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Abstract 

 

Ahnak1, a giant 700-kDa protein, has been implicated in Ca2+ signalling in various cells. Previous 

work suggested that the interaction between ahnak1 and Cavβ2 subunit plays a role in L-type Ca2+ 

current (ICaL) regulation. Here, we performed structure-function studies with the most C-terminal 

domain of ahnak1 (188 amino acids) containing a PxxP consensus motif (designated as 188-PSTP) 

using ventricular cardiomyocytes isolated from rats, wild-type mice (WT), and ahnak1-deficient mice. 

In-vitro binding studies revealed that 188-PSTP conferred high affinity binding to Cavβ2 (Kd ~60 nM). 

Replacement of proline residues by alanines (188-ASTA) decreased Cavβ2 affinity about 20-fold. 

Both 188-PSTP and 188-ASTA were functional in ahnak1-expressing rat and mouse cardiomyocytes 

during whole cell patch-clamp. Upon intracellular application they increased the net Ca2+ influx by 

enhancing ICaL density and/or increasing ICaL inactivation time course without altering voltage-

dependency. Specifically 188-ASTA, which failed to affect ICaL density, markedly slowed ICaL 

inactivation resulting in a 50-70% increase in transported Ca2+ during a 0-mV depolarising pulse. Both 

ahnak1 fragments also slowed current inactivation with Ba2+ as charge carrier. By contrast, neither 

188-PSTP nor 188-ASTA affected any ICaL characteristics in ahnak1-deficient mouse cardiomyocytes. 

Our results indicate that the presence of endogenous ahnak1 is required for tuning the voltage-

dependent component of ICaL inactivation by ahnak1 fragments. We suggest that ahnak1 modulates the 

accessibility of molecular determinants in Cavβ2 and/or scaffolds selectively different β-subunit 

isoforms in the heart. 
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Introduction 

Ahnak1 is a large protein of ~700-kDa implicated in many fundamental biological processes, such as 

Ca2+ signalling, plasma membrane repair, exocytosis, and blood-brain barrier function (1, 17, 26, 27, 

33, 34, 36, 40). It was originally identified in human neuroblastoma cells (44) and skin epithelial cells 

(23). Ahnak1 is abundantly expressed in muscle cells where it locates to the inner side of the plasma 

membrane (15, 25). The ahnak1 protein contains three main structural regions: a relatively short 

globular N-terminus, a large central region of ~4300 amino acids consisting of multiple repeated units, 

and the C-terminal ~1000 amino acids (44).  

Given ahnak´s role as scaffolding and signalling molecule, one would expect that targeted ablation of 

ahnak1 results in a severe phenotype. However, ahnak1-deficient mice are fertile and have a normal 

life span suggesting that ahnak1 is redundant in this model (31, 32). Komura et al. (31) proposed 

ahnak2 as candidate to compensate for the loss of function of ahnak1. Ahnak2 is also a large protein 

with a typical central repeat structure. The repeating units of ahnak1 and ahnak2 share homology 

while the N-terminal- and C-terminal regions show no similarities. Notably, the C-terminus of ahnak1 

harbours a PxxP consensus motif known as potential interaction partner for sarc homology 3 (SH3) 

domain-containing proteins (38). 

Ahnak1 belongs to the increasing number of intracellular proteins interacting with the Cavβ subunit of 

voltage-dependent Ca2+ channels (30). We previously showed that ahnak1 binds to the β2-subunit of 

cardiac Cav1.2 channels and modulates the L-type Ca2+ current (ICaL) in rat cardiomyocytes (2, 18, 

25). In fact, the most C-terminal region of ahnak1 encompassing 188 amino acids emerged as a potent 

modulator of ICaL. Intracellular application of this fragment during whole cell patch-clamp increased 

ICaL density and slowed its inactivation time course (2). As a working hypothesis we suggested that a 

certain portion of β2-subunits is functionally masked by ahnak1 and can be relieved by competition 

with ahnak1-derived peptides. This mechanism would result in an enhanced ICaL as β-subunits are 

generally known to increase channel open probability besides their role in addressing α1C to the 

sarcolemma (11). However, less is known to account for the slower inactivation kinetics following 

ahnak peptide application. A peptide competition mechanism could solely account for this effect if β2-

subunit isoforms are relieved (are more available) that slow channel inactivation like the lipid-
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modified β2a isoform (39). But this isoform is not believed to constitute the functional type of β2-

subunit in rat heart (28, 46, 47).  

In general, β-subunits belong to the protein family of membrane-associated guanylate kinases 

(MAGUK) comprising a SH3 and guanylate kinase (GK) element. It has been reported that in β-

subunits the SH3 and GK elements form a functional important module that supports ICaL and regulates 

channel inactivation (37). Thus, an alternative mechanism underlying slowing ICaL inactivation can be 

envisioned if the C-terminal ahnak1 peptides applied through the patch pipette would directly bind to 

β2-subunits or any other sites thereby influencing ICaL gating. One can assume that the latter mode of 

action operates also in ahnak1-deficient cardiomyocytes. 

