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Abstract 

Accumulating evidence indicates that Visinin-like protein-1 (VILIP-1), a member of the family of 

neuronal calcium sensor proteins (NCS), modulates a variety of processes in extra-neuronal tissues. In 

this study, we describe VILIP-1 expression in the human heart, rat cardiomyocytes, and H9c2 cells, 

and demonstrate that VILIP-1 regulates the cell surface localization of natriuretic peptide receptor B 

(NPR-B). In preparations from failing hearts, we observed VILIP-1 downregulation and reduced NPR-

B signalling. In conclusion, VILIP-1 deficiency may be responsible for the reduced efficiency of the 

natriuretic peptide system in cardiac hypertrophy and heart failure and may therefore serve as 

pharmacological target. 
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Introduction 

Neuronal calcium sensor proteins (NCS) comprise a family of more than 40 calcium-binding proteins 

belonging to the super-family of EF-hand proteins. This family includes members of recoverins, 

guanylyl cyclase-activating proteins (GCAPs), frequenins, K+-channel interacting proteins (KChIPs) 

and visinin-like proteins (VILIPs). VILIPs, including VILIP-1 to -3, hippocalcin, and neurocalcin-

δ are differentially expressed throughout the nervous system [1].  Ca2+ binding to the EF-hand motifs 

of NCS leads to conformational changes which facilitate binding to lipid bilayers via Ca2+-myristoyl 

switching [2]. 

VILIPs have been shown to be implicated in a broad spectrum of physiological and pathophysiological 

processes including synaptic plasticity, hypertension, neuropathological diseases, cancer, and insulin 

secretion [3-8]. These effects are possibly mediated by actions on membrane receptors and ion 

channels such as the natriuretic peptide receptor B (NPR-B) and the nicotinic acetylcholine receptor 

[9, 10]. VILIP-1 modulates clathrin-dependent receptor cycling in the central nervous system 

supporting its general role in membrane trafficking [9]. VILIP-1 has also been shown to regulate gene 

expression by formation of protein-RNA-complexes that modulate localization and stability of specific 

mRNAs and possibly by affecting the cAMP/CREB pathway [8, 11]. 

VILIP-1 is expressed at high levels in the brain and its role in the central nervous system has been 

addressed in a number of studies [6, 11-13]. Expression of VILIP-1 was also reported for the heart, 

pancreas, reproductive organs, and colon, however, its function in extra-neuronal tissues is still poorly 

understood [14]. 

The natriuretic peptides comprise a family of the structurally related but genetically distinct 

peptide hormones, atrial (ANP), brain (BNP) and C-type natriuretic peptide (CNP). They 

exert their biological actions by binding to cell surface receptors divided into particular 

guanylyl cyclase-coupled receptors NPR-A and –B and the clearance receptor NPR-C [15, 

16].  NPR-B has recently been shown to mediate antihypertrophic actions of its ligand C-type 

natriuretic peptide in vitro and in vivo thereby serving as potential pharmacological target for 

the treatment of cardiac hypertrophy and heart failure [17]. Only a few factors that are 
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involved in the regulation of NPR-B have been identified so far: The transcriptional factor 

Sp1, protein kinase C (PKC), Ca2+ as well as VILIP-1 in neuronal cells [9, 18-20].  

This study was designed to analyze cardiac expression of VILIP-1 and its role in modulating NPR-B 

signalling in vitro and in failing hearts. 
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Methods 

Reagents and Materials 

C-type natriuretic peptide (CNP-22) and Arg-vasopressin were obtained from Calbiochem (Darmstadt, 

Germany). 3-isobutyl-1-methylxanthine (IBMX) was obtained from Sigma (Munich, Germany). Cell 

culture reagents were from Biochrom (Berlin, Germany). 125I-CNP-22 was supplied by Phoenixpeptide 

(Karlsruhe, Germany) , 125I-cGMP and L-[3, 4]-3H-Leucine by GE Healthcare (Munich, Germany).  

