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Analysis of CLCNZ2 as Candidate Gene
for Megalencephalic Leukoencephalopathy
with Subcortical Cysts
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Mutations in the gene MLC1 are found in approximately 80% of the patients with the inherited childhood white
matter disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC). Genetic linkage studies
have not led to the identification of another disease gene. We questioned whether mutations in CLCN2, coding
for the chloride channel protein 2 (CIC-2), are involved in MLC. Mice lacking this protein develop white matter
abnormalities, which are characterized by vacuole formation in the myelin sheaths, strikingly similar to the
intramyelinic vacuoles in MLC. Sequence analysis of CLCN2 at genomic DNA and cDNA levels in 18 MLC
patients without MLCI mutations revealed some nucleotide changes, but they were predicted to be non-
pathogenic. Further, in electrophysiological experiments, one of the observed amino acid changes was shown to
have no effect on the CIC-2-mediated currents. In conclusion, we found no evidence suggesting that the CLCN2

gene is involved in MLC.

Introduction

MEGALENCEPHALIC LEUKOENCEPHALOPATHY with sub-
cortical cysts (MLC, MIM 604004) is a rare autosomal
recessive white matter disorder. All patients develop macro-
cephaly during the first year of life and show a slow deteri-
oration of motor functions with ataxia and spasticity. The
combined features of magnetic resonance imaging are diag-
nostic for the disease: diffusely abnormal and mildly swollen
cerebral white matter and subcortical cysts in the anterior
temporal region and often also in the frontoparietal region
(van der Knaap et al., 1995). Electron microscopic studies of a
brain biopsy performed in a patient in whom MLC was di-
agnosed revealed numerous vacuoles between lamellae of
myelin sheaths with splitting at the intraperiod lines (van der
Knaap et al., 1996).

In approximately 80% of the patients in whom MLC is di-
agnosed, mutations in the gene MLC1 are found (Leegwater
etal.,2001,2002; Boor et al., 2006). A group of patients remains,
however, in which no MLC1 mutations can be found despite a
typical MLC phenotype. Genetic linkage studies with these
families have failed to lead to the identification of another
disease locus, possibly due to further genetic heterogeneity.

Recently, it was shown that mice lacking the gene CLCN2,
encoding the chloride channel protein 2 (CIC-2), develop

widespread vacuolation in the brain and spinal cord (Blanz
et al., 2007). Vacuoles appeared within myelin sheaths of the
central but not the peripheral nervous system. Similar to
MLC1, CIC-2 is localized in astrocytic endfeet lining blood
vessels and in Bergman glia (Schmitt ef al., 2003; Boor ef al.,
2005). The similarity in white matter abnormalities between
patients in whom MLC was diagnosed and homozygous
CLCN2 knockout mice and the similar localization of the
MLC1 and CIC-2 proteins in the brain put CLCN2 forward as
an excellent candidate for a second disease gene for MLC.

Materials and Methods
Patients and MLC1 analysis

Eighteen patients with a typical clinical and magnetic res-
onance imaging phenotype for MLC, without evidence of
involvement of the MLC1 gene, were included in this study.
MLC1 analysis included DNA sequencing of both genomic DNA
and cDNA, quantitative reverse transcriptase-polymerase
chain reaction (PCR) (Boor et al., 2006), and multiplex ligation-
dependent probe amplification (MLPA) analysis (SALSA
MLPA KIT P107 for neurometabolic disorders [MRC-
Holland, Amsterdam, The Netherlands]). The resulting
data were analyzed using GeneMarker (SoftGenetics, State
College, PA).
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FIG. 1. Multiplex ligation-dependent
probe amplification (MLPA) analysis of
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Use of patients’” material for further genetic studies was
approved by the Institutional Review Board of the VU Uni-
versity Medical Center.

Sequence analysis of CLCN2

GenBank reference sequences NM_004366.3 (mRNA) and
NT_005612.16 (genomic DNA) were used to design PCR
primers to analyze all exons and surrounding intronic regions
of CLCN2. Primers were either designed using ExonPrimer or
designed as previously described (Blanz et al., 2007). PCR was
carried out with Platinum Taq (Invitrogen, Carlsbad, CA)
according to the manufacturer’s protocol. PCR fragments
were analyzed by cycle sequencing on an ABI3730 Genetic
Analyzer (Applied Biosystems, Foster City, CA). For cDNA
analysis, total RNA isolation and cDNA synthesis were car-
ried out as described (Boor et al., 2006). Overlapping frag-
ments covering the complete CLCN2 coding region were
made by PCR with specific cDNA primers. The fragments

V [mV]

were analyzed by agarose electrophoresis and sequence
analysis using forward and reverse cDNA primers. Primers
sequences are available upon request.