In the present study we demonstrate that ahnak1 fragments failed to affect ICaL in ahnak1-deficient 

cardiomyocytes, while they evoked an increase in Ca2+ entry in WT rodent cardiomyocytes 

preferentially by slowing ICaL inactivation time course. Thus, ahnak1 plays a non-redundant role in L-

type Ca2+ channel inactivation and provides a mechanism for tuning Ca2+ channel activity in the heart. 

 

 

Materials and Methods 

 

Recombinant proteins 

The GST-tagged β2-subunit (CaB2a, Oryctolagus cuniculus, NCBI Entry name gi|1498) was expressed 

and purified as described (25). The GST fusion protein containing the 188 C-terminal amino acids of 

ahnak1 (188-PSTP, previously designated as P3P4) was prepared as in (2). The proline residues 

corresponding to amino acid positions 5592 and 5595 in ahnak1 (Accession Number NP_001611) 

were substituted by alanine using the QuickChange site-directed mutagenesis kit (StratageneEurope, 

Amsterdam, Netherlands) to yield 188-ASTA. The GST fusion proteins containing the intracellular 

loops connecting domain I-II and II-III of the rabbit cardiac α1C were expressed and purified using 

standard protocols. The pGEX constructs for these α1C-containing fusion proteins were kindly 

provided by Dr. Nathan Dascal (Tel Aviv, Israel). All constructs were checked by restriction site 

mapping and sequencing. 
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Analytical ultracentrifugation 

Equilibrium binding studies were performed in a XL-A type analytical ultracentrifuge (Beckman, Palo 

Alto, Ca, USA) equipped with UV absorbance optics as in (25). For data analysis the program 

POLYMOLE was used (4).  

 

Surface plasmon resonance (SPR) binding  

The purified recombinant proteins 188-PSTP and 188-ASTA were immobilized on a CM5 sensor chip 

(GE Healthcare, Uppsala, Sweden) at parallel flow cells by amine coupling according to 

manufacturer’s instructions. The amount of proteins immobilized corresponded to approximately 700 

response units (RU). An activated-deactivated surface without any immobilized protein was used as a 

control. SPR binding studies were performed at 25°C using a Biacore 2000 Instrument (GE 

Healthcare, Uppsala, Sweden). Purified GST-β2-subunit was diluted in running buffer (50 mM Tris-

HCl, 500 mM NaCl, pH 7.4). Different dilutions (2, 3, 4, and 5 µM) were injected into the flow cells 

at a rate of 20µl/min. After each run, the surface of the sensor chip was regenerated with a buffer 

consisting of 0.1% CHAPS, 0.1% TritonX 100, 0.1% Tween 20, 0.1% Tween 80, 333 mM NaCl, 16.6 

mM NaOH until the baseline was reached. For data analyses, association rate constant kon was 

calculated by local fitting using the BIAevaluation 3.2 RC 1 program (Biacore AB) and a single-site 

interaction (Langmuir) model whereby Chi2 was below 5%. The analysis software corrects for 

systematic drift in baseline that occurred during measurements. 

 

Tissue Sampling 

A cohort of male ahnak1-deficient mice in a C57BL6/J genetic background and their WT controls 

were studied at 6 months of age if not stated otherwise. The generation of homozygous ahnak1-

deficient mice was described in (32). Mice do not present any obvious abnormalities. They were 

maintained in a temperature-controlled environment with free access to standard laboratory chow and 

tap water in the animal facility of the Max Delbrück Center, Berlin, Germany. For cardiomyocytes 

preparations the animals were anaesthetized with isoflurane followed by intraperitoneal injection of 8 
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µg xylazine and 35 µg ketamine. The hearts were rapidly removed and processed as outlined below. 

Experiments were approved by the Berlin federal region´s institutional animal care body (LAGeSo T 

0088/99). 

 

Electrophysiological Measurements 

Ventricular myocytes were isolated from adult male Wistar rats (200-300 g), from 6 months old male 

ahnak1-deficient mice and the respective wild-type littermates as in (2). The standard Tyrode solution 

was (mM): 117 NaCl, 4 KCl, 1.5 KH2PO4, 4.4 NaHCO3, 1.7 MgCl2, 10 HEPES, 10 glucose, pH 7.4. 

Collagenase (Worthington type CLS 2) was added at 0.8 mg/ml. The freshly dissociated cells were 

kept in the physiological solution with 1 mM Ca2+ and 0.5% bovine serum albumin at room 

temperature and used within 6-8 hours. L-type Ca2+ current (ICaL) was recorded using the "whole-cell" 

variant of the patch-clamp method at room temperature (22 ± 2°C). 188-PSTP and 188-ASTA were 

directly dissolved in the pipette “intracellular” solution. Pipette tips were first immersed in the normal 

intracellular solution for at least 1 minute and then back filled with the intracellular solution 

containing the desired ahnak1 fragment. After gigaseal formation and rupture of the patch, cells were 

let to stabilize for at least 5 min before beginning the recordings. Ca2+ current density values were 

obtained after at least 10 min perfusion. Results were analysed by the Student’s t test and are 

expressed as means ± SEM, * with p < 0.05. Further experimental details are given in Supplemental 

Material. 

