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Abstract

Drug perturbations of human cells lead to complex responses upon target binding. One of the known mechanisms is a
(positive or negative) feedback loop that adjusts the expression level of the respective target protein. To quantify this
mechanism systems-wide in an unbiased way, drug-induced differential expression of drug target mRNA was examined in
three cell lines using the Connectivity Map. To overcome various biases in this valuable resource, we have developed a
computational normalization and scoring procedure that is applicable to gene expression recording upon heterogeneous
drug treatments. In 1290 drug-target relations, corresponding to 466 drugs acting on 167 drug targets studied, 8% of the
targets are subject to regulation at the mRNA level. We confirmed systematically that in particular G-protein coupled
receptors, when serving as known targets, are regulated upon drug treatment. We further newly identified drug-induced
differential regulation of Lanosterol 14-alpha demethylase, Endoplasmin, DNA topoisomerase 2-alpha and Calmodulin 1.
The feedback regulation in these and other targets is likely to be relevant for the success or failure of the molecular
intervention.
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Introduction

For the future development of new drugs, the understanding of

their mechanisms of action is vital. To tackle this in a large-scale,

systemic way, the Connectivity Map (CMap) consortium studied

the effects of 1309 bioactive small molecules including more than

800 marketed drugs on genome-wide gene expression in four

cultured human cells, [1] (http://www.broadinstitute.org/cmap/).

Although drugs can perturb biological systems by interacting with

different types of biomolecules [2], analysis of successful drugs has

shown that generally they bind and alter the activity of proteins (so

called drug targets). The monitoring of genome-wide gene

expression is likely to reveal insights into the action of drugs and

the prediction of additional drug targets [1,3].

One important aspect of a good target is its reliability and

vulnerability over long periods. Biological systems are robust in a

way that they restore the perturbations caused by drug treatments.

Many drug targets thought to be suitable for therapeutic purposes

turn out to be less effective than expected or account for adverse side

effects [4]. Overcoming biological robustness, maintained through

positive or negative feedback loops of the drug target proteins, might

be a key factor for success of the intended therapeutic usage of drugs

[4,5]. The genome-wide transcriptional profiling using microarrays

[1] should enable us to specifically monitor the expression changes

of drug targets induced by their inhibitors or activators. The

essential data required for this data integration are provided by i)

STITCH: a drug-target relations resource [6] and ii) the

Connectivity Map (CMap) which contains genome-wide expression

profiles of cells treated with small-molecules [1].

STITCH [6] is a repository merging multiple sources of

protein-chemical interactions providing ‘actions’ (inhibition/

activation) for 81% of the human chemical-protein interactions.

Of those, 1290 drug-target interactions are present in the CMap

comprising the actions of 466 drugs on 167 drug targets.

CMap is a searchable database of gene expression profiles [1]

that builds on the success of gene expression profiles from diverse

chemical compounds in predicting the toxicity and/or mechanism

of action of a drug [7,8]. CMap data have been already used to

create a human drug-drug and disease-drug network [9,10]. The

similarity of gene expression profiles recorded for unrelated stimuli

in cells grown at the same time (also called batch effect) is a

phenomenon known for microarray studies that needs to be

overcome [11]. In order to remedy the batch effect problem in

CMap and to make CMap amendable to various large scale

studies, Iorio et al. proposed to construct a ‘Prototype List’ of the

drug by merging its experiments from cell lines, batches,

concentrations and microarray platforms [9]. As the signal to

noise ratio can still be further improved, we implement here a

novel protocol with filtering and normalization steps in order to

utilize CMap for the elucidation of drug-induced feedback

mechanisms.