Immunocytochemistry 

Cardiomyocytes were preparated as described [21, 22]. Methanol-fixed cells were washed with 

phosphate-buffered saline containing 0.1% Triton-X-100. Samples were blocked by using 2% normal 

donkey serum. Cells were incubated overnight at 4°C with a VILIP-1 antibody (1:1.000) [14]. On the 

next day, cells were incubated with an anti-rabbit Cy3-conjugated secondary antibody (1:500, Jackson 

ImmunoResearch, West Grove PA) and mounted using Vectashield medium (Vector laboratories, 

Burlingame, CA). Fluorescent images were collected using a Leica DMI6000MB microscope. 

Protein preparation, SDS-PAGE and Western blot 

Samples were homogenized in RIPA buffer containing the “complete mini Protease inhibitor cocktail” 

(Roche, Mannheim, Germany). Proteins were isolated by centrifugation (5.000 x g, 10 min, 4°C), 

quantified by BCA method (Pierce, Rockford, USA), separated on a 12% Tris-Glycine gel (Serva, 

Heidelberg, Germany) and blotted onto a nitrocellulose membrane (Whatman, Dassel, Germany). 

VILIP-1 was detected with the antibody described above and a horseradish peroxidase-conjugated 

anti-rabbit antibody (Sigma, Munich, Germany) using the ECL-Plus Western Detection System (GE 

Healthcare, Munich, Germany). The same membrane was stripped, GAPDH protein was detected with 

an mouse monoclonal antibody (GAPDH 6C5, Santa Cruz). 

Transfection of expression vectors and siRNA 

H9c2 cells (ATCC, USA) were cultured in 25 cm2 flasks in Dulbeccos modified Eagles medium 

(DMEM) supplemented with 10% calf serum. Transfection was carried out with Lipofectamine2000 

(Invitrogen, Karlsruhe, Germany). 24 hours after transfection cells were subcultured and 48 h post 

transfection DMEM supplemented with serum and G418 (300µg/ml).  
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For siRNA studies cells were cultured in 6 well plates. 200 pmol of siRNA per well (Rn_Vsnl1_1_HP 

siRNA SI00251790; Rn_Vsnl1_5_HP SI03021333; AllStars negative control; Qiagen, Germany) were 

transfected using Lipofectamine2000. The medium was changed after 24 hours and cells were used for 

experiments 48 hours after transfection. 

Stimulation and determination of intracellular cGMP production 

Cells were washed with PBS and stimulated with DMEM containing 1 mM IBMX, 0.5% BSA and 

CNP ranging from 1 nM to 1 µM for 20 minutes at 37°C. The reaction was stopped by placing culture 

dishes on ice and disrupting the cells by sonication. Determination of cGMP concentration was done 

by radioimmunoassay as described previously [23]. 

CNP-binding assay 

H9c2 cells, cultured in 6- well plates were washed twice with PBS and incubated with serum-free 

DMEM containing 100 nM 125I CNP-22 for different periods of time. After washing, cells were lysed 

with 1 M NaOH containing 1% Triton-X-100, then neutralized with 1 M HCl and the radioactivity of 

each well was determined (Wallac 1470, PerkinElmer, Waltham, USA). 

Leucine  incorporation 

H9c2 cells overexpressing pEGFP-VILIP-1 (enhanced green fluorescent protein) or pEGFP were 

cultured in 12 well plates until 50% densitiy was reached. For inducing quiescence, DMEM containing 

10% NCS was replaced by serum free medium. After incubation for 24 hours, cells were stimulated 

with 100 nM vasopressin alone or in combination with 50 nM CNP for 12 h at 37°C. L-(4,5)-3H-

Leucine incorporation was performed as described. [17]. The L-(4,5)-3H-Leucine incorporation of 

non-stimulated cells (basal) was set at 100%. 

Experimental myocardial infarction 

Experiments involving laboratory animals were conducted in accordance with the local authorities and 

conforming to the National Institutes of Health Guide for the Care and Use of Laboratory Animals 

(National Institutes of Health publication no. 85-23, revised 1996). Myocardial infarction was induced 

in Sprague Dawley rats (body weight 200 g) as described previously [24]. Four weeks after induction, 

cardiac function was assessed. 

Echocardiography 
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Two-dimensional guided M-mode echocardiography was performed as described [17]. 

