
New Insights into the Genetic Control of Gene
Expression using a Bayesian Multi-tissue Approach
Enrico Petretto1,2., Leonardo Bottolo1,2., Sarah R. Langley1, Matthias Heinig3, Chris McDermott-Roe1,
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Abstract

The majority of expression quantitative trait locus (eQTL) studies have been carried out in single tissues or cell types, using
methods that ignore information shared across tissues. Although global analysis of RNA expression in multiple tissues is
now feasible, few integrated statistical frameworks for joint analysis of gene expression across tissues combined with
simultaneous analysis of multiple genetic variants have been developed to date. Here, we propose Sparse Bayesian
Regression models for mapping eQTLs within individual tissues and simultaneously across tissues. Testing these on a set of
2,000 genes in four tissues, we demonstrate that our methods are more powerful than traditional approaches in revealing
the true complexity of the eQTL landscape at the systems-level. Highlighting the power of our method, we identified a two-
eQTL model (cis/trans) for the Hopx gene that was experimentally validated and was not detected by conventional
approaches. We showed common genetic regulation of gene expression across four tissues for ,27% of transcripts,
providing .5 fold increase in eQTLs detection when compared with single tissue analyses at 5% FDR level. These findings
provide a new opportunity to uncover complex genetic regulatory mechanisms controlling global gene expression while
the generality of our modelling approach makes it adaptable to other model systems and humans, with broad application
to analysis of multiple intermediate and whole-body phenotypes.
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Introduction

Background
A number of integrated transcriptional profiling and linkage

mapping studies have been published to date [1–8], however most

of these studies were restricted to analysis in single tissues or cell

types. Even when expression profiles are available from multiple

tissues, expression QTL (eQTL) mapping is usually carried out at

the level of the individual tissue and the lists of significant eQTLs

are subsequently compared across experiments [3,8,9]. One

limitation of this approach is that different false positive (and/or

false negative) rates across studies inflate the discrepancies between

the lists of eQTLs [10]. In addition, intersecting eQTL lists with

similar False Discovery Rates (FDR) is likely to be a conservative

approach and is potentially affected by variability between tissues

[11]. A number of studies have investigated whether the cis- and/

or trans-acting genetic control of gene expression is conserved

across tissues, i.e. whether there is evidence of tissue-consistent

eQTLs. By a slight abuse of terminology, here, we refer for

simplicity to tissue-consistent eQTL as ‘‘pleiotropic eQTL’’, i.e.

when an eQTL for the same probe set expression is detected

across multiple tissues (not necessarily exerting multiple cellular

functions). eQTL studies in the rat [3,11], mouse [12] and in

humans [8] have shown that detection of eQTLs with a systemic

effect (i.e., detected across multiple tissues) is strongly biased

towards cis-eQTLs. This is likely a consequence of their strong

genetic effects, levels of expression, high heritability or a

combination of these factors, but could also result from a lack of

power to detect smaller effects, typically trans-eQTLs. Cis-acting

genetic variation can have important pathophysiological conse-

quences at the level of the whole organism [5,8,13], likely

reflecting modifications of key regulatory functions across tissues

and cell-types. However, studies in plants have shown that cis-

eQTLs can also exhibit strong tissue-specific dependency, and

polymorphisms in cis-regulatory regions may affect gene tran-

scription exclusively in a few crucial cell types [14,15].
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Identification of trans-eQTLs within and across tissues or cell

lines is statistically challenging, and it is plausible that the relative

paucity of shared trans-regulatory effects discovered to date is

mainly due to their small genetic effect and higher FDR [5,11,16].

A review of the eQTL literature data reveals that many

observations of trans-regulated gene expression are often contra-

dictory [10], and detection of trans-eQTL hotspots can be affected

by the permutation strategy used to assess their statistical

significance [17]. Tissue-specific transcriptional regulation has

been reported for differentially expressed genes and for regulatory

genetic hotspots [18] or region-specific regulatory networks and

genes regulated by trans-acting elements [19]. However, using

inbred mouse lines, Bystrykh et al. [9] observed a substantial

proportion of trans-eQTLs with identical genomic location in brain

and stem cell tissues in the same animals. These discrepant

observations highlight the uncertainty concerning cross-tissue

conservation of cis and trans-acting genetic regulation.

State of the art statistical methods
Although global analysis of mRNA expression in multiple tissues

in now feasible [20,21], few methods have addressed the problem

of jointly performing an analysis of gene expression across tissues

combined with multivariate analysis of a large number of genetic

control points. Statistical methods for multiple QTL analyses have

followed current developments of sparse regression methods

designed to address the large p, small n paradigm, i.e., set-ups

where the number of potential covariates (here, the genetic

markers) is (much) larger than the number of available samples. In

this context, two families of methods can broadly be distinguished:

regularised multivariate regression approaches such as the Lasso

[22], where the residual sum of squares is penalised and regression

coefficients are shrunk towards zero, or methods using a variable

selection formulation, typically implemented in a Bayesian

framework. Regularised regressions are focussed on delivering

overall good predictive ability rather than interpretability of the

effect of a few key regressors, whereas variable selection methods

are constructed to explore a large model space, seeking a set of

well supported models, each including only a small number of

interpretable regressors. In the eQTL context, regularisation

methods have been proposed for single [23] and multiple

phenotypes [24]. However, interpretability of the genetic effects

is important as well as an adequate characterisation of uncertainty,

and the Bayesian variable selection (BVS) approach that we and

others [25–27] have adopted offers additional insights.

In this paper we have implemented a new Bayesian variable

selection method for multivariate mapping of single or multiple

outcomes, and show an application to uncover simultaneous cis

and trans-regulation of gene expression at the level of individual

tissues as well as across tissues. We show that by implementing a

computationally challenging multi-locus strategy, our model can

identify substantially more cis- and trans-effects than commonly

used single marker eQTL methods for the same FDR level and

that it permits efficient identification of genetic regulation across

multiple tissue types. These biological findings are complemented

by a simulation study where our method is compared to classical

and a recently proposed multi-locus penalised regression method

and shown to have increased power.

Results

We used Sparse Bayesian Regression (SBR) and Sparse

Bayesian Multiple Regression (SBMR) models to identify genetic

control points of gene expression, which are common across or

specific to four rat tissues. To demonstrate the power of this

approach, we selected a subset of 2,000 probe sets that show the

highest variation in gene expression in the BXH/HXB RI strains

[3] jointly across fat, kidney, adrenal and left ventricle (heart

hereafter) tissues (see Materials and Methods). This selection of

probe sets is not biased towards highly heritable transcripts (Table

S1), and the observed correlations in mRNA levels resemble the

correlation structure in the whole set of transcripts (Figure S1). We

carried out multi-locus eQTL mapping i) within each tissue using

SBR models and ii) in all tissues simultaneously using the SBMR

model (Figure S2). In the latter analysis, mRNA levels measured

within each tissue were assembled in a single dataset and treated as

multiple responses of the same feature (see Materials and

Methods). The SBMR identifies the best combination of markers

that jointly predict the responses, thus representing a pleiotropic

model for predicting variation in gene expression in all tissues.