Results/Discussion

Data filtering and expression profile scoring
We obtained reliable expression differences of drug targets by

filtering and normalizing the gene expression profiles (Figure 1). In

CMap, microarray experiments were collected from four cell lines

treated with 1309 small molecules at different ranges of

concentrations and only partially with replicates. We performed

several filtering and normalization steps leaving a total of 1144

perturbations for further processing (Figure 1). After pre-
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processing, each probe in the drug-induced gene expression

profiles was mean centered using the average of all drug

perturbation experiments in the corresponding batch rather than

using its biological controls. We calculated pair-wise drug-induced

gene expression profile similarity (DIPS) scores using Gene set

enrichment analysis (GSEA, [12] with a similar methodology as

described in Iorio et al. [9], see Materials and Methods). In total,

4,349,432 DIPS scores were calculated between all drug pairs in

three cell lines, that we used to compare gene-expression profiles of

pairs of drugs.

Background estimates and data normalization
To reveal systematic biases, the DIPS scores of drug-induced

gene expression profiles using biological controls were classified

into four drug and batch categories (Figure 2A). The DIPS scores

between different drugs in the same batch are significantly higher

than between different drugs from different batches, implying a

considerable batch effect as has already been hinted at in the

original CMap publication [1] (Figure 2A, Label 3). Still,

characteristic drug features are reflected in the gene expression

profiles, i.e. the DIPS scores between the same drugs (Figure 2A,

Blue and Red) are significantly higher than between different

drugs from different batches (Figure 2A, Grey) (t-test p-values

,2.2610216).

We utilized the large number of treatments to infer the

background gene expression (by mean-centering) instead of the

few biological controls provided by CMap, in order to eliminate

the batch effect. In this way, also common (e.g. stress) responses

will be down-weighted to reveal the characteristic expression

response of each chemical perturbation.

After this normalization the batch effect was largely eliminated

and the data reflect the characteristic features of drug perturba-

tions better. The DIPS scores between different drugs from the

same batch are no longer higher than between different drugs

from different batches (Figure 2A, Label 3). Additionally, the DIPS

scores between the same drugs from different batches (Figure 2A,

Red) are higher than the between different drugs from the same

batch (Figure 2A, Yellow), revealing the concordance of drug-

induced gene expression profiles across batches (t-test p-

values,2.2610216). Same conclusions were also derived from

the distributions of Pearson correlations for drug-induced gene

expression profiles across four drug/batch categories (Figure S1).

Assessment of the drug-induced gene expression profile
similarity score

We prove the integrity and reliability of the homogeneous gene

expression profiles constructed with mean centering, by employing

benchmark sets representing different features of drugs such as

chemical structure similarity and shared Anatomical Therapeutic

Chemical (ATC) classification of the World Health Organization

(WHO) [13]. Chemical structural similarity is an indicator of

shared drug targets and mechanism of action [14–16]. It is

reported that high chemical similarity (i.e. with Tanimoto 2D

coefficients .0.85) tends to result in similar biological responses

[17]. The ATC classification is based on both the therapeutic and

chemical properties of the drug also referred to as the drug mode

of action. Thus, we expect that pairs of drugs with high structural

similarity or shared ATC classification result in similar gene

expression profiles.

Benchmarking shows that the DIPS scores calculated using the

mean-centered procedure are clearly superior to the method

proposed by Iorio et al. (Figure 2B). The area under the Receiver

operator characteristic (ROC) curve (AUC) for the combined

DIPS scores for 989 drugs (average over three cell lines), are higher

both when using chemical similarity (Tanimoto 2D coefficient

.0.8) and the 4th level of the available ATC code shared between

drug pairs (Figure S2). This confirms that the mean-centered data

reflect the specific response after drug perturbation better than the

treatment-control comparisons that were used previously [9].

Finally, the drug induced gene expression profiles were found to

be concordant across cell lines (Figure S3). Although only cancer

cell lines were used in CMap, the procedure proposed here should

be applicable to drug perturbation profiles across multiple tissues

and even organ systems.

Differential expression of drug-induced drug targets
Integrating 4849 CMap arrays with 40,656 drug target

relations from STITCH resulted in a set of 1,290 drug-target

relations for which a genome-wide cellular response is available.