Invasive hemodynamic measurement 

Under anesthesisa with isoflurane, a 2-F catheter (Aria, Millar Instruments) was advanced into the 

right coronary artery and inserted into the left ventricle for measurement of contractility (dP/dtmax), 

relaxation (dP/dtmin) and left ventricular end-diastolic pressure (LVEDP). After hemodynamic 

measurement, rats were euthanized and the organs were rapidly dissected. The heart was dissected into 

the chambers and the scar was removed from the non-infarcted area. Samples were immediately 

frozen in liquid nitrogen and stored at -80°C until further analysis. 

RNA-extraction, RNase Protection Assay and Real-time PCR 

Total RNA was extracted with Trizol® (Invitrogen; Karlsruhe, Germany) VILIP-1 and GAPDH 

transcripts were amplified by RT-PCR from pEGFP-VILIP-1 or from rat cDNA pool (Primer 

sequences: supplementary file). PCR fragments were cloned into pGEM-Teasy vector and antisense 

probes were labelled with [32P]UTP (Promega). VILIP-1 and GAPDH expression was measured by 

RNase protection assay as described [17]. 

For cDNA synthesis, 2 µg total RNA were reverse transcribed with oligo-dT (Omniscript, Qiagen). 

Expression of NPR-B was analyzed by real-time PCR (TaqMan Master Mix, Applied Biosystems; 

Primer sequences: supplementary file). 

Preparation of membranes and guanylyl cyclase assay 

The non-infarcted area of the left ventricle was homogenized in phosphatase inhibitor buffer 

containing 25 mM HEPES (pH 7.4), 50 mM NaCl, 20% glycerol, 50 mM NaF, 2mM EDTA, 0.5 µM 

microcystin and the protease inhibitor cocktail. After centrifugation at 10,000 x g for 10 min at 4 °C, 

the pellet was washed twice with the phosphatase inhibitor buffer. After resuspension, total protein 

concentration was determined by the Bradford method. Immediately after preparation 80 µg protein 

were used for assaying guanylyl cyclase activity as described [23]. 

Determination of BNP plasma level 

Plasma samples were purified on C18 Sep-Pak colums (Waters), BNP concentrations were determined 

by a radioimmunoassay (Bachem). 

Statistical Analysis 
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The differences between groups were evaluated by analysis of variance (ANOVA), or paired Student`s 

t-test where appropriate.  The significance level was set at p<0.05.  All data are expressed as mean ± 

standard error of the mean (SEM). 
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Results 

VILIP-1 is expressed in cardiomyocytes 

VILIP-1 mRNA expression was tested in a broad range of tissues derived from Sprague Dawley rats 

by RNase protection assay. VILIP-1 was expressed in all organs tested including cardiac chambers. 

The housekeeping gene GAPDH served as control (Fig. 1A). VILIP-1 expression was detected by 

western blot in lysates from human and rat samples from the left ventricle as well as in H9c2 cells 

(single band of ~22 kDa; Fig. 1B). The expression of VILIP-1 was confirmed by 

immunocytochemistry in cardiomyocytes and H9c2 cells (Fig. 1C-E).  

VILIP-1 regulates NPR-B membrane association in vitro 

H9c2 cells are derived from rat embryonic cardiomyocytes and expresses VILIP-1 (Fig. 1B, E) and 

NPR-B as confirmed by RT-PCR and enzyme activity studies [17, 23]. Cells were transfected with 

pEGFP-VILIP-1 or the empty vector (mock) and the expression was confirmed by the detection of the 

EGFP fluorescence (Fig. 2A). 

Stimulation with CNP led to a dose-dependent increase of intracellular cGMP production in both 

groups. However, in VILIP-1 overexpressing H9c2 cells, CNP induced a significantly higher cGMP 

response (Fig. 2A). To determine the receptor density of NPR-B on the cell surface, cells were 

incubated with 125I-CNP-22. These studies revealed an increased number of binding sites in VILIP-1 

overexpressing H9c2 cells, confirming an increased number of NPR-B molecules at the cell surface 

(Fig. 2B). In contrast, siRNA-induced reduction of VILIP-1 expression in H9c2 cells led to a 

decreased CNP-dependent cGMP response with a reduced binding of 125I-CNP (Fig. 2C, D). 

VILIP-1 influences antihypertrophic potential of CNP in H9c2 cells 

Arg-vasopressin induced a similar increase of protein synthesis in H9c2 cells stably transfected with 

VILIP-1 or mock. The hypertrophy was partially blocked by CNP in both groups. However, the 

potency of CNP to block the Arg-vasopressin effect was higher in VILIP-1-overexpressing cells (Fig. 