 

Heart tissue preparations  

Tissue homogenates were prepared from frozen ventricular samples (100 mg) with 800 µl 

homogenization buffer consisting of (mM): 50 HEPES, 150 NaCl, 50 Na2HPO4, 25 NaF, 10 EDTA, 

0.2 DTT, and protease inhibitor cocktails (Sigma P8340, Roche). The samples were first homogenized 

with a glass–teflon pestle and then with a Polytron PT 10-35 instrument at 10.000 rpm for 3 x 5 s. The 

cytosolic fraction was prepared by high-speed centrifugation (2 h at 100.000 x g) of the homogenates. 

Cardiac membrane fractions were prepared according to (29). Briefly, ventricular tissue (100 mg) was 
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homogenized twice with a KCl-containing (0.75 M) buffer to remove myofibrils followed by low salt 

buffer including protease inhibitors as above.  

 

Pull-down of endogenous β2-subunits 

The GST-fusion protein containing the intracellular loop connecting domain I-II of the rabbit cardiac 

α1C (2.5 µg) was bound to glutathione-sepharose (5 µl packed gel) in a final volume of 1 ml buffer A 

consisting of 50 mM Tris, 150 mM NaCl, 0.2 % Triton X-100, 0.2 % CHAPS and protease inhibitor 

cocktails (Sigma P8340, Roche), pH 7.4 for 1 h at 4°C on a rotating wheel. For control experiments, 

the equimolar concentration of unfused GST protein was coupled under the same conditions. Cytosolic 

fractions prepared from mouse and rat hearts (100 µg) were diluted with buffer A to a final volume of 

1 ml and incubated with either α1C I-II loop affinity beads or GST-control beads for 2 h at 4°C. The 

beads were washed three times with 0.5 ml of buffer A for 5 min at 4°C, subsequently suspended in 60 

µl SDS-sample buffer, and incubated for 3 min at 95°C.  

 

Western-blot analyses   

For ahnak1 detection, protein samples were separated on 6.5 % SDS-polyacrylamide gels and 

transferred to nitrocellulose for 2 hours at 300 mA. For α1C- and β2-subunit detection, the protein 

samples were separated on 8 % SDS-polyacrylamide gels and transferred for 90 min at 210 mA. The 

transfers were incubated with affinity-purified antibodies (1 µg IgG/ml anti-ahnak1, 0.5 µg IgG/ml 

anti-α1C, 0.25 µg IgG/ml anti-β2) followed by the peroxidase-coupled anti-rabbit IgG (dilution 

1:100.000, Pierce, Rockford, IL, USA). Immunoreactive protein bands were visualized by the 

enhanced chemiluminescence (ECL) reaction (Millipore). The anti-ahnak1 antibody was produced 

against the head portion of ahnak1 as in (25). The antigenic epitopes for anti-α1C and anti-β2 antibodies 

comprised (EEEEKERKKLARTASPEKK) and (EWNRDVYIRQ), respectively (20, 41). 
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Results 

 

The C-terminal -PxxP- motif in ahnak1 is important for high affinity β2-subunit binding 

The 5592-PSTP-5595 sequence in the C-terminal region of ahnak1 constitutes a PxxP consensus motif 

known to be important for protein-protein interaction (38). To study whether this motif plays a role for 

β2-subunit interaction, we replaced the proline residues by alanine in a recombinant protein derived 

from ahnak1 encompassing the most C-terminal 188 amino acids and performed in-vitro binding 

studies. The ahnak1-derived proteins were designated as 188-PSTP and 188-ASTA, respectively 

throughout this study. Equilibrium binding experiments summarized in Figure 1A revealed remarkable 

differences in β2-subunit binding. 188-PSTP displayed two-site β2-subunit interaction with Kd values 

of 60 ± 20 nM (n=4) and 300 ± 100 nM (n=4) for high and low affinity sites, respectively. By contrast, 

188-ASTA revealed a single population of binding sites with a Kd value of 1.2 ± 0.8 µM (n=8).  

Next we studied protein-protein interaction within a minute time scale by surface plasmon resonance 

(SPR) spectroscopy. For these experiments 188-PSTP and 188-ASTA were covalently bound at 

neighboring lanes of a CM-5 biosensor chip at low ligand concentrations (700 RU corresponding to 

0.7ng/mm2). Subsequently, the chip was superfused with different concentrations of recombinant β2-

subunit followed by running buffer. Typical sensorgrams shown in Figure 1B illustrate that the β2-

subunit associates rapidly to both C-terminal ahnak1 fragments and dissociates slowly. The slow 

dissociation rates (particularly for 188-PSTP) observed in the concentration range tested (2µM to 5µM 

β2-subunit) prevented the calculation of the Kd values from kinetic data (Kd = koff/kon). But, the 

association rate constants could well be estimated amounting to 2100 ± 300 M-1s-1 (n=8) and 2400 ± 

200 M-1s-1 (n=8) for 188-PSTP and 188-ASTA, respectively. Together, the binding experiments 

prompted us to study in-vivo effects of these C-terminal ahnak1 fragments on cardiomyocytes. 