We found that thirteen out of 167 distinct drug targets in this set

(8%; 86 drug target relations) are subjected to significant

differential expression upon drug treatment (Figure 3) by

comparing the drug-induced expression changes of the drug

target against all other treatments present in CMap (see

methods). We found supporting evidence in the literature for

seven out of thirteen (q-value ,0.05) significant differential

regulations of drug targets shown in Figure 3, confirming the

rationale and predictive power of our systematic approach. For

the remaining six targets we can predict a hitherto unknown

drug-induced differential regulation.

The identified, differentially regulated drug targets are enriched

in G-protein coupled receptors (GPCRs) (Figure S4), in agreement

with previous reports that members of the GPCR family are

generally regulated by several mechanisms including receptor

desensitization, endocytosis at the protein level and regulation of

the cellular receptor content [18,19]. In the three cancer cell lines

used, we observe agonist-induced down-regulation of GPCR

mRNAs for beta-2 adrenergic receptor (ADRB2), prostaglandin

E2 receptor subtype EP2 and prostaglandin E4 receptor subtype

EP4 (Figure 3, Genes 3,4,12), which were previously reported in

DDT1 MF-2 smooth muscle cells (ADRB2) and 293-EBNA

human embryonic kidney cells (prostaglandin E2/E4 receptor

Author Summary

Many drug targets thought to be suitable for therapeutic
purposes are subjected to positive or negative feedback
loops upon chemical perturbations which might even
account for the development of drug tolerance. In this
study, we carried out the first systematic analysis of drug-
induced differential expression of drug targets using the
Connectivity Map, a resource that contains the genome-
wide expression profiles of 1309 bioactive small molecules
performed on four cultured human cells. The main
obstacle in analyzing such a large set of profiles is the
non-biological experimental variation across batches. We
overcame this by developing a pipeline for strict filtering
and state-of-the-art normalization and were able to utilize
the Connectivity Map for assessing the drug-induced
differential regulation of drug targets. Using the normal-
ized data, we found that at least 8% of the drug-induced
drug targets studied are differentially regulated in three
cell lines; some of these confirm previous observations in
other cell lines. Our work not only quantifies the amount of
target expression feedback loops in three human cell lines,
but also identifies so far unknown drug-induced target
expression changes; some of them can be linked to the
development of drug tolerance in patients.

Feedback Loops of Drug-Targets
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subtypes EP2/EP4) [20,21]. This indicates that drugs can induce

similar feedback loops in a wide variety of cell types. However, we

cannot rule out that cross-regulation among signaling pathways

may be responsible for the regulation of GPCR mRNAs as it has

been described before [22]. For example, it has been shown that a

beta adrenergic mRNA-binding protein, ELAV-like protein 1

(ELAVL1) can be induced by ADRB2 agonist or elevated levels of

cyclic adenosine monophosphate (cAMP) [22,23] and destabilizes

ADRB2 mRNA. The ELAVL1 protein binds to GPCR mRNAs

and recognizes a cognate sequence located at the 39-UTR of

ADRB2, proteinase-activated receptor and M2, M3 muscarinic

acetylcholine receptor mRNAs [24,25]. Therefore cAMP provides

cross-talk among GPCR regulatory networks. However, it is

shown that intracellular cAMP accumulation is not the only factor

contributing to the reduction of ADRB2 mRNA levels [20].

Moreover, we find that GPCR-targeting drugs regulate the

transcription of their specific targets (Figure S5). We conclude

that in addition to the cross-regulation of G-protein signaling

pathways drug target-specific feedback loops are also responsible

for the regulation of drug target mRNAs.

