eICC calculated as the ratio of between-person variance and total variance.
fFor negative values ICC was calculated based on positive variance estimators [33].
gMetabolite concentration was below the assay’s limit of detection.
doi:10.1371/journal.pone.0021103.t005
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metabolites may be sufficient for risk assessment in prospective

epidemiologic studies. In contrast, reliability was lower for

monounsaturated- and hydroxyl-acylcarnitines and few glycer-

ophospholipids, which is most likely explained by their low serum

concentrations in healthy individuals that exceed the assay’s

detection limit at the present time. This may limit their use for risk

assessment when based on a single measurement.

Materials and Methods

Ethics statement
All of the EPIC-Potsdam participants gave written informed

consent and the study was approved by the ethics committee of the

medical association of the state of Brandenburg, Germany.

Study population
The EPIC-Potsdam cohort was recruited from the general

population and consists of 27,548 participants mainly aged 35–65

years at time of recruitment between 1994 and 1998 [24,25,26]. In

2007, a group of 407 EPIC-Potsdam participants were invited to

participate in a validation study of physical activity assessment

within the EPIC study, which included the collection of two blood

collections approximately 4 month apart in time. The subjects were

randomly selected among all EPIC participants who were younger

than 64 years, had a valid telephone number, had residence within a

5 km radius of the study center, and with systolic blood pressure

,180 mmHg, and diastolic blood pressure ,110 mmHg at time of

recruitment. Exclusion criteria were a history of heart disease

(myocardial infarct, heart failure, cardiomyopathy, stroke or angina

pectoris), use of b–blockers, or impaired mobility, as documented in

the EPIC database at the time of the invitation. Of the 407 subjects,

11 did not respond, 176 declined participation and 12 were

excluded after a phone interview with the study physician had

revealed b-blockers medication. Thus, a total of 208 EPIC-Potsdam

subjects (83 men and 125 women) participated in the validation

study of physical activity assessment. Out of this sub-sample, a total

of 100 subjects (50 men and 50 women) were randomly selected

among those who had provided two fasting blood samples over a

period of 4 month. The first blood withdrawal was conducted

between October 2007 and March 2008 and the second blood

sample was collected between February 2008 and July 2008. Fasting

blood was drawn by qualified medical staff in a standardized

procedure using monovette tubes with coagulation activator. Serum

was fractionated by centrifugation at 2,700 xg for 10 minutes, and

stored in a freezer at 280uC until analysis.

Serum metabolite concentrations
Serum concentrations of 163 metabolites were determined

using a targeted metabolomic approach with the AbsoluteIDQTM

p150 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria).

The samples were prepared according the manufacturers

protocol and the assay procedures have been described in our

previous work [27]. In short: After centrifugation, 10 mL of serum

were pipetted onto a inserted filter in a 96 well sandwich plate,

which already contained stable isotope labeled internal standards.

The filters were dried in nitrogen stream, amino acids were

derivated with 5% phenylisothiocyanate reagent (PITC) and

filters were dried again. After extraction of metabolites and

internal standards with 5 mM ammonium acetate in methanol,

the solution was centrifuged through the filter membrane and

diluted with MS running solvent. Final extracts were analyzed by

FIA-MS/MS. Detailed description of the procedure has been

described previously [27]. Metabolites were quantified by

reference to appropriate internal standards. The method was

proven to be in conformance with FDA-Guidline ‘‘Guidance for

Industry - Bioanalytical Method Validation (May 2001), which

implies proof of reproducibility within a given error range.

Measurements were performed as described in the Biocrates

user’s manual UM-P150. Analytical specifications for the LOD,

evaluated quantification ranges, further LOD for semiquantita-

tive measurements, identities of quantitative and semiquantitative

metabolites, specificity, potential interferences, linearity, precision

Figure 1. Intraclass-Correlation Coefficients (ICCs) of 163 Serum Metabolites According to Metabolite Subclass Measured 4 Months
Apart. Each data point represents the ICC of one metabolite among 100 healthy subjects from the EPIC-Potsdam cohort (n = 100; except: PC aa C30:2
n = 73; PC aa C38:1 n = 82; PC ae C30:1 n = 97; lysoPC a C6:0 n = 61; SM C20:2 and SM C22:3 n = 99). Abbreviations: AC: acylcarnitines, AA: amino acids,
GPL: glycerophospholipids, lysoGPL: lysoglycerophospholipids, SL: sphingolipids, H: hexose.
doi:10.1371/journal.pone.0021103.g001
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and accuracy, reproducibility and stability were described in

BIOCRATES manual AS-P150. The LODs were set to three

times the values of zero samples (PBS with internal standards).

The lower limit of quantification (LLOQ) and upper limit

of quantification (ULOQ) were determined experimentally by

BIOCRATES. This information is provided in Table S1. The

median analytical variance was 7.3% within-plate CV and 11.4%

between-plate CV. It was determined by measuring 230

replicates (46 plates each containing 5 replicates) of one female

serum sample and is reported in detail in Table S2. The

AbsoluteIDQTM p15 kit has previously been applied in metabo-

lomic studies in humans (7, 8,).

Metabolomic platform
The metabolomic measurements allowed simultaneous quanti-

fication of 163 metabolites including 41 acylcarnitines (Cx:y), 14

amino acids, 1 hexose, 92 glycerophospholipids (lysophosphati-

dylcholines (lysoPC), diacyl- and acyl-alkyl- phosphatidylcholines

(PC)), and 15 sphingolipids (SMx:y) in a one-step analysis.