 

Effects of 188-PSTP and 188-ASTA on Ca2+ currents of rat ventricular cardiomyocytes 

Given the critical role of PSTP for β2-subunit binding, we reasoned that 188-ASTA would be less 

efficient in ICaL modulation due to its lower affinity for the β2-subunit. To address this question, we 
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applied 100-nM of one or the other ahnak1-fusion proteins to ventricular rat cardiomyocytes under 

patch clamp conditions. This concentration is well over the Kd value of the high affinity interaction 

site of the 188-PSTP/β2 complex, but below the Kd value of the 188-ASTA/β2 complex. Indeed, 

original traces depicted in Figure 2A illustrate that under these conditions 188-PSTP was sufficient to 

increase current amplitude by about 20% (from 10.8 ± 0.6 to 12.9 ± 0.8 pA/pF) and to prolong channel 

inactivation time course by significantly increasing the fast time constant, τfast (from 4.7 ± 02 to 5.5 ± 

0.4 ms) leaving the slow component, τslow unaffected whereas 188-ASTA had no effect on ICaL (data 

not shown). However, higher concentrations of 188-ASTA were functional. Figure 2B demonstrates 

an example for the application of 5-µM 188-ASTA (well over Kd) which led to a marked prolongation 

of the ICaL inactivation time course by increasing both inactivation time constants τfast and τslow while 

peak current density remained unaffected. The increase in τfast by 100-nM 188-PSTP and the increases 

in both τfast and τslow by 5 µM 188-ASTA were not voltage-dependent as they occurred at all imposed 

membrane potentials (Figure 2C). No voltage-dependent shifts were observed on ICaL-V and 

availability curves (data not shown). Together, although 188-PSTP and 188-ASTA affected ICaL 

differently they led to a marked increase in the amount of transported charges (QCa2+) during a 200-

ms depolarization to 0 mV (Figure 2A, B, insets). When 188-PSTP and 188-ASTA were both applied 

at 10 µM, they increased QCa2+ by 59 % and 78 %, respectively (Table 1). 

Changes in τfast have been commonly associated to the Ca2+-dependent inactivation (CDI) mechanism. 

Hence, we asked whether the ahnak1 fragments are also functional when using Ba2+ as charge carrier. 

The results are summarized in Figure 3 and Table 1. Under control conditions in the presence of Ba2+, 

peak inward current, IBaL was increased (≅60%) and inactivation time course markedly prolonged, as 

known. In the presence of 10-µM either 188-PSTP or 188-ASTA, IBaL inactivation time constants were 

significantly increased to very similar extent while peak IBaL was unaffected. The rise in τfast and τslow 

elicited by the ahnak1 fragments was not voltage-dependent (Figure 3B).  

 

Effects of 188-PSTP and 188-ASTA on Ca2+ currents of mouse cardiomyocytes 
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To further understand the role of ahnak1 in Ca2+ current modulation, potential effects of the ahnak1 

fragments on ahnak1-deficient (KO) cardiomyocytes were studied. We first examined the phenotype 

of ventricular myocytes isolated from KO mice. Western-blot analysis confirmed ahnak1 deficiency in 

KO myocytes (Figure 4A). Cardiomyocytes isolated from KO were shorter than those isolated from 

WT littermates (132.6 ± 1.8 µm, n=135 and 155.8 ± 2.2 µm, n= 155; in ahnak1-KO and WT, 

respectively). They showed regular cross-striation with similar mean resting sarcomere lengths (Figure 

4B). In line with the reduced cell length, membrane capacitance values were significantly lower in KO 

myocytes (Table 2). KO cardiomyocytes displayed a lower ICaL density at all investigated voltages 

(Figure 5A, Table 2). In addition, τfast was significantly smaller while τslow was not altered. 

Consequently, QCa2+ was smaller in ahnak1-deficient cardiomyocytes than in WT ones (Table 2). 

However, the activation and availability curves for the two cell types had similar slope factor and 

voltage-dependency as was suggested by the shape of I-V curves (Table 2). 

Intracellular dialysis of WT cardiomyocytes with 10-µM 188-PSTP resulted in a 4 - 5 ms statistically 

significant increase in τfast of ICaL while τslow and ICaL density were not affected (Figure 6A, C). These 

effects of 188-PSTP represented a significant increase in QCa2+ from 0.33 ± 0.04 pC/pF to 0.41 ± 0.03 

pC/pF. No changes were observed in I-V, activation and availability curves (data not shown). By 

contrast, intracellular dialysis of KO cardiomyocytes with 10-µM 188-PSTP had no effect on any ICaL 

characteristics (Figure 6C, D).  

In the next set of patch clamp experiments we investigated the effects of 10-µM 188-ASTA in WT 

mouse cardiomyocytes. 188-ASTA significantly increased both τfast and τslow in a voltage-independent 

fashion, leaving peak ICaL unchanged (Figure 7A, C). This resulted in a significant increase in QCa2+ 

from 0.39 ± 0.01 pC/pF to 0.58 ± 0.04 pC/pF. Besides, intracellular dialysis of KO cardiomyocytes 

with 10-µM ASTA had no effects on any ICaL characteristics (Figure 7B, D). Taken together, the C-

terminal ahnak1 fragments require the presence of endogenous ahnak1 to affect ICaL inactivation. 