Results from both SBR analysis were compared with eQTL

analysis using QTL Reaper which based on the Haley-Knott

regression [3,11], and with a two-stage Sequential Search Method

(SSM) of pairs of significant eQTLs, following Storey’s approach

[28], that was adapted to map one or more eQTLs using a purely

additive eQTL model (Text S1). These methods have been widely

used to map genome-wide eQTLs in several systems

[3,4,9,11,13,28–30] and because of their wide applicability they

represent a useful benchmark for our approach. The results of the

SBMR approach were compared with the Hotelling’s T2-test for

mapping eQTL across multiple tissues (see Materials and

Methods) and with the eQTLs identified by intersecting eQTL

lists from single tissue analyses.

Single tissue analysis
We first investigated the distribution of the size of the eQTL lists

associated with the best SBR model visited, for the transcripts that

were below the 5% FDR using Jeffreys’ scale of evidence (see

Materials and Methods). Consistently across all tissues, ,16% of

all probe sets were under genetic control by one eQTL, although

for a small proportion of probe sets (,3%) multiple control points

Author Summary

Integrated analysis of genome-wide genetic polymor-
phisms and gene expression profiles from different tissues
or cell types has been highly successful in identifying genes
modulating complex phenotypes in animal models and
humans. However, an important limitation of the current
approaches consists in their sole application to individual
tissues, thus ignoring information shared across different
tissues. To uncover complex genetic regulatory mecha-
nisms controlling gene expression at the whole organism’s
level, it is essential to develop appropriate analytical
methods for the analysis of genome-wide genetic polymor-
phisms and gene expression profiles simultaneously in
multiple tissues. This paper presents a novel, fully integrated
Bayesian approach for mapping the genetic components of
gene expression within and across multiple tissues. In
addition to increased power and enhanced mapping
resolution when compared with traditional approaches,
our model directly provides information on potential
systemic effects on transcriptional profiles and co-existing
local (cis) and distant (trans) genetic control of gene
expression. We also discuss the possibility to extend our
approach for the analysis of different phenotypes, and other
study designs, thus providing an integrated computational
tool to explore the genetic control underlying transcrip-
tional regulation at the systems-level, beyond the single
tissue resolution.

Bayesian Multi-tissue Analysis of Expression QTLs
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were detected (Table 1). As expected, adopting more conservative

FDR levels the proportion of probe sets with multiple eQTLs

decreases significantly (Table S2). The SBR model identified a

similar number (or more) of eQTLs compared with the SSM

approach, whereas it yielded substantially more eQTLs than QTL

Reaper (,2 fold increase) (Table S3). All methods identified a

larger proportion of cis than trans-eQTLs to a varying degree, with

enrichment for cis-eQTLs that were commonly detected by all

methods (from 72% to 78% across tissues).

The SBR outperformed both QTL Reaper and SSM

approaches in detecting complex genetic regulation by two or

more eQTLs. While QTL Reaper and SSM found no polygenic

control in any tissue at 5% FDR, the SBR model revealed that

,12% of the probe sets that were found to be under genetic

control across tissues mapped to two or more distinct eQTLs,

delineating a set of 140 polygenic expression traits (Table S4).

Similarly, the full two-stage SSM that accounts for epistatic

interaction between the primary and secondary locus [28] found

no significant polygenic regulation (data not shown). This indicates

that while the number of observations in this dataset is relatively

small, when compared with either QTL Reaper or SSM

approaches, the multi-locus approach implemented by SBR model

offers a significant gain in power for eQTL detection, with

increased sensitivity to identify polygenic effects at low FDR levels.

A detailed comparison between the single tissue analyses using the

different approaches is reported in Text S1.

Multiple tissues analysis
Thresholding the Jeffreys’ scale of evidence to control the FDR

at 5% level, the SBMR model identified 531 transcripts (,27% of

the total) under common genetic regulation in all tissues. We

showed evidence of polygenic control by two or more distinct

eQTLs for a significant proportion of probe sets (13%) (Table 1),

and this fraction remains substantial, albeit decreasing, when more

conservative FDR thresholds are considered (Table S2). This

reflects the high sensitivity of the SBMR approach to identify

potential pleiotropic loci even when their individual effect within

each tissue is marginally weak. Although we specified priors on the

model size to penalize highly polygenic models, the evidence

provided by the data supports common genetic regulation for

SBMR models with a high number of eQTLs (Figure S3).

A key aspect of the SBMR approach is that it exploits additional

information provided by the covariance structure between tissues

to find a set of parsimonious models that jointly predict gene

expression levels in all tissues. For illustration, Figure 1A–E shows

contrasting case examples for Cd36 and Ascl3 genes, where the

SBMR confirmed shared genetic effects due to a single cis-eQTL

for Cd36 (marker Cd36) and indentifies a new cis- and trans-eQTL

genetic model for Ascl3 (markers D1Rat55 and D7Mit8, respec-

tively). The Hotelling’s T2-test found common genetic regulation

for Cd36 gene, while it indentified only the cis-eQTL for Ascl3 but

failed to detect the secondary trans-acting locus at the 5% FDR

level (Figure S4). For comparison with the single tissue analyses

using SBR, the cis-effect for Ascl3 is seen in fat, kidney and heart,

while the trans-signal is detectable only in fat and heart (Figure S5).

Similarly, both QTL Reaper and SSM failed to detect common

genetic regulation in cis or trans across tissues for the Ascl3 gene

(Figure S4).

The proposed SBMR model directly provides information on

potential systemic effects of the eQTL(s). To assess the extent by

which the detected common eQTLs explain the correlation in

gene expression across tissues, we calculated the raw empirical

correlation matrix and the posterior mean of the residual

correlation matrix given the putative eQTL markers (see Text

S1). For both Cd36 and Ascl3 genes, Figure 1 shows that the SBMR

approach pinpoints genetic regulators that explain the majority of

the correlation structure between tissues as the off-diagonal

residual correlations are considerably smaller (Figure 1, panels

B, C and F, G, H). The probe set (1386901_at) representing Cd36

gene is derived from sequence in the 39 untranslated region, that is

constitutively deleted from the SHR genome [31], indicating a

systemic effect of this cis-eQTL as shown by the posterior mean of

the residual correlation matrix (Figure 1C). For the Ascl3 gene, the

cis-eQTL alone (marker D1Rat55) is not sufficient to explain the

pattern of correlation leading to substantial residual correlation

(Figure 1G), whereas inclusion of the trans-locus (D7Mit8)

significantly decreased the residual correlation in gene expression

across tissues (Figure 1H). This suggests that both the cis- and trans-

eQTLs might have a tissue-consistent pleiotropic effect on Ascl3

expression, similarly to Cd36. In addition, within the SBMR model

we investigated the effect size of the eQTLs within each tissue by

simulating their posterior density in a post processing analysis (see

Materials and Methods). For each gene, we report the distribution

of the eQTL effect size across tissues showing marked effects for

the cis-eQTLs for both Cd36 and Ascl3 genes (Figure 1D and

Figure 1I, respectively). In the latter case, despite the smaller effect

size for the trans-acting eQTL (Figure 1L), its influence on

expression in fat and heart tissues is visible. Taken together, these

findings provide evidence of common genetic regulation by one or

two loci in the case of Cd36 and Ascl3 genes, respectively. Using

post-processing results we were able to uncover the tissue-specific

contribution of each eQTL to the pleiotropic model. These

illustrative examples show how the SBMR approach makes use of

the information shared across tissues by joint modelling of mRNA

levels to identify common genetic control points of gene expression

across tissues.