In addition to cross-regulation of multiple drugs through the

same signaling pathways, promiscuous drugs targeting multiple

proteins may cause complex regulatory networks. In order to

explore the cross-regulation of drug targets induced by a

promiscuous drug, we searched and found that 259 out of 466

total drugs are multi-target drugs and 4 of these drugs act on

Figure 1. Workflow for the pipeline used to normalize and analyze Connectivity Map microarray experiments. The reliability of drug-
induced gene expression profile similarity scores (DIPS scores) were evaluated using independent drug features as benchmark. Using the processed
data, differential regulation of drug-induced drug targets was investigated.
doi:10.1371/journal.pcbi.1000925.g001

Feedback Loops of Drug-Targets
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multiple differentially regulated drug targets upon drug treatment.

For example, Podophyllotoxin used in various chemotherapies is

known to target both tubulin beta 2C and DNA topoisomerase 2-

alpha. The tubulin beta 2C and DNA topoisomerase 2-alpha

mRNAs are both down-regulated upon drug treatment in three

cell lines (Figure 3, Genes 8,13). Tubulin beta 2C inhibitors induce

microtubule depolymerization that leads to the specific down-

regulation of tubulin beta 2C mRNAs preventing the translational

synthesis and thus the further accumulation of abundant tubulin

monomers [26]. Moreover, we found that DNA topoisomerase 2-

alpha mRNAs are not down-regulated upon treatment of other

tubulin inhibitors (Figure S5). Therefore, we conclude that

feedback loops of tubulin beta 2C and DNA topoisomerase 2-

alpha are not cross-regulated. Two other examples of multi-target

drugs are vorinostat used for the treatment of cutaneous T cell

lymphoma and trichostatin A that serves as an antifungal

antibiotic. Vorinostat and trichostatin A are considered to be

nonspecific histone deacetylase inhibitors. These drugs lead to the

up-regulation of histone deacetylase 3 (HDAC3) and down-

regulation of histone deacetylase 7 (HDAC7) (Figure 3, Genes 1,5).

In this case it is unclear whether there is cross-regulation, although

HDAC7 siRNA experiments failed to induce the up-regulation of

HDAC3 mRNAs [27], a result that is disfavoring the cross-

regulation.

Figure 2. Analysis of systematic biases and benchmarking with independent features of chemicals. (A) Distributions of the DIPS scores
for the pair-wise comparisons of gene expression profiles constructed using biological controls and mean centering as background across four drug/
batch categories: i) both profiles are from the same drug and the same batch (Blue), ii) the same drug from different batches (Red), iii) different drugs
from the same batch (Yellow) and iv) different drugs from different batches (Grey) (B) ROC curves are used to assess the performance of the DIPS
score (blue line) and provide a comparison with the method described in Iorio et al. (red line) [9]. Area under the curve values for each ROC curve:
Chemical structural similarity: AUC (DIPS = 0.028 for FPR,0.1) and (AUC Iorio et al. = 0.016 for FPR,0.1). For 4th level ATC sharing, the AUC
(DIPS = 0.016 for FPR,0.1) and (AUC Iorio et al. = 0.009 for FPR,0.1)(Refer to Figure S2 for the complete ROC plots.).
doi:10.1371/journal.pcbi.1000925.g002

Feedback Loops of Drug-Targets
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While the above cases only confirm literature reports in other

cell lines or tissues, we also identified new cases of drug-induced

expression regulation of drug targets. The significant novel

findings are the inhibitor-induced down-regulation of calmodulin

1, DNA topoisomerase 2-alpha and up-regulation of endoplasmin,

lanosterol 14-alpha demethylase and cAMP-specific phosphodies-

terase 4D (Figure 3, Genes 9,8,2,7,10). Lanosterol 14-alpha

demethylase is actually an off-target of antifungal drugs that bind

the mammalian version with lower affinity than the fungal

lanosterol 14-alpha demethylase. Probably, the up-regulation of

the mammalian lanosterol 14-alpha demethylase compensates for

the undesired inhibition and modulates the adverse effects. On the

contrary, we observed a feedback loop that accelerates the down

regulation of calmodulin 1 mRNA induced by calmodulin

inhibitors. Calmodulin targeting drugs can provide a rapid and

effective therapeutic effect, while at the same time small variations

of drug concentrations can increase adverse effects. Therefore, it

would be interesting to study further the functional effects upon

target inhibition of lanosterol 14-alpha demethylase, endoplasmin

and calmodulin 1 to elucidate the roles of feedback loops in drug

mode of action and adverse effects.