 

Ca2+ channel-subunit expression in the cardiac models  
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We asked whether the differences in ICaL gating and modulation between ahnak1-KO and WT 

cardiomyocytes could be due to different expression levels of Ca2+ channel subunits. Western-blot 

analyses on cardiac membrane preparations revealed similar α 1C and β2 protein levels in both strains 

(Figure 8A, B). Using recombinant proteins for calibration (Figure 8A, B, right panels), expression 

levels of ~2 pmoles and ~60 pmoles per mg of membrane protein were calculated for the endogenous 

L-type Ca2+ channel subunits α1C and β2, respectively (Table 3).  

Next, we compared β2-subunit expression in the two rodent models used for patch-clamp experiments. 

Consistent with previous reports (19-21) the prominent β2 band migrated at 80-kDa in mouse and rat 

hearts. An additional faint β2 signal was visible at 95-kDa in the rat. This band was more prominent in 

the cytosolic fraction and bound strongly to the α1C I-II loop (Figure 8C). The latter finding defines the 

95-kDa protein reliably as β2-subunit isoform. Thus, species-specific differences were observed in 

isoform pattern and with respect to the distribution between membrane-bound and cytosolic β2-

subunits (Table 3). 

 

Discussion 

 

Our results show that upon intracellular delivery, the C-terminal ahnak1 fragments 188-PSTP and 188-

ASTA enhance Ca2+ entry in non-transgenic, rodent cardiomyocytes mostly by slowing ICaL 

inactivation. This gain-of-function effect was not observed in ahnak1-deficient cardiomyocytes. The 

data strongly suggest that ahnak1/Cavβ2 complexes of control myocytes are targeted by ahnak1 

fragments and imply that ahnak1 scaffolds different β2-subunit isoforms. 

 

Effects of 188-PSTP and 188-ASTA on L-type Ca2+ and Ba2+ currents 

Equilibrium binding experiments revealed that the high affinity, two-site β2-subunit interaction 

previously reported for a longer C-terminal ahnak1 fragment (25) is fully conserved within the 188 C-

terminal amino acids. The mutations of PSTP into ASTA left intact only the lower affinity site with a 

Kd value around 1 µM, which is considered to be prone to physiological regulation. This interaction 

site was localized to the N-terminal portion of the Cavβ2 including the SH3 domain (25). Real time 
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SPR binding measurements showed that both 188-PSTP and 188-ASTA associated rapidly with 

Cavβ2. Although SPR experiments revealed no significant higher affinity for 188-PSTP, both in-vitro 

binding approaches suggested that the C-terminal ahnak1 fragments could interfere with Cavβ2-

regulated functions in cardiomyocytes. Indeed, our patch-clamp data clearly demonstrate that the 

ahnak1 fragments modify ICaL inactivation time course in rat and mouse cardiomyocytes, but not in 

ahnak1-deficient cardiomyocytes. These results are indicative for a complex interaction involving at 

least three partners: ahnak1 fragments, Cavβ2, and endogenous ahnak1. 

The increases in both inactivation time constants, over 50% in τfast, led to significant increases in the 

amount of charges carried, QCa2+. This observation is of physiological importance since most of Ca2+ 

entry (>75%) occurring during an action potential, particularly in rodents, is determined by the fast 

inactivation component of ICa (6). The modulation of ICaL inactivation by C-terminal ahnak1 fragments 

that leads to a 50 - 70% change in QCa2+ in the first 30 msec, should have important effects on 

excitation-contraction coupling gain during an action potential if one further takes into account the 

existence of Ca2+ microdomains between the junctional sarcoplasmic reticulum and the T-tubular 

sarcolemma in which important increases in Ca2+ would be expected even in response to small 

changes in Ca2+ currents (6). 

Inactivation of voltage-gated Ca2+ channels that serve as a major source of Ca2+ influx in excitable 

cells is precisely regulated. In the channel-forming α1C subunit the C-terminal binding site for the Ca2+ 

sensor calmodulin appears essential for Ca2+-dependent inactivation, CDI as well as the loop 

connecting domains I and II is essential for voltage-dependent inactivation, VDI. The molecular 

mechanisms of VDI remain poorly understood although predominant contributions arise from the β-

subunits (see below). At first glance, replacing extracellular Ca2+ by Ba2+ easily separates the two 

processes, although to some extent CDI might result from a global change in intracellular Ca2+ 

occurring after Ca2+ release from internal stores (5). Furthermore VDI also exhibits fast and slow 

components (12, 13) which makes difficult to ascertain which one, CDI or fast VDI, predominates in 

the fast inactivation phase of ICaL with Ca2+ as charge carrier. Interestingly, the CDI of Cav1.2 (cardiac 

L-type channel) and VDI of Cav2.1 (neuronal P/Q channel) are similarly regulated by the auxiliary β-
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subunit (7, 8). Here we report that in rat and WT mouse 188-ASTA increases both τfast and τslow 

without shifting the voltage-dependence of the kinetics, nor altering the peak current amplitude. This 

increase in inactivation time constants is seen when using either Ca2+ or Ba2+ as the charge carrier. 

Furthermore in the presence of 188-PSTP, our results are just opposite to what is expected from a τfast - 

CDI paradigm since in rat cardiomyocytes, 188-PSTP increases peak ICaL but slows down τfast (2). 