Comparison between multiple and single tissues
analyses

We investigated whether the common eQTLs mapped within

each tissue by the SBR model were detected in the SBMR analysis.

Ninety-three transcripts showed genetic regulation by the same

eQTL that was independently detected in all tissues by SBR

(FDR ,5%) (Table S5). In contrast, at similar FDR levels, the

SBMR approach identified 531 probe sets under genetic regulation

Table 1. Number of probe sets found to be under genetic
control in the SBR and SBMR analyses (FDR ,5%).

Analysis no eQTL* 1 eQTL" 2 eQTLs" $3 eQTLs"

SBR in fat 1634 (81.7%) 311 (15.6%) 43 (2.2%) 12 (0.6%)

SBR in kidney 1627 (81.4%) 323 (16.2%) 38 (1.9%) 12 (0.6%)

SBR in adrenal 1649 (82.5%) 301 (15.1%) 40 (2.0%) 10 (0.5%)

SBR in heart 1607 (80.4%) 345 (17.3%) 39 (2.0%) 9 (0.5%)

SBMR in all tissues 1469 (73.5%) 275 (13.8%) 93 (4.7%) 163 (8.2%)

*We used ‘‘no eQTL’’ to identify probe sets whose best model visited was the
null model (i.e., no evidence of genetic control) or when the best model visited
with genetic control was not significant at FDR ,5% (see Materials and
Methods).

"For the probe sets that are under genetic control the number of probe sets
with one, two or at least 3 distinct eQTLs is indicated. Polygenic models
(2 eQTLs and $3 eQTLs) are indicative of two or more distinct eQTLs (for the
same probe set) that are located at least 10 cM far apart. Percentages were
calculated with respect of the set of 2,000 transcripts considered in this study.

doi:10.1371/journal.pcbi.1000737.t001
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in all tissues, yielding .5 fold increase in the number of common

eQTLs when compared with the SBR (Table 1). When contrasting

the SBMR approach with QTL Reaper and the SSM, which

detected 50 and 59 shared eQTLs, respectively, we found ,10

times more shared eQTLs at 5% FDR. The SBMR model was also

more powerful in detecting shared trans-acting regulation when

compared to SBR (or both QTL Reaper and SSM methods). While

the SBR approach identified only five transcripts with common

regulation by the same trans-eQTL in all tissues, SBMR yielded 42

models (2%) with one trans-acting eQTL, 147 models (7%) with

trans-acting eQTLs that are observed in combination with a cis-

eQTL and 95 models (,5%) with multiple trans-eQTLs for the

same transcript. This suggests that exploiting the dependence

between gene expression levels among tissues greatly enhance

identification of common trans-regulators that can be missed when

eQTLs are mapped separately within individual tissues.

Comparison with other multivariate approaches
Both SBMR and Hotelling’s T2-test approaches outperformed

the single tissue analyses and identified a common set of 373

transcripts with tissue consistent pleiotropic eQTLs, where 277

were cis-eQTL genes (Table S6). This set of eQTLs can be

considered as common regulatory control points of gene

expression across all tissues that have been replicated using two

independent statistical approaches. We compared the perfor-

mance of the SBMR approach with that of the Hotelling’s T2-test

and showed that our method found significantly more polygenic

regulation, accounting for ,13% of all transcripts, as compared

with 3% found by the Hotelling’s T2-test. These analyses suggest

that while both approaches agree in finding common cis-

regulation, the SBMR model had increased power to discover

complex genetic regulation of gene expression across tissues when

compared with a traditional approach based on analyzing each

marker separately (see Text S1 for detailed comparisons). While

this increased power could be expected in principle from the use of

a multivariate method, we shows that the SBMR algorithm

succeeds in exploring effectively the vast space of possible multi-

locus models, which is a very challenging task.

In addition, we carried out a simulation study to investigate the

power of our approach as compared with the Hotelling’s T2-test

and a recently proposed generalised Lasso-type algorithm and

associated software, the GFlasso [24], which also considers multi-

locus models on the full set of markers and is specifically designed

to borrow information across correlated phenotypes. In all

simulated cases (see Text S1 for details), the SBMR outperformed

both the Hotelling’s T2-test and the GFlasso algorithm, in

particular in the detection of polygenic control by strong and

weak eQTL effects (i.e., one cis-QTL and multiple trans-QTLs) or

several weak effects (i.e., trans-QTLs), Figure 2 and Text S1.

Validation of eQTL linkages
To validate eQTL linkages detected by microarray using

Bayesian model approaches, we measured mRNA abundance in

the BXH/HXB RI strains by quantitative RT-PCR (qRT-PCR)

for cis- and trans-acting eQTLs, including complex polygenic

effects. We confirmed eQTL findings for strong cis-acting linkages,

such as EndoG and Card9 (FDR ,5%) (Figure S6), as well as for

weaker trans-acting linkages that were observed for two transcrip-

tion factors, Stat4 and Irf7 (FDR ,5%) (Figure S7). Although

traditional eQTL mapping approaches identified the trans-linkage

for Stat4, they failed to detect the trans-eQTL for Irf7 at the FDR

cut-off of 5%. By contrast, our Bayesian approach identified these

trans-eQTLs with high confidence (FDR ,5%, for both genes),

indicating that the data provide convincing evidence for these

eQTLs (i.e., large Bayes Factor [32]) despite a model formulation

that gives a priori a larger weight to the null model (i.e., no genetic

control) (see Materials and Methods).

As a further example to highlight the power of our method

when compared to other approaches, we also validated polygenic

regulation for the Hopx gene, where the best model indicated two

coexisting eQTLs at markers D14Rat362 (cis) and D2Rat136 (trans),

respectively (Figure 3A–B). Notably, both QTL Reaper and the

SSM identified the cis-eQTL at marker D14Rat362 but failed to

detect significant trans-regulation for Hopx expression (Figure 3C–

D). This may reflect the strong cis-acting regulation of Hopx

(D14Rat362, fold change = 4.4, P = 7610214, by RT-PCR), which

masks the weaker but still detectable trans-eQTL linkage on

chromosome 2 (D2Rat136, fold change = 1.6, P = 0.02, by RT-

PCR) (Figure 3). However, even when we accounted for the effect

of the cis-eQTL by using composite interval mapping, the trans-

eQTL at D2Rat136 was not significantly detected by standard

methods (genome-wide significance, PGW = 0.316). These results

indicate that our Sparse Bayesian model is more powerful for

identifying polygenic control relative to the other methods, and

that both cis and trans regulation can simultaneously contribute to

variation in gene expression levels, emphasizing the complex

nature of gene expression regulation in this system.

Discussion

We have shown that our Sparse Bayesian Regression models

coupled with an efficient computational algorithm (Evolutionary

Stochastic Search, ESS hereafter) provide significant advantages

over other methods in eQTL mapping within and across multiple

tissues. A key feature of the proposed approach is its ability to

uncover polygenic regulation of gene expression, with greater

power to identify secondary trans-eQTLs than traditional methods.