3A). In H9c2 cells with reduced VILIP-1 and controls, vasopressin exposure led to a similar protein 

synthesis.  This process was prevented by CNP in H9c2 cells treated with unrelated siRNA, but not in 

those with reduced VILIP-1 expression (Fig. 3B). 

Induction of myocardial infarction in rats 
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Ligation of the LAD (left anterior descending artery) was performed to induce myocardial infarction 

(MI) of the left ventricle in rats. Echocardiography, invasive hemodynamic measurement and 

determination of plasma BNP was performed to determine cardiac dimensions, systolic and diastolic 

dysfunction (Table 1).  

Cardiac hyporesponsiveness to CNP in experimental myocardial infarction 

To determine cardiac responsiveness of NPR-B to hormonal stimulation, we prepared heart 

membranes from the non-infarcted area of the left ventricle or from a similar region of sham-operated 

animals and measured cGMP production upon stimulation with a saturating concentration of CNP 

(Fig. 4). Basal guanylyl cyclase activity was comparable between both groups. The stimulation of 

membranes with Triton-X100/Mn2+ are thought to reflect the changes of NPR activity resulting from 

changes in receptor protein or phorphorylation state of the regulatory domain. Guanylyl cyclase 

activity in the presence of Triton-X100/Mn2+ was not significantly altered in cardiac membranes 

obtained from animals with MI. In contrast, the CNP-dependent cGMP-response in the hearts of rats 

with MI was significantly reduced to 66% (p<0.05) of the activity observed in hearts from sham-

operated animals.  

Expression of NPR-B, NPR-C and VILIP-1  in experimental myocardial infarction 

To find an explanation for the reduced CNP-dependent cGMP-response, we first analyzed mRNA 

expression of NPR-B and VILIP-1 in the cardiac samples used for membrane preparations. Gene 

expression was normalized to GAPDH expression. The expression  level of sham-operated animals 

was set at 100%. The expression of NPR-B was not altered in the infarct group (Sham: 100% ± 9 vs. 

MI 83% ± 6, p=0.14). For the clearance receptor NPR-C, a significant upregulation (Sham: 100% ± 8 

vs. MI 267 ± 32, p<0.001) was detected. No significant reduction was found for VILIP-1 (Sham 100 ± 

32 vs. MI 58% ± 10, p=0.2). 

VILIP-1 expression was analyzed by western blot in whole tissue homogenates from samples of the 

non-infarcted area of the left ventricle and control tissue, respectively. For normalization, GAPDH 

expression was determined. The expression of VILIP-1 protein was significantly reduced in the left 

ventricular tissue of rats with MI (Fig. 5 A/B). 
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Discussion 

Growing evidence indicates that VILIP-1, a member of the family of neuronal calcium sensor proteins, 

modulates a variety of processes in extra-neuronal tissues. In this study we demonstrate that VILIP-1 

is present in the heart, cultured cardiomyocytes, and H9c2 cells. Overexpression of VILIP-1 in H9c2 

cells increased surface expression of NPR-B and led to increased intracellular cGMP production upon 

CNP exposure. In contrast, siRNA-mediated knockdown of VILIP-1 led to decreased surface 

expression of NPR-B, thereby reducing the ligand-dependent formation of cGMP.  These data 

demonstrate that VILIP-1 is a key regulator of NPR-B signalling in cardiomyocytes by modulating the 

amount of receptor molecules in the membrane. This is in accordance with previous studies 

demonstrating that VILIP-1 may either directly interact with NPR-B or alter clathrin-dependent  

membrane trafficking of NPR-B in C6 glioma cells [9, 28].   

A number of studies have demonstrated antihypertrophic actions of natriuretic peptides on 

cardiomyocytes in vitro and in vivo [17, 29, 30]. These effects are mediated by NPR-A and B. The 

cardioprotective role of NPR-A has been recognized many years ago but the knowledge about NPR-B 

is still evolving [31]. By overexpressing a dominant-negative mutant of NPR-B (NPR-BΔKC), we 

have recently demonstrated a antihypertrophic function of NPR-B in cardiomyocytes in vitro and in 

vivo [17]. This receptor is the predominant subtype of the NPRs in the failing heart and beneficial 

effects of CNP infusion on cardiac structure and performance in rats with experimental myocardial 

infarction were demonstrated [32]. 