Drug-induced target regulation might be implicated in tolerance

development and thus identifying potential target regulation

should be an integral part of drug discovery to prevent failures

in later stages of clinical trials. For example, we have observed the

inhibitor-induced up-regulation of ADRB2 and thymidylate

synthetase (TYMS)(Figure 3, Genes 3,11) [28]. TYMS is an

essential enzyme for DNA replication/repair and an important

drug target in cancerous cells. Indeed, it has been shown that

inhibitor-induced TYMS over-expression obstructs the clinical

efficiency by inducing tumor drug resistance [29]. In addition to

over-expression, down-regulation of drug targets upon agonist

treatment may also cause treatment tolerance as observed for

ADRB2 long-acting agonist treatment. ADRB2 is a therapeutic

target activated to treat the symptoms of asthma. We observe the

agonist-induced up-regulation of ADRB2 and already in 2005, the

FDA warned patients that ADRB2 might be down-regulated

(desensitization) and be unresponsive for asthma treatment due to

long-acting agonist exposure [20,30]. Thus, robustness in

biological systems could prevent the applicability of the long-term

treatments via positive/negative feedback loops of the drug target

affecting the clinical efficiency of drugs in trial and on the market.

Drug-induced regulation of drug targets can thus be linked to

tolerance development, which restricts the efficiency of clinical

treatments where the drug concentration is limited to avoid an

excess of adverse drug reactions.

Taken together, we have identified drug-induced differential

regulation of drug targets. Due to the limited signal to noise ratio

in the data at hand, the identified 8% of all drug targets that show

feedback loops has to be seen as a lower limit, i.e. target-regulation

Figure 3. Drug-induced differentially regulated drug targets. Anova is used to assess the significance of the differential expression of drug-
induced drug targets against the mRNA changes of the same gene in the population of heterogeneous drug treatments from CMap. The genes are
mainly ordered based on their q-values as provided in Table S1. In the scatter plots, inhibitors/activators are labeled in red/green respectively and
grey represents all other treatments present in CMap.
doi:10.1371/journal.pcbi.1000925.g003

Feedback Loops of Drug-Targets
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appears as a wide-spread biological phenomenon that has to be

taken into account during drug development.

Materials and Methods

Data source
Connectivity Map (CMap, build 02) contains 6100 gene

expression profiles of 4 cell lines treated with 1309 distinct small

molecules. Data from Connectivity Map was downloaded from the

CMAP main website (http://www.broadinstitute.org/cmap/). On

this data set, filtering was performed in multiple steps as follows:

Treatment instances (i.e. one treatment versus vehicle control pair)

from three cell lines (HL60, Human promyelocytic leukemia cell

line; MCF7, Human breast adenocarcinoma cell line; PC3,

Human prostate cancer cell line) were taken into consideration.

Only the treatment instances from the production batches

containing over twenty-five treatments in HT_HG-U133A

platform were selected (with the exception of HL60 cell line

where HG-U133A microarray platform was also included.) Lastly,

for each cell line, the highest concentration of treatments was

selected discarding lower concentration treatments. Figure 1 shows

the number of treatment instances used in this study before and

after filtering. In total, we analyze here a total of 4849 treatment

instances in three cell lines corresponding to 1144 small molecules,

in which 989 of them are tested in each cell line.

Data pre-processing
Treatment arrays were grouped based on the cell line. For the

HL60 cell line, treatments from different microarray platforms

were further classified in separate groups. Each group was pre-

processed separately using RMA [31]. Vehicle controls from

CMap were discarded and for each batch individual probes of

each treatment were mean centered to calculate the average

difference values within the batch. To construct a unique gene

expression profile of a small molecule for each cell line, replicate

treatments were merged into one averaging their probe sets values.