Notably, while the standard univariate approaches tested found no

significant polygenic control in any tissue, the SBR model revealed

a set of 140 probe sets that mapped to two or more distinct eQTLs

in at least one tissue (Table S4). To illustrate the power of our

method for capturing complex genetic regulation of gene

expression, we report a new example of co-existing cis- and trans-

acting eQTLs for the Hopx gene in the heart, which was not

detected by conventional approaches and that we validated

experimentally (Figure 3).

Figure 1. Evidence of pleiotropic eQTLs detected by the SBMR model. (A, E) For each gene, the set of markers associated with high marginal
posterior probability of inclusion corresponds to the filtered best model found by SBMR, showing monogenic control for Cd36 gene (marker Cd36) and
polygenic control for Ascl3 gene (markers D1Rat55 and D7Mit8). The marginal probability of inclusion is calculated conditionally on all visited models
whose log10 Bayes Factor is above the calibrated threshold at 5% FDR level (see Materials and Methods). (B, C, F, G, H) Systemic effects of pleiotropic
eQTLs detected by the SBMR model. For each gene we report the raw empirical correlation of gene expression across four tissues and the posterior
mean of the residual correlation matrix. Posterior correlations in panels C, H were simulated conditionally on the filtered best model that coincide with
the noticeable effects (see Materials and Methods): marker Cd36 for Cd36 gene and markers D1Rat55 and D7Mit8 for Ascl3 gene, respectively. In panel G,
the posterior correlations were generated conditionally on the cis-eQTL only (marker D1Rat55). The size of the correlation is colour coded and reported in
each graph. (D, I, L) Box-plots of the posterior density of the effect size (see Text S1) for the eQTLs with noticeable effect are reported for each tissue.
These illustrate the tissue-specific contribution provided by each eQTL to the pleiotropic effect. Tissues: A, adrenal; F, fat; H, heart; K, kidney.
doi:10.1371/journal.pcbi.1000737.g001
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Figure 2. Sensitivity and specificity of SBMR and alternative approaches. Log-scale Receiver Operating Characteristic (ROC) curves of SMBR
(blue), Hotelling’s T2-test (red) and GFlasso (green) methods, using simulated data generated under five different scenarios. The scenarios for the
pleiotropic eQTL are as follows: (A) one cis-eQTL; (B) one cis- and one trans-eQTLs; (C) two trans-eQTLs; (D) one cis-eQTLs and four trans-eQTLs and (E)
four trans-eQTLs. In each case we simulated strong (left panel), medium (central panel) and weak (right panel) correlation pattern among gene
expression traits (see Text S1 for details).
doi:10.1371/journal.pcbi.1000737.g002
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We extended the SBR model to accommodate multiple

phenotypic responses such as expression profiles in multiple

tissues, and showed increased power to discover pleiotropic genetic

regulation of gene expression, that was unappreciated by single

tissue analyses or other multivariate approaches. We showed that

the SBMR model yielded .5 fold increase in the number of

common eQTLs when compared with the SBR model. We

identified a set of 277 cis-eQTLs using SBMR, which was

replicated by the Hotelling’s T2-test analysis, highlighting the

increased power provided by multivariate approaches when

compared with intersection of lists of eQTLs mapped within

individual tissues.

An additional major advantage of the SBMR approach is its

ability to assess systemic genetic effects, as illustrated for the Cd36

[31] and the Ascl3 genes (Figure 1). In the latter case, we confirmed

systemic cis-regulation, previously reported in kidney, liver, skeletal

muscle, fat [33], and suggest a role for an additional trans-locus

that explains a substantial amount of the correlation in gene

expression between tissues. Detection of systemic genetic effects

may shed light on tissues that are biologically active for specific

disease processes at the organism level which otherwise would not

be appreciated.

For detection of common polygenic and trans-acting regulation

of gene expression, SBMR outperformed the multivariate Ho-

telling’s T2-test. The extra power gained by SMBR in the real and

simulated data sets relative to that of the Hotelling’s T2-test is

attributable to its full multivariate modelling of both predictors

(markers) and responses (expression profiles in multiple tissues),

whereas the Hotelling’s T2-test is multivariate only on the

responses. In addition, our simulations show that SBMR is more

competitive than the multivariate Lasso-based algorithm GFlasso

[24], which is specifically designed to borrow information across

correlated phenotypes (Figure 2). Overall, this highlights the

advantage of performing a powerful multivariate analysis of gene-

tic and genomic data to uncover complex regulatory mechanisms

at the systems-level.

Computationally, our ESS algorithm implemented for SBR and

SBMR is more efficient than other Bayesian variable selection

Figure 3. Validation of polygenic regulation for Hopx. The filtered best model for the regulation of Hopx indicates polygenic control of gene
expression by two co-existing eQTLs, D14Rat36 and D2Rat136. The marginal posterior probability of inclusion for the cis- (D14Rat36) and trans-eQTL
(D2Rat136) is reported in panel (A). RT-PCR data showing relative Hopx expression in the BXH/HXB RI strains by BN and SHR genotypes at peak
markers D14Rat36 (left panel) and D2Rat136 (right panel), (B). The cis-eQTL is identified by all methods (SSM: FDR ,5%; QTL Reaper: genome-wide
corrected p-value, PGW~4|10{6 , FDR ,5%), while the weaker trans-eQTL at marker D2Rat136 (indicated by an arrow) is not significantly detected
by either the SSM (panel C) or QTL Reaper (panel D) methods. This shows the power of the SBR model to identify both small (trans-acting) and big
(cis-acting) genetic effects that can simultaneously determine variation in gene expression. Relative expressions are reported as mean 6 sem.
(�Pv0:02, ��Pv10{12).
doi:10.1371/journal.pcbi.1000737.g003
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methods since we sample just the vectors of selection indicators

(see Materials and Methods), while the remaining parameters

(i.e., size of the genetic effects and correlation structure) are

analytically integrated out, allowing a fast mixing of the MCMC.

When these latter parameters are of interest, they can be simulated

in a post processing analysis. Moreover, using multiple chains run

in parallel with search moves inspired from genetic algorithms, we

significantly improve the exploration of good combinations of

markers that predict the variation of gene expression. The software

to perform SBR and SBMR analyses is freely available from the

authors as a Matlab program, and we have demonstrated that it

can scale efficiently to search over tens of thousands of predictors

(L. B., S. R., unpublished data).

Our approach is quite flexible and the underlying linear

regression model as well as the model search could be extended

to handle more complex scenarios, including human data and other

genetic study designs. This versatility is currently being implement-

ed in our software, enabling data from different sources to be

analysed, for example with applications to gene expression and

epigenetic profiles, or to deal with binary outcomes and quantitative

predictors in a similar manner, as well as extending the search space

to include epistatic interactions within the predictor subsets. One

important additional benefit of our Bayesian variable selection

approach is that, besides providing a best visited model with a list of

eQTLs, it also addresses the inherent uncertainty in finding best

predictor subsets. Looking marginally at the role of each marker, we

can average over a set of well supported models to assess the overall

marginal contribution of each eQTL to explain gene expression

variability. Moreover, we can use the same set of models to perform

further post-processing analysis, for example to focus on eQTLs

with noticeable biological effects in all tissues (see Text S1 for

illustrative examples).