Electrophysiology

The amino acid change p.Thr396Met was introduced into
hCIC-2 (cloned in the expression vector pFROG) by site-
directed mutagenesis and verified by sequencing. Two-
electrode voltage-clamp analysis of Xenopus oocytes was
performed as described (Blanz et al., 2007).

In silico prediction

The possible effects of intronic changes on splicing
were predicted with Netgene 2 (www.cbs.dtu.dk/services/
NetGene2/) and BDGP Splice site prediction (www.fruitfly
.org/seq_tools/splice.html). The possible pathogenicity of
amino acid changes was predicted using PMUT (http://
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FIG. 2. Functional characterization of the chloride channel
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protein 2 (CIC-2) T396M mutant. (A) Schematic diagram

showing the localization of the mutant residue in the CIC-2 protein. The transmembrane topology is based on the crystal
structure of the Escherichia coli ecCIC-1. (B) Electrophysiological analysis by two-electrode voltage-clamp of Xenopus oocytes
expressing wild type (WT) and mutant CIC-2. Current-voltage relationships of noninjected (n.i.) control oocytes and oocytes
injected with WT and T396M mutant CIC-2. Currents were evaluated at the end of the voltage-step. Each data point
represents the mean of >19 oocytes that were obtained from four different frogs. Error bars indicate standard error of mean.
Curves were obtained by fitting double-exponential curves to the data points.
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mmb2.pcb.ub.es:8080/PMut/) and PolyPhen (http://genetics
.bwh.harvard.edu/pph/).

Results and Discussion

We selected a group of 18 patients in whom MLC was
diagnosed and in whom we could not find MLC1 mutations
on genomic or cDNA level. In addition to the analyses de-
scribed in Boor et al. (2006), genomic DNA was also analyzed
by MLPA (Fig. 1). MLPA showed no evidence of genomic
deletions in MLC1 in any of the 18 patients.

For all 18 patients, the 24 exons of CLCN2 and their sur-
rounding intronic regions were analyzed. Besides several
known single nucleotide polymorphisms, we found a hetero-
zygous nucleotide change, ¢.203G>A, that results in the
amino acid change p.Arg68His in one patient and the change
¢.1187C>T/p.Thr396Met in another patient. These changes
were unique and were not observed in 180 controls. Predic-
tion of the possible pathogenicity of these changes indicated
that both changes were most likely benign amino acid sub-
stitutions.

In addition, one synonymous and several intronic changes
were observed. In silico prediction did not suggest any pos-
sible effects on splicing of the intronic changes. We analyzed,
nevertheless, CLCN2 ¢cDNA from all patients to study the
possible presence of alternatively spliced variants of the C1IC-2
mRNA. Splice variants lacking exons 6, 7, and 16 were ob-
served in cDNA from both patient-derived and control lym-
phoblasts, so they are not specific for the disease samples. In
three patients, a CIC-2 mRNA variant without exon 22 was
observed. This variant was also expressed in control cells or in
cells from other patients but at a lower level. No nucleotide
changes were observed that could explain the higher levels of
the Aexon22 splice variant in the three patients. Most likely,
the higher expression reflects a difference in the immortali-
zation of the lymphocyte or in the culture conditions and not a
genetic difference.

Of all the 18 patients, only one had two changes in the CIC-
2 mRNA that could possibly account for the white matter
disease in this patient, assuming an autosomal recessive mode
of inheritance: pThr396Met and a relatively high level of the
alternatively spliced mRNA lacking exon 22. According to the
crystal structure of the Escherichia coli EcCIC-1 (Dutzler et al.,
2002), the affected amino acid is not located in a trans-
membrane helix but rather faces the extracellular medium
(Fig. 2A). Further, Thr396 is not conserved in CIC homologs,
and the effect of the change to methionine was predicted to
be benign. Nonetheless, we tested the effect of this change
on the chloride currents of CIC-2 by voltage-clamp recordings
of Xenopus oocytes expressing wild-type CIC-2 or the
p-Thr396Met variant (Fig. 2B). No difference in activation ki-
netics was seen between wild type and mutant CIC-2. Neither
the magnitude nor the voltage-dependence of currents was
changed by the mutation.

In conclusion, in our group of patients in whom MLC was
diagnosed, we could not find a single patient who had two
pathogenic mutations as would be expected for an autosomal
recessive disease. In the original study that showed the phe-
notype of the CLCN2 knockout mice, a cohort of 150 patients
in whom leukodystrophy was diagnosed was analyzed for
mutations in CLCN2. No positive findings similar to our re-
sults were reported, but it is unclear whether this group
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contained any patients in whom MLC was diagnosed without
MLC1 mutations. One should mention, however, that CIC-2
knockout mice also display blindness and male infertility
(Bosl et al., 2001), which was not found or investigated in our
cohort. All in all, present evidence does not support the hy-
pothesis that mutations in CLCN2 can cause MLC.
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