When Ba2+ equimolarly substitutes for Ca2+ as charge carrier, both fast and slow inactivation time 

constants of IBaL are significantly increased by 188-PSTP and 188-ASTA. Under this condition L-type 

current inactivation is mostly due to a two-component VDI implying that ahnak1 fragments act mainly 

by modifying VDI through an interaction with the auxiliary β-subunit. However, other possibilities 

such as complex differential interactions of the permeating ion (Ca2+ or Ba2+) with the voltage sensor 

cannot fully be ruled out (43). 

 

Impact of Cavβ isoforms for channel inactivation 

The differential effects of Cavβ isoforms on voltage-dependent inactivation are well documented. For 

example Cavβ2a slows inactivation whereas other Cavβ isoforms accelerates it. Distinct structural 

determinants have been reported in Cavβ to account for these opposite actions including lipid-

modification (9), membrane-attachment (45), and the GK domain (16). The paradigm “membrane-

bound β2 splice variants slow inactivation” was particularly extended by Herzig et al. (24), who 

showed that the degree of modulation correlates with the length of the amino-terminal domains of the 

β2 splice variants in a manner that short N-termini (2a,b,e) slow inactivation while long N-termini 

(2c,2d) hasten inactivation. Of note recently two different missense mutations in Cavβ2b have been 

reported to cause accelerated Ca2+ current inactivation underlying Brugada syndrome (3, 10). In light 

of our results, ahnak1 fragment-induced slowing of ICaL could occur if that fragment applied through 

the patch pipette releases “slowing” Cavβ variants from endogenous ahnak1 and promotes their 

binding to I-II loop in Cav1.2 known to constitute the inactivating particle of the channel (39). To this 

end, there are no data available whether ahnak1 prefers a certain Cavβ isoform. Future studies should 

address this issue.  
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Alternatively, it can be envisioned that ahnak1 binding influences the accessibility of molecular 

determinants in Cavβ. Recently, Gonzalez-Gutierrez et al. (16) demonstrated that the GK domain 

present in all long Cavβ isoforms is the primary functional unit to slow ICaL inactivation and masking 

this property allows for modulation. Although it is still a hypothesis we propose that ahnak1 scaffolds 

Cavβ in cardiomyocytes. It may contribute to functional compartmentalization of the various β-subunit 

isoforms identified in the heart (14, 22, 45) or may shape Cavβ subunits and thereby regulate the 

accessibility of molecular determinants. We found species-specific differences in β2-subunit isoform 

pattern between rat and mouse hearts that are in line with the structural determinants for modifying 

ICaL inactivation. In fact, ICaL inactivation was relatively slow in mouse cardiomyocytes (τfast ~13 ms) 

that showed a higher proportion of membrane-bound β2-subunits. The ICaL decay was very fast (τfast ~5 

ms) in rat cardiomyocytes that expressed a longer, cytosolic β2-subunit isoform which likely represents 

the Cavβ2c (28). In both species we found overabundance of β2-subunits compared to the channel 

forming α1C, strengthening ahnak1 function as scaffold for Cavβ2. The full-length ahnak1 molecule 

offers at least three attachments sites for the β2-subunit utilizing ahnak1´s proximal and distal C-

terminus (17). 

 

Loss of ICaL modulation by ahnak1 fragments in ahnak1-deficient cardiomyocytes  

In agreement with previous reports, the ahnak1-deficient mice were fertile and had no evident 

abnormalities (31, 32). But, cardiomyocytes isolated from ahnak1-KO mice showed morphological 

and functional alterations compared to sex- and age-matched wild-type littermates. Ahnak1-deficient 

cardiomyocytes were smaller, particularly shorter consistent with the reduced cell capacitance. The 

reduction in cell length was not due to myocytes contraction as resting sarcomere distance was 

unaltered. Ahnak1-KO cardiomyocytes showed decreased ICaL density and faster ICaL inactivation 

kinetics. Reduced Ca2+ influx through ICaL in ahnak1-deficient cardiomyocytes is in line with reports 

on ahnak1-deficient lymphocytes (35) and osteoblasts (42) suggesting that ahnak1 promotes 

membrane expression of functional Ca2+ channels. This conclusion is corroborated by unaltered 
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voltage-dependency of current-voltage relationship, activation, and availability curves of ICaL in our 

KO myocytes.  

The C-terminal ahnak1 fragments did not elicit any effects on ICaL characteristics in ahnak1-deficient 

cardiomyocytes. These findings exclude the possibility that 188-PSTP or 188-ASTA bind to 

endogenous β2-subunits or to any other site(s) and thereby influencing ICaL gating. Furthermore, the 

loss of ICaL modulation by ahnak1 fragments in ahnak1-deficient cardiomyocytes indicates that ahnak2 

is not functional in this setting. Since ahnak2 lacks the C-terminal of ahnak1 it can not compensate for 

the loss of function of ahnak1. In all ahnak1-expressing cardiomyocytes, including WT littermates, 3-

month old C57BL/6 mice (Alvarez, unpublished), 188-PSTP and 188-ASTA prolong ICaL inactivation 

time course; however, 188-PSTP mostly affected τfast and only increased ICaL density in rat (present 

results; (2). Our binding experiments can not explain the functional differences on ICaL between 188-

PSTP and 188-ASTA. Apparently, cross-talk with distinct counteracting sites on endogenous ahnak1 

is required to affect different aspects of ICaL gating.  