In conclusion, we have shown that the SBR and SBMR

approaches have distinctive features and perform significantly

better than the existing eQTL mapping methods tested. The

proposed modelling approaches provide a general and powerful

framework for investigating complex genetic regulatory mecha-

nisms controlling gene expression at the systems-level.

Materials and Methods

Additional technical details on the implementation of the

Bayesian model, detailed comparison between methods, illustra-

tive examples and simulations are given in Text S1.

Datasets
Here we used data previously described by Petretto et al. 2006

[11] who measured gene expression levels in four tissues in a panel

of 29 rat Recombinant Inbred (RI) strains derived from a cross

between the Spontaneously Hypertensive Rat (SHR) and the

Brown Norway (BN) strains [3]. We used a panel of 770 non-

redundant genetic markers; missing values (accounting for ,3% of

all genotypes) were imputed by interpolating the genotype values

between flanking markers [34]. We investigated whether substan-

tial genotype imputation (at least 10% of genotypes of each

marker) have an effect on the identified eQTLs and found that

imputed genotypes accounted for a small fraction (,10%) of the

total number of eQTLs mapped within single tissues or across

tissues by SBR and SBMR, respectively. Gene expression

measurements were standardized across tissues to reduce potential

batch effects, by computing expression summary values using the

Robust Multichip Average (RMA) algorithm [35] and pooling

together Affymetrix GeneChip data for all tissues. We assume that

mRNA levels of each gene measured within each tissue are

dependent within each strain and thus can be treated as multiple

response of the same feature.

To show the benefit of the proposed statistical method, in this

pilot study we analyzed a subset of 2,000 probe sets from the

original set of 15,923 that are common in the four tissues. In

particular we chose a set of 2,000 probe sets that have the largest

variation across tissues, measured as Ph~1,2,3,4 sgh, where sgh is

the standard deviation of the gth probe set in the hth tissue. We

investigated if the proposed selection criteria introduce some bias

in the between-tissue correlation pattern for each pairs of probe

sets: when compared with the whole set of probe sets, the

correlation structure shows no evidence of alteration with a slight

increment of positive correlation among the selected probe sets

(Figure S1).

Non-Bayesian mapping
Cis- and trans-eQTLs were mapped using standard regression-

based approach (Haley-Knott regression) as implemented in the

QTL Reaper program (http://sourceforge.net/projects/qtlreaper/)

[29] and using a modified version of the two-stage Sequential Search

Method (SSM) for multiple eQTLs [28], without including an

additional gene6gene interaction term (Text S1 2.1). For the probe

sets that mapped to unique positions in the genome, we determined

which eQTLs were regulated in cis or in trans by defining cis-eQTLs

as those with a linkage peak within 10 Mbp of the physical location

of the probe set [11]. In order to avoid an inflated number of eQTLs,

for each probe set we investigated the genetic control point(s) and,

within a 5 cM window, we removed redundant eQTLs which may

result from linkage of expression values to multiple adjacent markers,

as previously described [3].

Hotelling’s T2-test [36], the multivariate extension of the t-test,

was used to detect linkage between each marker and the level of

gene expression in the four tissues simultaneously. In each

independent two-sample test, we also checked the homogeneity

of the covariance matrices between the two groups applying the

Box’s M statistics [36] with significant level equal to 0.05. For all

non-Bayesian methods, to account for multiple testing of the

number of expression traits, we calculated the FDR using the

q-value approach [37].

Sparse Bayesian Regression models
Here we are using a Bayesian variable selection (BVS) approach.

BVS methods for mapping multiple quantitative loci have been

implemented for single trait [25,26] or extended to consider

multiple traits [27]. Besides different choices of prior distribution for

the regression coefficients, these methods differ mostly in their

implementation of MCMC algorithms, in particular with respect to

the update moves that are used and to whether regression

coefficients are integrated out or sampled. Gibbs sampling

combined with spike and slab priors for the regression coefficients

[25,26] or local adaptation [38] are relatively straightforward to

implement but the chains will be highly auto-correlated by

construction as when the covariates are non-orthogonal with a

strong linear dependence between the regression coefficients. As a

result in both cases there could be the tendency to mix slowly. In this

vast multi-modal model space analytic integration of the parameters

can speed up the convergence of the MCMC: fast mixing is possible

because the variable selection indicator does not depend on the

value of the effect coefficient [39]. Furthermore, performing a full

scan Gibbs sampling of all the covariates at each sweep of the

algorithm becomes quickly too computationally demanding when

the number of markers is larger than a few hundreds. Our

implementation of BVS differs from these works in several key

aspects: i) a model formulation where regression coefficients are
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integrated out and not updated at each sweep of the algorithm, ii)

moves on the model space that involve only the selection indicators

and iii) a novel class of algorithms, so-called Evolutionary MCMC

algorithms, designed to search efficiently multi-modal space by

using parallel chains at different temperature [40], discussed in the

context of variable selection by [41]. These aspects are important

for being able to scale up to well mixing implementations involving

thousands of markers. The code for running the SBR and SBMR

model will be available upon request from the authors.

Besides the difference in computational schemes associated to

BVS, an important extension is the simultaneous analysis of

multiple traits. Banerjee et al. [27] consider a broad class of

multiple traits models, that in particular include a model (referred

to as TMV in [27]) similar to the one considered in our paper,

where the BVS search is focussed on finding a set of markers

associated with all the traits (i.e., expression levels measured in four

tissues). However, the flexibility in the model specification in

Banerjee et al. requires to increase considerably the number of

predictors (number of traits6genetic markers), making the search

in the model space rather difficult. On the other hand, the mixture

over markers model (MOM) proposed in Kendziorski et al. [42] is

aimed at borrowing information across a large set of traits (e.g.,

transcripts) in order to better estimate the marginal probability

that each marker is a genetic control point. The MOM method is

designed for a large set of traits, larger than the number of

markers, and hence not appropriate to our context where the

number of predictors is substantial and larger than the number of

traits. The analysis of multiple complex traits has been also

considered in the different context of family-based data and

variance component models by Liu et al. [38].

Likelihood and sparsity. Here we report the likelihood

specification for the linear regression model when multiple

outcomes are taken into account as well as when a single

response is considered. In the former case, the n|q matrix of

transcription values Y is model as

Y{XB* In,Sð Þ, ð1Þ

where XB is the linear predictor, with X the matrix of markers of

dimension n|p and B a p|q matrix of regression coefficients. S
is a q|q covariance matrix between the q outcomes. :, :ð Þ
indicates the matrix extension of the centred multivariate normal

distribution (matrix-variate normal) [43], where the first argument

controls the correlation among the n observations and the second

one the correlation structure among the q responses. When q~1,

the linear model simplifies to

y*Nn Xb,s2
� �

, ð2Þ

where y is a n|1 vector of gene expression levels, b is a p|1

vector of regression coefficients and finally s2 corresponds to the

variance of the error term. Nn
:, :ð Þ indicates the n-variate normal

distribution.