The detailed nomenclature is provided in Table S1. Lipid side

chains were abbreviated as Cx:y, where x equaled the number of

carbons in the side chain and y denoted the number of double

bonds. The technology was limited as it could not detect the

distribution of the carbon atoms among 146 different fatty acids

and the exact position of the double bonds in complex lipids. All

glycerophospholipids were phosphatidylcholines (PC), that were

further differentiated with respect to ester (a) and ether (e) bonds,

where two letters implied that two fatty acids are bond to glycerol

(aa = diacyl, ae = acyl-alkyl), while one letter (a = acyl, e = alkyl)

and the prefix ‘lyso’ indicated the presence of a single fatty acid

residue; e.g. lysoPCaC24:0 = lysophosphatidylcholine acyl C24:0

(lignoceric acid). Sphingolipids were sphingomyelins (SM) and

hydroxysphingomyelins (SM(OH)). All acylcarnitines were natu-

rally occurring L-isomers abbreviated according to the fatty acid

that was bond (e.g. C2 = acetyl-L-carnitine). DL-carnitine was

abbreviated as C0. Amino acids were presented according to

standard three letter abbreviations.

A substantial part of the metabolites determined by Absolute-

IDQTM p150 kit showed values below LOD. However, it was

important to measure those as well, as their concentrations may

increase drastically in disease or upon environmental challenge

[28,29,30]. Therefore, metabolites with a concentration lower

than the LOD (n = 29) were further reported but labeled

accordingly in the tables.

Statistical analysis
The metabolite serum concentrations were not normally

distributed as indicated by Kolmogorov-Smirnov test, but right-

skewed. Therefore, the concentrations were log-transformed and

reported as geometric means and 95% confidence intervals (CIs).

Student’s paired t-test was used to compare the concentrations of

each metabolite measured 4 month apart. Variance components

were estimated with a one-way random effects model and subject

ID as the random variable (SAS procedure: PROC ANOVA) [5].

The between- and within-person CVs (biological variance) as well

as the between- and within-plate CVs (analytical variance) were

calculated as the square root of the between- and within-person/

plate variance components from the random effects model on a

log-transformed scale [31]. To assess reliability of serum

metabolite concentrations, we calculated ICCs by dividing the

between-person variance by the total variance (sum of between-

and within-person variances), and calculated 95% CI of ICCs

[32]. For negative values, ICCs were calculated based on positive

variance estimators [33]. An ICC $0.75 was considered to

indicate excellent reliability; ICCs between 0.51 and 0.74 to

indicate good reliability; ICCs between 0.40 and 0.50 to indicate

fair reliability and an ICC ,0.40 was considered as poorly reliable

(16). All statistical analyses were performed with SAS software,

release 9.2, (SAS Institute Inc., Cary, NC). The level of statistical

significance was set at P,0.05 for two-sided testing.

Supporting Information

Table S1 Biochemical Names and Quantification Rang-
es of 163 Metabolites Measured with the BIOCRATES
Absolute IDQ Targeted Metabolomics Technology. Foot-

note: Abbreviations: LOD, limit of detection; LLOQ, lower limit

of quantification; ULOQ, upper limit of quantification. aThe

quantification range was determined by BIOCRATES and

adopted from the Manual: ‘‘AbsoluteIDQTM p150 kit – Analytical

Specifications’’ (BIOCRATES Life Sciences AG, Innsbruck,

Austria).

(DOC)

Table S2 Analytical Variance of 163 Metabolites Mea-
sured with the BIOCRATES Absolute IDQ Targeted
Metabolomics Technology. Footnote: Abbreviations: CV,

coefficient of variation; LOD, limit of detection. aAnalytical

variance was determined by measuring 5 replicates on each of the

46 plates containing the EPIC-samples (total of 230 replicates) and

reported as CV%. Note: higher CVs are mainly observed for

metabolites that show very low concentrations and are below the

LOD of the assay. bMetabolite concentration was below the

assay’s LOD.

(DOCX)
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Procedure for tissue sample preparation and metabolite extraction for high

throughput targeted metabolomics. Epub: 03/11/2011. Metabolomics.

28. Boulat O, Janin B, Francioli P, Bachmann C (1993) Plasma carnitines: reference

values in an ambulatory population. Eur J Clin Chem Clin Biochem 31:

585–589.

29. Koeberl DD, Young SP, Gregersen NS, Vockley J, Smith WE, et al. (2003) Rare

disorders of metabolism with elevated butyryl- and isobutyryl-carnitine detected

by tandem mass spectrometry newborn screening. Pediatr Res 54: 219–223.

30. Oresic M (2009) Metabolomics, a novel tool for studies of nutrition, metabolism

and lipid dysfunction. Nutr Metab Cardiovasc Dis 19: 816–824.

31. Rosner B (2006) One-way ANOVA - the random-effects model. In: Rosner B,

ed. Fundamentals of biostatistics. BelmontCA: Duxbury. pp 606–613.

32. Rosner B (2006) The intraclass correlation coefficient. In: Rosner B, ed.

Fundamentals of biostatistics. BelmontCA: Duxbury. pp 613–618.

33. Hartung J (1981) Nonnegative minimum biased invariant estimation in variance

component models. The Annals of Statistics 9: 278–292.

Long-Term Reliability of Serum Metabolites

PLoS ONE | www.plosone.org 10 June 2011 | Volume 6 | Issue 6 | e21103