For the HL60 cell line, profiles from multiple microarray platforms

were not merged because there was not any experiment with the

same drug treatment from different microarray platforms.

The probe sets for the small-molecule gene expression profile

were ranked based on both their detection call and their average

log-signal difference value for the probe set [32]. Detection calls

were assigned on the probe sets for individual experiments. A

probe set was labeled to be ‘Present in a cell line’ if the detection

call algorithm had assigned ‘present’ for that probe set in at least

half of the drug treatment experiments in that corresponding cell

line. Ranking was performed in two steps. First, for probe sets

assigned to be ‘Absent’ in tested cell line, the average difference

was set to 0. Next, all probe sets were ranked in the descending

order of their average difference. Last, to get the final ranked gene

expression profile, the probe sets, which were set to 0, were sub-

sorted based on their initial average difference.

Pairwise similarity score of drugs
Pairwise similarity scores between small-molecule gene expres-

sion profiles were calculated using a similar method presented in

Iorio et al. [9]. An optimal signature was created for each gene

expression profile of the drug. This optimal signature consists of

the top 250 and bottom 250 ranked probe sets in the gene

expression profile. These probe sets are the characteristic cellular

response of the drug treatment that might be specific to cell line.

To get the similarity score between drug X and Y: The down-

regulated and up-regulated features of the optimal signature from

drug X were searched within the weighted gene expression profile

of drug Y. In same respect, top and down regulated signature

genes of drug Y were also searched within the weighted gene

expression profile of Drug X. To quantify a similarity score, gene

set enrichment analysis (GSEA) based on Kolmogorov-Smirnov

statistics were used [12]. All results obtained through GSEA were

averaged to obtain the final score of gene expression profile

comparison for a drug pair in a specific cell line.

As we might have up to three expression profiles of the small-

molecule treatment from three cell lines, it is possible to compare

gene expression profiles of the drug pairs within and between cell

lines. In this study, drug-induced gene expression profile similarity

scores were only calculated within cell lines. To increase reliability

of DIPS score, a combined similarity score was calculated as the

average of the similarity scores for the drug pair from multiple cell

lines.

Drug target expression changes
A drug can act on the protein if the protein is physically present

in the cell. A drug target was considered to be ‘expressed’ and

present if the detection call algorithm [32] reports it as such for

one-tenth of the treatment experiments in the cell line. Drug

targets that were not expressed and labeled ‘‘absent’’ were

excluded. Drug target information was gathered from STITCH

2.0 including actions of the interaction. These interactions were

labeled as ‘activation’ or ‘inhibition’ (including ‘binding’). To

minimize indirect associations, only the drug-target relations from

experimental and curated database annotations over 0.7 threshold

were taken into consideration. For the significant cases of drug-

induced differential regulation of drug targets, ‘binding’ associa-

tions are manually corrected and the results are re-calculated.

Drug-induced gene-expression of a drug target used in this

context indicates the expression change of the target mRNA upon

drug treatment acting on the corresponding target. Significance of

the expression changes of the drug target were evaluated by

comparing the drug-induced expression changes of target mRNAs

with the expression changes of the target upon all other chemical

treatments present in CMap. ANOVA was used to assess the

significance for the expressional change of individual drug targets

from multiple cell lines. Table S1 provides the t-test results for the

expression changes of drug targets for individual cell lines.

Supporting Information

Figure S1 Histograms comparing the distributions of pearson

correlations for drug induced gene expression profiles across four

drug/batch categories using two different pre-processing pipelines.

Main difference of these two pipelines is based on the selection of

control as background; biological controls or mean centering. In

the case of using biological controls, the distribution of pearson

correlations between different drugs in the same batch are

significantly higher than between different drugs from different

batches, indicating the batch effect within the data.