In order to induce sparsity and find a parsimonious model

which predicts the multiple outcomes using only a few predictors,

we place ourselves in the Bayesian variable selection framework

[44] and introduce a latent binary vector c of 0s and 1s of

dimension p|1 such that cj~1 if Xj , the jth column of X is used

as a predictor for Y and cj~0 otherwise, j~1, . . . ,p. By

construction, the 1|q row vector of regression coefficients

associated with cj~0 is set equal to 0 with a similar interpretation

when q~1. Conditionally on the binary vector c, equations (1)

and (2) become

Y{XcBc* In,Sð Þ

and

y*Nn Xcbc,s2
� �

with Xc is the original design matrix deprived of the columns that

are not used to predict Y or y.

Prior specification. From a Bayesian point of view,

uncertainty about the parameters in (1) is introduced by

specifying a suitable prior distribution for all the unknowns [45].

The matrix of regression coefficients is distributed as a matrix-

variate normal, BDS* H,Sð Þ, centered in a p|q matrix of 0s,

where S is the covariance matrix of the q outcomes and H is an

appropriate variance-covariance matrix that regulates the

dependencies among the p predictors (genetic markers). S
follows an Inverse Wishart distribution, S* d,Qð Þ, where d
are the degrees of freedom and Q is proportional to the expected

value of S, E Sð Þ~Q= d{2ð Þ. Further simplifications arise fixing

d~3, such that the first moment of the Inverse Wishart

distribution exists, and imposing Q~kIq, i.e. a priori all the q
outcomes have the same expected error variance [45]. For the

SBR model, priors on the regression coefficients and the error

variance greatly simplify [44] with b*Np 0,s2H
� �

, where Np
:, :ð Þ

is the p-variate normal distribution and s2*InvGam as,bsð Þ.
The specification of the hypermatrix H requires particular

attention: since it controls the correlation structure of the

regression coefficients among the p predictors, we decided to

model it as H~t X T Xð Þ{1
, which together with the prior

specification for the matrix of regression coefficients B gives rise

to the ‘‘g-prior’’ set-up [45,46], i.e., a priori the dependency among

the p rows of B replicates the precision (inverse covariance)

structure of the data, thus allowing for marker dependence

structure in a natural way. Conditionally on the binary vector

c, the matrix of regression coefficients B is distributed as

BDc,S* Hc,S
� �

, where Hc~t X T
c Xc

� �{1

. In the single

phenotype case once conditioned on c the regression coefficients

become bDc,s2*Np 0,s2Hc

� �
.

The coefficient t can be interpreted as the relative quantity of

information provided by the prior relatively to the sample [47] and

its value can influence the results of the variable selection

procedure. To avoid arbitrary tuning, we do not fix it, but let it

adapt to the data by specifying a prior for t [48], derived from the

Jeffreys’ prior, a commonly adopted Bayesian specification,

p tð Þ~1= log 1zmtð Þ 1ztð Þ½ �, for 0ƒtƒmt, ð3Þ

with the support for t truncated to mt~ max n,p2
� �

, where n and

p2 are the number of observations and the squared of the number

of predictors. Note that max n, p2
� �

has been proposed as a

Benchmark prior by Fernández et al. [49]. For large values of p, (3)

is relatively uninformative with the mode in 0 and finite mean in

E tð Þ~mt=log 1zmtð Þ{1. From this point of view, a priori we are

slightly favoring the null model, i.e. the model that does not

include any predictor (genetic marker), a sensible conservative

choice. In general it has been found that data adaptivity of the

degree of shrinkage conforms better to different variable selection

scenarios than assuming standard fixed values [48].

The exchangeable prior on each predictor, cj*Bernoulli vð Þ,
induces a prior over the model size, pc~1Tc, proportional to a

Binomial prior, cDv*Binomial p,vð Þ. Once the hyperparameter v
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has been integrated out, p cð Þ~
Ð

p cDvð Þp vð Þdv, the latent binary

vector c is distributed as a Beta-Binomial prior whose hyperpara-

meters av and bv can be worked out once E pc
� �

and V pc
� �

, the

expected number and the variance of the number of genetic

control points for each probe set, are specified [50].

Bearing in mind the likelihood and the prior specification of the

parameters, the joint distribution of all variables can be written as

p Y ,c,B,t,Sð Þ~p Y Dc,B,Sð Þp BDc,t,Sð Þp Sð Þp tð Þp cð Þ:

For computational efficiency, the parameters B and S can be

integrated out leading to

p Y c,tjð Þ~
ð

p Y c,B,Sjð Þp B c,t,Sjð Þp Sð ÞdBdS

~ 1ztð Þ{ pc=2ð Þq kInzS cð Þj j{ dznz q{1ð Þ{1½ �=2
,

ð4Þ

where S cð Þ~Y T Y{t= 1ztð ÞY T Xc X T
c Xc

� �{1

X T
c Y . Similar

expression can be derived [44] in the case of single response

linear regression model, integrating out b and s2 from (2).

Evolutionary Stochastic Search. Here we highlight the

main features of the algorithm, namely Evolutionary Stochastic

Search, ESS hereafter, while interested readers are referred to

Bottolo, L. and Richardson S. (2010) Evolutionary Stochastic

Search for Bayesian model exploration (http://arxiv.org/abs/

1002.2706). Sampling from the target distribution p c,tDYð Þ is

possible using the full conditionals

p cD � � �ð Þ!p Y Dc,tð Þp cð Þ, ð5Þ

p tD � � �ð Þ!p Y Dc,tð Þp tð Þ: ð6Þ

ESS combines two ideas in order to sample from (5) and (6). i)

Given t, Evolutionary Monte Carlo is used to sample posterior

values of c: combining a Parallel Tempering [51] sampling scheme

with an efficient exchange of information between chains that are

run in parallel, each of which with different temperatures (which

flatten down the posterior probability of the heated chains), it

prevents that the algorithm is trapped in local modes, one of the

key problem of stochastic search in high dimensional space.

Automatically balancing the computational time spent between

local moves, that update locally the chains, and bold moves, that

allows the algorithm to jump from a local mode to another, is one

of the main features of ESS. An automatic tuning of the

temperature ladder during the burn-in, targeting an optimum

frequency of exchange of information between chains, contributes

to reach marginal convergence; ii) Given the population of chains

C~ c1, . . . ,cLð Þ, where L is the number of chains simulated in

parallel, the full conditional (6) becomes

p tD � � �ð Þ!P
L

l~1
p Y Dc,tð Þ½ �1=tl p tð Þ, ð7Þ

where tl , 1~tlvt1vt2v . . . vtL, is the temperature attached to

the lth chain. Given the bounded support of (3), t[ 0,mt½ � with

mt~ max n,p2
� �

, we decided to discretize the support of the prior

for computational reasons [47]. This allows the construction of an

easy to implement Gibbs sampler. For an alternative sampling

scheme for t, see (http://arxiv.org/abs/1002.2706) for technical

details. We chose t~mt as initial value at the start of the

algorithm and we initialised the binary latent vector with cj~1 if

the variable j was selected in a simple stepwise regression in each

of the tissues.