Because VILIP-1 overexpression increases the CNP-dependent cGMP response, we postulated an 

increased antihypertrophic potential of CNP. In H9c2 cells, hypertrophy can be induced by different 

stimuli such as Arg-vasopression or insulin-like growth factor-1 (IGF-1) and can be blocked by ANP, 

CNP and the membrane permeable cGMP analogue 8-Bromo-cGMP [17, 29]. In VILIP-1 

overexpressing cells, CNP exhibited a significantly higher antihypertrophic potential in comparison to 

controls. Vice versa, siRNA-based knockdown of VILIP-1 abolished the antihypertrophic property of 

CNP. These results are in compliance with the altered CNP-dependent cGMP-response and underline 

the importance of this second messenger in mediating antihypertrophic effects in cardiomyocytes and 

stable cell lines derived from those [17, 29].  
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The second part of this study was to explore a possible relevance of VILIP-1 in congestive heart 

failure. Increased cardiac expression of ANP and BNP and release of this peptides into the circulation 

is a characteristic feature in heart failure. Despite this elevation, the physiologic response to these 

peptides is diminished [33, 34]. Currently two studies were published describing hyporesponsiveness 

of cardiac and renal tissues to ANP in congestive heart failure. It could be demonstrated that for 

kidney membranes a reduced amount of NPR-A molecules and not a reduced phosphorylation state 

may explain the reduced enzymatic activity [35].  

For membrane preparations obtained from the non-infarcted area of rats four weeks after surgery, a 

reduced CNP-dependent cGMP response was detected. This finding is in accordance with the study 

from Kim et al., describing reduced NPR-B activity in membranes prepared from endocardial cells of 

the hypertrophied right ventricle [36]. Interestingly in failing hearts from mice with pressure-overload, 

guanylyl cyclase activity of NPR-B was not affected [37]. Thus the regulation of NPR´s seem to 

depend on several factors such as the origin of heart disease and tissue or differences among species. 

A number of factors may be responsible for the reduced activity of NPR-B in the cardiac membranes 

obtained from rats with MI. These are increased expression of the clearance receptor NPR-C, 

activation of phosphatases that desensitize NPR-B, transcriptional regulation of NPR-B, alternative 

splicing of the primary transcript leading to dominant-negative NPR-B isoforms or increased receptor 

internalization.  

An increased expression of NPR-C was decribed in heart failure patients, rats with pressure overload-

induced cardiac hypertrophy and was also observed in our model [38, 39]. For guanylyl cyclase assays 

a saturating concentration of CNP was applied, so it is unlikely that a increased clearance is 

responsible for the reduced CNP-dependent cGMP response.  

It is well described that PKC and Ca2+ are able to reduce enzymatic activity of NPR-A and –B by 

activating at least two different phosphatases. This process is known as heterologous desensitization 

and is characterized by dephosphorylation of the regulatory domain of NPR-A and –B [40-42]. The 

study of Bryan et al. has demonstrated that receptor dephosphorylation is not the mechanism that lead 

to renal hyporesponsiveness to natriuretic peptides in heart failure [35]. There are no studies reported 

in which the phosphorylation state of NPR-A or –B have been determined in failing hearts. In the 
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cardiac cell line H9c2, heterologous desensitization of NPR-A and –B can be induced within a few 

minutes by employing the PKC-activator PMA (phorbol 12-myristate 13-acetate). This effect is 

blocked by several PKC-inhibitors (unpublished data of J.B.). In heart failure PKC is activated by 

humoral factors, such as angiotensin, endothelin or catecholamines, so heterologous desensitization of 

NPR-B may be responsible for the reduced CNP-dependent cGMP response in our model [43]. 

Furthermore, a reduced mRNA expression or membrane exposition may also be causative for the 

reduced guanylyl cyclase activity in our model. The gene expression of NPR-B in the noninfarcted 

part of the left ventricle was not altered. The same result was found in a model of pacing-induced heart 

failure in minipigs. In this model NPR-B expression was reduced in the right but not in the left 

ventricle [37].  