Found at: doi:10.1371/journal.pcbi.1000925.s001 (0.17 MB TIF)

Figure S2 Same as Figure 2B of the main paper, complete ROC

plots for DIPS score benchmarking with independent features of

chemicals. (A) The AUC of DIPS and Iorio et al. are 0.70 and 0.62

respectively with the binary classification of tanimoto score over

0.8. (B) Shared 4th level of Anatomical Therapeutic Chemical

classification is used as binary classifier for the drugs with available

ATC classification. AUC of DIPS and Iorio et al. are 0.63 and

0.55, respectively.

Found at: doi:10.1371/journal.pcbi.1000925.s002 (0.40 MB

TIF)

Feedback Loops of Drug-Targets
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Figure S3 Distributions of the drug-induced gene expression

profile similarity scores for drug-drug pairs across four drug/cell

line categories. To gain a comprehensive picture of drug

concordance across cell lines, we evaluated whether the similarity

scores are driven by cell-line specific gene expression. For pairwise

comparison of profiles from different cell lines, drug treatments

from multiple cell lines were merged into one matrix where only

the ‘Present’ probe sets for three cell lines were preserved in the

matrix. The DIPS scores on the category of the same drug from

different cell lines (D+/C2) are significantly higher than the scores

within the category of different drugs from the same cell line

(D2/C+) (t-test p-value ,2.2610216) meaning that the drug

response is generally concordant across cell lines.

Found at: doi:10.1371/journal.pcbi.1000925.s003 (0.34 MB TIF)

Figure S4 Distribution of molecular functions of differentially

regulated drug-targets (p-value ,0.05) compared to molecular

functions of all other targets. Drug target classification is based on

the categorization described in ChEMBL with few changes. For

instance, for a more detail categorization, the lyase, hydrolase,

oxidoreductase and transferase activities were included. If a drug

target is identified within multiple categories, the order of the

categories introduced was used to choose the first category as the

main category to annotate the drug target. (GO:0004930: G-

protein coupled receptor activity, GO:0004879: Ligand-depen-

dent nuclear receptor activity, GO:0005216: Ion channel activity,

GO:0005215: Transporter activity, GO:0004112: Cyclic-nucleo-

tide phosphodiesterase activity, GO:0005198: Structural molecule

activity, GO:0003700: Transcription factor activity, GO:0016301:

Kinase activity, GO:0008233: Peptidase activity, GO:0016829:

Lyase activity)

Found at: doi:10.1371/journal.pcbi.1000925.s004 (0.97 MB

TIF)

Figure S5 Differentially regulated GPCRs and topoisomerase II

of Figure 3 were tested by other GPCR antagonist/agonists and

tubulin inhibitors, respectively. The GPCR antagonists/agonists

were selected based on the ‘present’ call for their targets in the

tested cell line (see Materials and Methods). Both drug-induced

receptor-specific response and cross-regulation among signaling

pathways may be responsible for the differential regulation of drug

targets.

Found at: doi:10.1371/journal.pcbi.1000925.s005 (0.42 MB

TIF)

Table S1 Complete list of statistical tests for the differential

regulations of drug-targets. The average difference values for the

drug-induced drug-targets are tested against the mRNA changes

of the same gene in the population of heterogeneous drug

treatments from CMap. Anova is used to assess the significance of

the differential expression of drug-induced drug targets in multiple

and specific cell lines, respectively. This excel sheet contains the

name of the drug-targets with its evaluation in multiple cell lines.

Only the drug-targets whose detection call are ‘Present’ in more

than one-tenth of the experiments in specified cell line, are

pursued for the analysis of differential gene-expression of drug-

targets. If the detection call does not specify the required criteria,

the column of a drug-target for that cell line is left blank. The

q-values reported here are calculated using the FDR correction

algorithm.

Found at: doi:10.1371/journal.pcbi.1000925.s006 (0.10 MB

XLS)
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