Hyperparameters setting. One of the key features of ESS

algorithm applied to SBR or SBMR models is the automatic set-

up and tuning of most of the hyperparameters during the burn-in

(in particular for the temperature ladder in the population-based

MCMC). The only discretionary setting necessary for both SBR or

SBMR is the specification of E pc
� �

and V pc
� �

, the a priori

expected value and variance of the model size pc, pc~1Tc, here

the number of genetic control points, for a typical probe set in a

single tissue or in multiple tissues analysis. We fixed E pc
� �

~5 and

V pc
� �

~9, i.e. a priori the number of control points ranges roughly

between 0 and 12, while values larger that 12 are increasingly

penalized. Sensitivity analysis shows that the results are not driven

by this particular choice (see Text S1 1.1). The hyperparameter

choice for the Inverse Wishart prior distribution for S and s2 is

discussed in Text S1 1.1.

Posterior analysis. Details of the running of ESS (number of

sweeps and burn-in) are given in Text S1 1.2. Once ESS is run

both for SBR and SBMR, we have the sequence c sð Þ, s~1, . . . ,S,

of visited models, or any subset of them, together with their

posterior probabilities from which three main quantities of

interest. The marginal posterior probability of inclusion for each

marker j across the models visited:

p cj~1
��Y� �

&C{1
XS

s~1

1
c

sð Þ
j

~1

n o cð Þp c sð Þ��Y� �
, ð8Þ

where s~1, . . . ,S indicates the sequence of sweeps after the burn-

in, c
(s)
j is the binary indicator of jth marker at the sth sweep, and

C~
PS

s~1 p c sð Þ��Y� �
. (8) is the weighted frequency (with respect to

p cDYð Þ) of inclusion for marker j, i.e., 1
cj~1
� � cð Þ. The model size

posterior probability

p pc

��Y� �
&C{1

XS

s~1

1
c sð Þ
�� ��~pc

� � cð Þp c sð Þ��Y� �
, ð9Þ

where C is defined as before. The best model visited

cB~ c sð Þ : maxs p c sð Þ��Y� �n o
: ð10Þ

Equation (8) provides a model-averaged measure of importance of

each variable (genetic marker) with respect to the models visited,

while (9) evaluates the posterior distribution of the number of

control points. Rather than providing a single value, (9) quantifies

the uncertainty associated with the number of predictors resulting

from finding adequate competing explanations involving different

set of markers. Multimodality of the search space is a common

situation when the number of predictors far outnumbers the

number of samples. A simple but effective synthesis of the posterior

model size distribution is the mode of pcDY . Finally, (10) highlights

the best supported multivariate model in terms of its posterior

probability.

Assessing model importance. Associated to each unique

model visited, we define the posterior model probability as the

renormalized version of the posterior probability p c(s)
��Y� �

,

s~1, . . . ,S, once the parameter t has been integrated out (see

Text S1 1.2). Together with this measure of importance of each

(unique) visited model among the whole set of visited models, the
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Bayes Factor [32] indicates how much the data support

one particular model versus an alternative one. We define

BF c1; c0
� �

~p Y Dc1
� �	

p Y Dc0
� �

, where c1 and c0 are two

models in competition and p Y Dc1
� �

is the marginal probability

of model c1 once t has been integrated out and p Y Dc0
� �

is defined

similarly. Since we choose c1 as the best model visited, indicated as

cB, and c0 as the null model, indicated as c1, the Bayes Factor

compares the strength given by the data of the best model visited

with respect to the null model (i.e., no genetic control).

Interpreting this ratio in order to select models that are worth

reporting is feasible by means of the Jeffreys’ scale of evidence

[32]. Inspired by Servin and Stephens [52], we decided to

calibrate the Jeffreys’ scale (for each tissue and for the four tissues

together):

1. simulating for each probe set the null model through a reshuffle

of the order of the observations;

2. running ESS for SBR and SBMR for the reshuffled transcripts;

3. calculating the Bayes Factor of the best model visited with

respect to the null model;

4. selecting the level of the Jeffreys’ scale above which the best

model visited is considered decisively different from the null

model, for a fixed level of the FDR.

In an ideal situation, after the reshuffle, which weakens the

genotype–phenotype association, the best model visited and the

null model should coincide, log10 BF cB; c1
� �� �

~0. Of course, by

chance it will also happen that log10 BF cB; c1
� �� �

w0, giving rise

to a false positive model: a transcript under genetic control is

defined to be falsely discovered if all of the predictors in the model

cB are false positives. For a given threshold of the Jeffreys’ scale,

which linearly increases according to the best visited model’s

dimension, we counted the number of transcripts with

log10 BF cB; c1
� �� �

above the threshold in the original data set.

These represent the (best visited) models that would be declared

different from the null (i.e., positive) at the fixed threshold. Next,

for the transcripts that are called positive in the original dataset, we

counted the number of the declared false positives after reshuffling.

We then adjust the cut-off of the Jeffreys’ scale, in symbol

cpc
ªB; c1
� �

, such that the ratio of these two quantities is not

greater than 5%. In this way, the Jeffreys’ scale is calibrated with

respect to the desired FDR level. A similar procedure applies

when more reshuffles are performed. Mixure-based FDR

calculation is also possible (in the same spirit of Storey et al. [28]),

although preliminary analysis showed no significant differences

with the results obtained using the proposed fully non-parametric

procedure.

For the probe sets whose Jeffreys’ scale is above the 5% FDR

cut-off, as described before for the non-Bayesian mapping, for the

best model visited we investigated the position of the putative

eQTLs and collapse markers that we found within a 5 cM

window, giving rise to a more easily interpretable list of genetic

control points. We refer to this refined list of markers as the filtered

best model. Although this has been done in a post-processing

exercise for ease of interpretation and comparison with other non-

Bayesian mapping approaches, ESS takes full advantage, during

the model search, of sets of non-redundant closely linked markers

in order to better explain the responses’ variability (see Text S1 1.4

for illustration).

eQTL effect size in the filtered best model. While the

posterior density of the regression coefficients can be simulated for

each predictor j (see Text S1 1.3), here we focus only on the effects

sizes of the markers in filtered best model (for a single tissue and

for the four tissues together). We want to highlight a robust subset

of markers that repeatedly contribute to the set of well supported

models whose Jeffreys’ scale is above the 5% FDR cut-off. The

procedure can be summarized as follows:

1. for a marker j in the filtered best model, we record the fraction

of times cj is different from zero over the set of visited models

when log10 BF c sð Þ; c1
� �� �

wcpc
ªB; c1
� �

, s~1, . . . ,S;

2. we define a marker in the filtered best model as having a

noticeable effect if this fraction is larger than l= 0.5 (this

fraction l can be increased if a more parsimonious list is

required);

3. we simulate the regression coefficients (effect sizes) condition-

ally on cB and show only the effect of the markers that fulfilled

the above criterion. In the multiple tissue analysis, this will give

additional information on the role played by each eQTL within

the individual tissue in explaining the pleiotropic effect (see

Text S1 1.3 for illustration).

Supporting Information

Text S1 Supplementary Information.