Taken together, our results provide strong evidence for a non-redundant role of ahnak1 in the voltage-

dependent inactivation of the cardiac L-type Ca2+ channel. The findings imply that ahnak1 scaffolds 

Cavβ isoforms and suggest the ahnak1/Cavβ interactions as target for tuning Ca2+ homeostasis in the 

heart.  
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Figure 1. Interaction between the recombinant β2-subunit and the C-terminal portion of ahnak1 

containing either the PSTP- or ASTA-sequence. A) Different mixtures of 0.35 µM recombinant β2-

subunit and variable amounts of the C-terminal ahnak1 fragments 188-PSTP (filled circles) or 188-

ASTA (open circles) were centrifuged to the sedimentation equilibrium for 16 h at 10°C. B) Surface 

plasmon resonance measurements demonstrating real time β2-subunit binding to the C-terminus of 

ahnak1 containing either the PSTP-sequence (solid line) or the ASTA-sequence (dashed line) at 25 °C. 

The ahnak1-derived fragments were immobilized at parallel lanes of a CM5 biosensor chip at 700 

response units. Recombinant β2-subunit (2 µM) was passed at 20 µl/min over the surface (Association) 

followed by running buffer alone (Dissociation). Note 188-PSTP exhibits higher binding affinity and 

capacity for the β2-subunit in equilibrium binding experiments. 

 

Figure 2. Effects of 188-PSTP and 188-ASTA on ICaL of rat ventricular cardiomyocytes. A,B) ICaL 

was elicited by 200-ms depolarization to 0 mV from a holding potential of –80 mV. Superimposed 

current traces recorded in rat ventricular cardiomyocytes under control conditions (Control), or 

intracellularly dialyzed with 100-nM 188-PSTP (PSTP) or 5-µM 188-ASTA (ASTA). Running 

integrals of QCa2+ attributed to ICaL recordings are presented below. C) Voltage-dependency of the 

inactivation time constants, τfast and τslow in the same experimental conditions. n = 17 Control, 8 PSTP 

or 6 ASTA from at least 4 hearts.  * p < 0.05 with respect to control.  

 

Figure 3. Effects of 188-PSTP and 188-ASTA on IBaL of rat ventricular cardiomyocytes. A) The 

inward current carried by Ba2+, IBaL was elicited by 300-ms depolarization to 0 mV from a holding 

potential of –80 mV. Superimposed current traces recorded in rat cardiomyocytes under control 

conditions (Control), or intracellularly dialyzed with the C-terminal ahnak1 fragments 188-PSTP or 

188-ASTA (10 µM each). B) Voltage-dependency of the inactivation time constants, τfast and τslow in 

the same experimental conditions. Note that at –20 mV the currents were fitted by only one 

inactivation time constant. n = 12 Control, 6 PSTP or 6 ASTA from at least 4 hearts.  * p < 0.05 with 

respect to control. 



 

Figure 4. Phenotype of ahnak1-deficient cardiomyocytes. A) Total cardiac tissue lysates from wild-

type (WT) and ahnak1-deficient mice (Ahnak1-KO) were subjected to SDS-PAGE and Western-blot 

analyses using an affinity-purified antibody generated against the head portion of ahnak1. The lower 

panel shows the Coomassie-stained myosin heavy chain (MyHC) as loading control. B) Phase contrast 

images of representative cardiomyocytes isolated from 6 months old wild-type and ahnak1-deficient 

mice. 

 

Figure 5. ICaL kinetics in cardiomyocytes from wild-type and ahnak1-deficient mice. A) Current-

voltage relationships established in wild-type (WT) and ahnak-deficient (KO) mice ventricular 

cardiomyocytes. ICaL is expressed as current density (pA/pF). Inset: representative Ca2+ current 

tracings. B) Voltage-dependency of the inactivation time constants, τfast and τslow in WT and KO 

cardiomyocytes. n = 22 WT and 38 KO cardiomyocytes from at least 6 WT and 12 KO hearts.  * p < 

0.05 with respect to control. 

 

Figure 6. Effects of 188-PSTP perfusion on ICaL characteristics of cardiomyocytes from wild-type 

(A, C) and ahnak1-deficient (B, D) mice. A, B) Bar graphs comparing peak inward current, ICaL and 

inactivation time constants, τfast and τslow in control conditions and in the presence of 10-µM 

intracellular 188-PSTP. Inset: representative Ca2+ current tracings. Currents were normalized to 

maximal peak inward current. C, D) Voltage-dependency of the inactivation time constants, τfast and 

τslow in the same experimental conditions. n = 9 WT and 9 KO, and 9 WT and 7 KO cardiomyocytes in 

control and PSTP, respectively derived from at least 4 animals per group. * p < 0.05 with respect to 

control. 