Given the possibility that VILIP-1 regulates the amount of NPR-B in cardiac membranes, as observed 

in H9c2 cells, we tested mRNA expression and protein content in whole tissue homogenates.  Whereas 

no significant reduction of mRNA expression was observed, a reduction of VILIP-1 protein level was 

detected. This may lead to a reduced exposition of NPR-B on the cell surface, explaining the reduced 

CNP-dependent cGMP-response. Due to the lack of suitable antibodies against NPR-B, including 

dominant-negative isoforms of this receptor, protein levels can not be determined so far [44]. 

In summary, this study provides first evidence for a functional role of VILIP-1 in the heart. VILIP-1 

may serve as important factor responsible for the downregulation of NPR´s in congestive heart failure. 

It may therefore constitute a potential pharmacological target for the treatment of  cardiac hypertrophy 

and heart failure. 
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Figure legends 
 
Figure 1: Cardiac Expression of VILIP-1. A) Detection of VILIP-1 mRNA in rat tissues by RNAse 
Protection assay. GAPDH served as control. B) Confirmation of VILIP-1 protein expression by 
western blot in lysates from human and rat left ventricles and H9c2 cells. Immunocytological 
detection of VILIP-1 in neonatal (C), adult (D) rat cardiomyocytes, and H9c2 cells (E) (Scalebar: 100 
µm).  Pictures were taken in red (Cy3-labeled secondary antibody). 
 
 Figure 2: Regulation of NPR-B signalling by VILIP-1 in H9c2 cells. A) Stable expression of 
VILIP-1 (inset) and enhancement of CNP-dependent cGMP-production. B) Increased binding of 125I-
CNP-22 in VILIP-1 overexpressing cells compared to mock. C) SiRNA-based knockdown of VILIP-1 
was verified by western blot (inset) and led to decreased CNP-dependent cGMP production. D) 
Reduced binding of 125I-CNP-22 in cells with reduced VILIP-1 protein level. All data are expressed as 
means ± SEM (n=4-5 per group). ***p<0.001, **p<0.01; *p<0.05 vs. mock or unrelated siRNA. 
 
Figure 3: Antihypertrophic actions of CNP in H9c2 cells with VILIP-1 overexpression or 
knockdown. Cellular hypertrophy was induced by vasopressin (AVP). A) CNP displayed an increased 
potency to block protein synthesis in VILIP-1 transfected cells. B) VILIP-1 knockdown abolished the 
antihypertrophic property of CNP. All data are expressed as means ± SEM (n=4 per group). *p<0.05 
vs. Basal (non-stimulated cells);  #p<0.05 vs. AVP alone; $p<0.05 vs. mock or unrelated siRNA in 
cells treated with AVP+CNP  
 
Figure 4: Guanylyl cyclase assay of failing rat hearts. Cardiac membranes were assayed for 
guanylyl cyclase activities in the presence or absence of various activators. Maximal hormone-
dependent (1 µM CNP) activity was reduced in membranes from rats with MI compared with sham-
operated animals. Triton-X100/Mn2+-dependent guanylyl cyclase activity was comparable between 
both groups. All data are expressed as means ± SEM (n=4-5 per group). ***p<0.001; *p<0.05 vs. 
Basal;  #p<0.05 vs. Sham; n.s. = not significant. 
 
Figure 5: VILIP-1 protein expression in failing rat hearts. A) Detection of VILIP-1 protein 
expression in the left ventricle of ventricles of rats with MI or controls (sham) by Western blot. 
GAPDH protein expression served as control. B) Normalization of VILIP-1 expression to GAPDH 
expression (A.U. =  arbitrary unit). Data are expressed as means±SEM (n=4 per group) *p<0.05 vs. 
Sham. 
 
Table 1: Heart failure parameters. Values are expressed as the means ± SEM. HW, heart weight; 
BW, body weight; LV, left ventricle; LVEDD, LV end-diastolic diameter; LVESD, LV end-systolic 
diameter; PWT, LV posterior wall thickness; LV FS, LV fractional shortening; LV EF, LV ejection 
fraction; dP/dtmax, LV contractility; dP/dtmin LV relaxation; LVEDP, LV end-diastolic pressure; 
BNP, brain natriuretic peptide. 
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