Found at: doi:10.1371/journal.pcbi.1000737.s001 (1.58 MB PDF)

Figure S1 Correlation structure for the 2,000 transcripts that

have the largest variation across tissues. Only 18 probe set pairs,

whose Pearson’s correlation is above 0.5, are common in the four

tissues, while 102,932, 134,690, 82, 508 and 161,341 are the probe

set pairs with Pearson’s correlation above 0.5 in adrenal, fat, heart

and kidney, respectively. This shows that the increment of the

pairwise Pearson’s positive correlation does not involve the same

set of transcripts in the four tissues.

Found at: doi:10.1371/journal.pcbi.1000737.s002 (0.82 MB TIF)

Figure S2 Overview of the Sparse Bayesian Regression (SBR)

and Sparse Bayesian Multiple Regression (SBMR) approaches. In

the SBR, mRNA levels (ygh, with g for the gth probe set and h for

the hth tissue, respectively) are modelled at the level of each tissue,

ygh,Nn(Xb,s2), and the resulting eQTL lists are then compared

to find common eQTLs across tissues. In the SBMR approach,

mRNA levels of the same transcript measured in four tissues

(Yg = [yg1, yg2, yg3, yg4]) are modelled jointly, Yg2XB,N (In,S),

and mapped to the genome to identify pleiotropic genetic control

points of gene expression in all tissues. In the multiple tissues

analysis the search for a set of markers that jointly predict the level

of gene expression is complicated due to the fact that marginally

each tissue can be potentially associated to a different group of

covariates (mainly trans-effects) and share some others (mainly cis-

effects). The SBMR approach is well powered to identify common

genetic regulators even when they have moderate marginal effects.

Found at: doi:10.1371/journal.pcbi.1000737.s003 (3.00 MB TIF)

Figure S3 Distribution of log10 Bayes Factor for the best model

visited for each transcript (y-axes) versus the number of distinct

control points (x-axes) identified in each model after merging

closely linked markers (see Materials and Methods). All 531 SBMR

models were significant at ,5% FDR threshold level, where this

threshold was calculated taking into account the size of the best

visited model (see Materials and Methods). On average, stronger

evidence for common genetic control in all tissues is observed for

high-dimensional models.

Found at: doi:10.1371/journal.pcbi.1000737.s004 (3.00 MB TIF)

Figure S4 Genome-wide eQTL linkage results for Cd36 (A–E)

and Ascl3 (F–L) genes in all tissues simultaneously using Hotelling’s

T2 test (top panels: A, F) and within individual tissues (panels B–E

and G–L). For Cd36 gene the Hotelling’s T2 test found common
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genetic regulation in all tissues at the Cd36 marker; this common

eQTL is also detectable by intersecting the results from the single

tissues analysis. For Ascl3 gene, the Hotelling’s T2 test found the

cis-eQTL on chromosome 1 (markers D1Rat55) but failed to detect

the trans-eQTL on chromosome 7 (marker D7Mit8) at the 5%

FDR level. The eQTL results from the individual tissue analysis

did not find common cis- or trans-eQTLs, respectively.

Found at: doi:10.1371/journal.pcbi.1000737.s005 (3.25 MB TIF)

Figure S5 Marginal posterior probability of inclusion obtained

from the SBMR and from the SBR analysis within individual

tissues. We report the marginal posterior probability for all models

visited (top panels) and for the filtered models (bottom panels)

whose log10 Bayes Factor is above the selected cut-off (see

Materials and Methods). (A–E) For Cd36 gene, the cis-regulatory

control is consistently found using single tissue modelling (SBR)

and the marginal posterior probability of inclusion corresponds to

the filtered best model. (F–L) For Ascl3 gene, neither the cis-eQTL

or the trans-eQTL was systematically detected by the SBR in all

tissues, while the SBMR model identified both loci. In adrenal

tissue, the filtered models did not show any genetic control points

at FDR ,5% (G, bottom panel).

Found at: doi:10.1371/journal.pcbi.1000737.s006 (3.25 MB TIF)

Figure S6 Validation of microarray gene expression linkages by

RT-PCR. We replicated cis-eQTL linkages for: (A–D) Endog

(Jeffreys’ scale = 14.2) and (E–H) Card9 (Jeffreys’ scale = 9.9),

showing strong cis regulation in the heart tissue at markers

D3Cebr204s4 and D3Cebr83s1, respectively. For each cis-eQTL we

report the linkage results by t-test (panel A, E), by the SBR model

(panel B, F), and expression values by BN and SHR genotype at

the peak marker by microarray (panel C, G) and by RT-PCR

(panel D, H). Expression data are reported as mean 6 sem.

Consistently with the microarray results, the RT-PCR data show

significant evidence for cis-linkage for both genes. (*P,0.001)

Found at: doi:10.1371/journal.pcbi.1000737.s007 (3.00 MB TIF)

Figure S7 Validation of small-effect trans-eQTLs by RT-PCR.

We replicated trans-eQTL linkages for: (A–D) Stat4 (Jeffreys’

scale = 2.8) and (E–H) Irf7 (Jeffreys’ scale = 2.7), both showing

trans-acting regulation at marker D15Rat107 in the heart tissue

with FDR ,5%. For each trans-eQTL we report the linkage results

by QTL Reaper (panel A, E), by the SBR model (panel B, F), and

expression values by BN and SHR genotype at the peak marker

(D15Rat107) by microarray (panel C, G) and by RT-PCR (panel

D, H). QTL Reaper identified the trans-eQTL for Stat4 with

genome-wide P-value (PGW) = 0.008 (FDR = 5%) and for Irf7 with

PGW = 0.04 (FDR = 28%). For comparison, the SSM found trans-

linkages for Stat4 and Irf7 at FDR = 5% and FDR = 17%,

respectively. Expression data are reported as mean 6 sem.

Consistently with the microarray results, the RT-PCR data show

significant evidence for trans-linkage for both genes. (*P,0.05,

**P,0.01)

Found at: doi:10.1371/journal.pcbi.1000737.s008 (3.00 MB TIF)

Table S1 Summary statistics of heritability of mRNA levels for

the 2,000 transcripts considered in this study.

Found at: doi:10.1371/journal.pcbi.1000737.s009 (0.03 MB

DOC)

Table S2 Number of probe sets found to be under genetic

control in the SBR and SBMR analyses (FDR 1% and 0.5%).

Found at: doi:10.1371/journal.pcbi.1000737.s010 (0.05 MB

DOC)

Table S3 Comparison between SBR, SSM and QTL Reaper

results.

Found at: doi:10.1371/journal.pcbi.1000737.s011 (0.06 MB

DOC)

Table S4 Polygenic models that have been detected in at least

one tissue by the SBR model (FDR ,5%).

Found at: doi:10.1371/journal.pcbi.1000737.s012 (0.10 MB PDF)

Table S5 eQTLs that were detected in common to all tissues by

the SBR model (FDR ,5%).

Found at: doi:10.1371/journal.pcbi.1000737.s013 (0.09 MB PDF)

Table S6 Cis-regulated transcripts found by both SBMR and

the Hotelling’s T2-test at 5% FDR.

Found at: doi:10.1371/journal.pcbi.1000737.s014 (0.09 MB PDF)
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