 

Figure 7. Effects of 188-ASTA perfusion on ICaL characteristics of cardiomyocytes from wild-

type (A, C) and ahnak1-deficient (B, D) mice. A, B) Bar graphs comparing peak inward current, ICaL 

and inactivation time constants, τfast and τslow in control conditions and in the presence of 10-µM 



intracellular 188-ASTA. Inset: representative Ca2+ current tracings. Currents were normalized to 

maximal peak inward current. C, D) Voltage-dependency of the inactivation time constants, τfast and 

τslow in the same experimental conditions. n = 8 WT and 8 KO, and 5 WT and 7 KO cardiomyocytes in 

control and ASTA, respectively derived from at least 4 animals per group. * p < 0.05 with respect to 

control. 

 

Figure 8. Expression of the Ca2+ channel subunits α1C and β2 in ahnak1-deficient and non-

transgenic cardiomyocytes. Western-blot analyses demonstrating β2-subunit (A) and α1C-subunit (B) 

protein levels in the total cardiac membrane protein fraction of ahnak1-KO and wild-type mice 

compared to recombinant β2-subunit (96-kDa) and α1C_II-III loop (55-kDa). C) Detection of β2-

subunits in total heart proteins (30 µg) prepared from the rodent models as indicated (left panel) and in 

the rat heart cytosolic fraction before and after pull-down with the α1C_I-II loop (right panel). 

 



Supplemental Material: 
 
Patch clamp experiments 
 
Electrode resistance was between 0.9 - 1.1 MΣ. Cm was estimated by applying 10 ms/2mV 

hyperpolarizing pulses from a holding potential (HP) of –80 mV. Capacitive spikes were fitted to a 

simple exponential and Cm was calculated according to: 

Cm = τm . I0 / Vm (1 -  Iss / I0) 

where ϑm is the membrane time constant, I0 is the maximal amplitude of the capacitive current spike, 

Iss is the “steady-state” current at the end of the 10-ms pulse and Vm is the amplitude of the voltage 

step (2 mV). The series resistance (Rs) with the cell membrane was estimated according to Rs = ϑm / 

Cm. Uncompensated series resistance was 3.9 ± 0.3 MΩ (n = 20) in rat cardiomyocytes and 3.7 ± 0.3 

MΩ  (n = 65) in mouse cardiomyocytes. Rs could be electronically compensated up to 50% without 

ringing. In order to isolate ICaL, K+-currents were blocked by Cs+ (intracellular and extracellular; see 

below). In rat ventricular cardiomyocytes the fast inward Na+ current (INa) was blocked with 

tetrodotoxin (50 µM). The composition of the standard extracellular solution was (mM): 117 NaCl, 20 

CsCl, 2 CaCl2, 1.8 MgCl2, 10 glucose, 10 HEPES, pH 7.4. The pipette (“intracellular”) solution 

contained (mM): 130 CsCl, 0.4 Na2-GTP, 5 Na2-ATP, 5 Na2-creatine phosphate, 11 ethyleneglycol-

bis-(-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), 4.7 CaCl2 (free Ca2+ :120 nM); 10 HEPES; 

pH was adjusted to 7.2 with CsOH. The Ca2+ current was routinely evoked with 200-ms depolarising 

pulses to 0 mV applied from a –80 mV HP every 4 s. In mouse ventricular myocytes ICaL was 

monitored by a two-step voltage-clamp protocol: from a –80 mV HP a 50-ms step pulse to –40 mV to 

fully inactivate INa, a 300-ms step to 0 mV was applied. The double-pulse interval was 4 s. In both 

cases, peak ICaL was measured as the difference between maximal inward current and the current level 

at the end of the depolarising pulse and normalized to membrane capacitance (Cm) to estimate ICaL 

density. 

Current-to-voltage (I-V) and availability curves were obtained in rat cardiomyocytes according to 

previously established standard double-pulse protocols {Alvarez, 2004 #1}. In mouse cardiomyocytes 

the following voltage clamp protocol was used: every 8 s, from a –80 mV HP a 50-ms step pulse to –

40 mV was applied followed by 300-ms prepulses from –50 to +60 mV. After a 5-ms gap at –40 mV, 



each prepulse was followed by a fixed 300-ms test pulse to 0 mV. I-V curves were obtained from 

currents elicited during the prepulses. Availability was estimated by normalizing current amplitude at 

the test pulse by the current recorded as a function of prepulse potential. The experimental points 

between –50 and 0 mV were fitted to a Boltzmann function: 

I / Imax = (1 + exp ((Vp – V0.5) / s))-1 

where Vp is the prepulse potential, V0.5 is the half-availability potential and s the slope factor. Ca2+ 

current inactivation was analysed by fitting current traces to double exponentials {Alvarez, 2004 #1}. 

The amount of Ca2+ charges (QCa2+ in pC) entering the cell during a depolarising pulse to 0 mV was 

estimated by integrating the current trace from the return to the baseline just after the capacitive 

transient to the end of the voltage-clamp pulse just before the capacitive transient, and was normalized 

to membrane capacitance (pC/pF). 

In some experiments with rat cardiomyocytes, on applying 300-ms duration pulses currents were first 

recorded with Ca2+ as charge carrier and then after equimolar Ba2+ substitution. Under these conditions 

IBaL inactivation time course could be well fitted by two exponentials over the membrane potential 

range studied, except at -20 mV where a single exponential was the best fit. The amount of Ba2+ 

charges was estimated by integrating the current trace from the zero current during a 300-ms 

depolarization to 0 mV. 
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